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Abstract—Many critical e-commerce and financial services
are deployed on geo-distributed data centers for scalability and
availability. Recent market surveys show that failure of a data
center is inevitable resulting in huge financial loss. Fault-tolerance
in distributed data centers is typically handled by provisioning
spare capacity to mask failure at a site. We argue that operating
cost and data replication cost (for data availability) must be
considered in spare capacity provisioning along with minimizing
the number of servers. Since the operating cost and client demand
varies across space and time, we propose cost-aware capacity
provisioning to minimize the total cost of ownership (TCO) for
fault-tolerant data centers.

We formulate the problem of spare capacity provisioning
in fault-tolerant distributed data centers using mixed integer
linear programming (MILP), with an objective of minimizing
the TCO. The model accounts for heterogeneous client demand,
data replication strategies (single and multiple site), variation
in electricity price and carbon tax, and delay constraints while
computing the spare capacity. Solving the MILP using real-world
data, we observed a saving in the TCO to the tune of 35%
compared to a model that minimizes total number of servers
and 43% compared to the model which minimizes the average
response time. We demonstrate that our model is beneficial
when electricity price, carbon tax and bandwidth price vary
significantly across the locations, which seems to be the case
with most of the operators.

Index Terms—Geo-distributed data center, capacity provision-
ing, fault tolerance, mixed integer linear programming

I. INTRODUCTION

Recently a number of Internet services and applications are
deployed over large scale geo-distributed data centers. A geo-
distributed data center is an orchestrated collection of data
centers, distributed across several locations and transparently
interconnected with overlay links[1]. Geo-distributed data cen-
ters offer advantages such as increased availability, lower
access time for users across the globe and horizontal scale out
against capacity constraints (electricity, physical space etc.).
Due to these advantages several cloud providers like Amazon
and content distribution companies such as Akamai, invest in
building geo-distributed data centers. For example, Google has
data centers across 15 countries at more than 30 sites with an
estimated 900,000 servers [2].

Critical e-commerce and financial services running on geo-
distributed data centers (henceforth simply referred data cen-
ters) demand high availability because of huge loss of revenue

associated with downtime. A survey by Gartner estimated
that 60% companies incurred a loss to the tune of $250,000-
$500,000 for an hour of downtime, and one sixth of the
companies incurred a loss of $1 million or more [3]. Further, a
latest survey by Ponemon institute showed that the frequency
of data center outage (complete or partial) could be as high
as once a month with an average duration of three hours. It
was reported to cause a loss of $1,734,433 per organization
with an average cost of $690,204 per incident. Instances of a
data center failure at a site have been reported by many cloud
service providers like Amazon, Facebook and Google [4], [5].
These failures are attributed to various reasons like power
outages, cable cuts, software bugs, mis-configured routers,
DDoS attacks, and natural disasters [6]. In this paper, by high
availability we mean that the data center continues to deliver
original service (may be with a degraded performance) after
failure of a single site. This can be achieved by providing
spare compute capacity across the data centers.

Along with service restoration, it is also important that the
required data is available at an alternate location after failure.
This is handled by replication of data according to a pre-
determined policy. There are two options possible for data
replication namely, single site replication and multiple site
replication. In single site replication, the data is replicated
to another nearby data center. In case of a failure, if the
replicated site is overloaded, client requests are directed to
any other data center meeting the latency requirement. In
this case, the data would be pulled from the replica which
results in greater latency and bandwidth cost (we call this post-
failure penalty). In order to ensure co-location of data with the
compute servers, the data is often replicated at multiple sites.
However, multi-site replications involves large replication cost
since the data center operators are typically charged for the
number of bytes transfered [7] and/or the bandwidth cost
between the replication sites [8]. Therefore, the replication
cost should be considered while designing the data centers for
high availability.

In summary, designing a fault-tolerant, highly available,
distributed data center involves minimizing the spare capacity
(number of servers) across the data centers considering the
cost of power consumed and data replication, subject to a
set of constraints related to client demand, delay bound,
power and capacity available. We call this problem cost-aware
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capacity provisioning (CACP) wherein, the main challenge
is to minimize the total cost of ownership (TCO) for data
center operators by leveraging the spatio-temporal variation in
electricity price and user demand.
Motivation: The work in this paper is motivated by the
following observations:
• Electricity price variation: In a deregulated electricity mar-

ket, electricity price varies across space and time. Recent
trends show that the operating cost exceeds the server cost
at many data center locations. Assuming the server shelf life
to be 4 years and its initial cost to be $2000 [9], we define
the energy to acquisition cost (EAC) as the ratio of the cost
of powering a server to its acquisition cost as:

Power cost = 4 yrs ∗ (8760 hrs/yr)∗
(electricity price) ∗ server power ∗ PUE

(1)

EAC =
power cost
server cost

∗ 100 (2)

Using the electricity prices from [10]–[13], an average server
power consumption of 300W, and power usage effectiveness
(PUE) of 1.5 we compute the EAC values that are reported in
Table I. The EAC values in Table I indicate that for most of
the countries cost of power and cooling exceeds the cost of
buying servers which suggests that a greater attention should
be put on optimizing data center power consumption cost
instead of only minimizing the servers while designing fault-
tolerant data centers.

Country/Area Electricity price($/kWh) Cost(in $) EAC
Canada 0.06 946 47
Oregon, USA 0.06 946 47
Virginia, USA 0.07 1104 55
Switzerland 0.07 1230 62
Netherlands 0.09 1419 71
Japan 0.10 17 84
California, USA 0.12 1971 99
Ireland 0.13 2050 103
UK 0.13 2050 103
Hongkong 0.17 2680 134

TABLE I: EAC for different countries

• Replication Cost Usually, cloud service providers connect
their data centers with dedicated WAN links which are
significantly expensive. Therefore, informed data replication
must be carried out in order to minimize the operating
cost involved. For example, AWS charges inter data center
transfer for $0.12-0.2/GB across geographic regions and
$0.01/GB in the same region [7]. Literature also suggests that
replication cost may be charged based on distance between
the replicating sites, like a cost of $1 to transfer 2.7 GB of
data over 100km was reported in [8].

In this paper we give a MILP based solution for the CACP
problem to optimize the TCO, while complying to the cus-
tomer demand, latency requirements, and being cost effective
while masking the failure of any one data center.
We summarize the main contributions as follows:
• We formulate the CACP problem as a mixed integer linear

program with an objective of minimizing the TCO (includes
cost of server acquisition, electricity, carbon tax and data

replication) subject to latency, power, demand and availabil-
ity constraints.

• We prove that the CACP problem for the design of a fault
tolerant distributed data center is NP-hard.

• We collected traces from wikipedia.org [14] sites to create
heterogeneous workload and used it to model the server
utilization under heterogeneous demand.

• We modelled two strategies for data replication, single site
and multiple site for data affinity. Evaluation of these models
with our framework suggests that although multiple site
model is costlier, it is preferable when post failure penalty
is large in single site model.

• We used real-world data for price of electricity to evaluate
the proposed model which shows that the CACP model
results in significant savings in the TCO compared to the
existing models.

The rest of the paper is organized as follows. Section II
discusses the work related to capacity provisioning in dis-
tributed data centers. Section III presents the cost models
used, formulation of the CACP problem and discusses the
complexity of the formulation. We also illustrate the working
of the model with a small example. Results demonstrating the
advantages of the proposed model over the existing ones are
reported in Section IV. Section V concludes the paper.

II. RELATED WORK

There have been significant efforts to address the problems
of server consolidation, server switching, VM migration, and
load balancing to minimize the operating cost under the
assumption that sufficient servers are already provisioned (for
example [15], [16]. However, there is not much work done in
planning data center deployment considering failures and the
offline problem of capacity allocation to design fault-tolerant
data centers. This section discusses the literature addressing
server placement and capacity provisioning in geo-distributed
data centers.

The authors of [8] proposed an optimization framework
to provision servers across different locations using three
different objectives: to minimize total carbon footprint, to
minimize total cost and to minimize average service latency.
The costs considered were electricity cost and bandwidth cost,
while the constraints were related to client latency. In [9], the
authors proposed a mechanism to select data center locations
to minimize the total cost of ownership that includes capital
as well as operating cost subject to delay, consistency and
availability constraints. The capital cost factors included cost
of land, data center construction, transmission line to power
grid, OFC line to network backbone, cooling infrastructure,
and internal network. The operating cost factors included cost
of electricity, bandwidth, cooling the data center, carbon tax,
and administration cost.

The work in [17], addressed the problem of maximizing
profit by either building a new data center or by expanding
the existing ones (increase the number of servers) to meet the
increasing demand. Along with the cost of electricity, cooling,
bandwidth and revenue generated, annual inflation rate over
a period of time was also included in the profit generated.
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The MILP optimization framework determines the best option
to maximize revenue for a given data center location and its
compute capacity . The work in [18] jointly handled the data
center server placement, capacity provisioning and request
routing while minimizing the total cost (adding/expanding data
center), such that maximum average latency on every routing
path is bounded.

A design for disaster-resilient data center using quality of
resilience metrics like time to recovery and service availability
was discussed in [19]. They also showed how these metrics
affect the decision of selecting data center recovery mech-
anism, VM placement, site location, and backup strategies.
Though a lot of literature addressed the problems of data center
placement and capacity provisioning, provisioning to handle
data center failures had not been adequately addressed. To the
best of our knowledge, the only work that advocated the im-
portance of fault tolerant capacity provisioning in distributed
data center was [20]. The authors, proposed an optimization
model to minimize the number of servers to be provisioned
across different locations to handle the failure of an entire data
center at a site. Though the basic problem is similar, we use
minimization of the TCO as the objective apart from handling
replication cost. As reported in Table I the electricity cost
of powering a server is comparable to the server acquisition
cost (and dominates it in some countries). Therefore, we use
minimization of the TCO as an objective in spare capacity
provisioning considering different models for data replication
as well.

III. MILP MODEL FORMULATION

In this section, we first state the assumptions used in the
model and present the models considered for various cost
factors. Next, we present the MILP formulation of the CACP
problem and also prove that the problem is NP hard.

A. Assumptions

The following assumptions were made in the model.
• We assume that the failure of the data center at a site is an

independent process, i.e., data centers are not susceptible to
common disaster situation [19]. For example, power outage,
building fire or any local disaster at one data center location
will not effect the remaining data centers.

• Data replication happens with any popular geo-distributed
data replication strategy.

• Failure detection and request re-routing is handled by the load
balancer proxy.

• Data centers are connected using dedicated virtual links and
the cost of data transfer is based on the actual usage.

• The demand from a client region is proportional to the
population. Propagation delay within the client region is
assumed to be negligible.

• All the servers have similar configuration and can serve
requests for any service. However, the response sizes can
be variable.

Variable Meaning
Input Parameters
S set of data center locations
U set of client locations
A set of application types
H total time horizon
s index for data center location
u index for client region
f index for failed data center
h index for time slot in time horizon
a index for application request type
B processing rate of server in bits per second
Ja job size for request of type a in kB
P fh
s power consumed at data center s for application a

during hour h with failed data center f
Ph max
s maximum power available at data center s during

hour h
γfhs average server utilization at data center s during hour

h and failed data center f
γmax maximum value of γ to avoid waiting
Lah
u total number of requests generated for application A

from user location u during hour h
Dsu propagation delay between client region u and data

center s
Dmax the maximum tolerable latency
θhs electricity price per kWh at data center s at hour h
ρs transmission loss of electricity at data center s
α server acquisition cost
δs carbon tax at data center s
Mmin minimum number of servers at any data center
Mmax maximum number of servers at any data center
νsi bandwidth cost for data center s to data center i
ξ number of bytes required for data replication of

single request
Decision Variables
ms number of servers in data center s
λafhsu number of requests for application a from user

location u, served by data center s during hour h
and failed data center f

ysu binary variable that denotes whether client location
u lies within the latency bound of data center s

Cost Components
z total cost of ownership, including server acquisition

cost, operating cost and data replication cost
Φ server acquisition cost
η cost of data replication to nearest data center for

durability
κ cost of data replication, for the case of replication at

multiple sites
Θ power consumption cost
τ carbon tax incurred

TABLE II: Summary of notation used in the paper

B. System Model

In this section, we define the variables and cost models
used in the formulation. Table II lists all the input parameters,
variables, and cost factors in the model.
Failures: Let S denote the set of data centers. The data centers
are indexed between 1 and |S|. We use an index variable f
to represent failure of a data center. f takes values from the
set {0, |S|}, where f = 0 indicates the case of no failure and
f = s indicates that the data center indexed s ∈ {1, 2, . . . , |S|}
has failed. We assume that the probability of single data center
failure, i.e., f 6= 0, is very small.
Demand: Let λafhsu denote the number of requests for an
application type a, from a client region u, served by the data
center at site s, during hour h after the data center indexed
f ∈ {1, |S|} has failed. Let Lh

u be the total demand from client
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region u at hour h.
Server Provisioning: Let ms denote the number of servers
required in a data center at s. We define Mmin and Mmax to
be the minimum and maximum number of servers that can be
provisioned at any data center based on the space and power
availability.
Delay: Let Dmax be the maximum latency for the service and
Let Dsu be the propagation delay between client region u and
data center site s. A data center must be assigned to the client
region such that even after the failure of a site, the latency
continues to be lower than Dmax.
Server Utilization: Let the processing rate of the server to be
B bps and let Ja be the response size for an application type
a ∈ A. The service rate for type a is defined by B

Ja
requests

per second. There are three approaches to model the average
utilization of servers as given below:

1) Mutually Exclusive (ME) approach: Each type of appli-
cation is assigned to a pre-defined set of servers. Let msa

be the number of servers allocated to serve the requests
of type a. Requests for different services are queued
in a single queue, from which a scheduler dispatches
the requests of a type to the corresponding servers. The
average utilization of servers serving the requests of type
a can be defined as

γfhs =

∑
u λ

afh
su Ja

msaB
, (3)

This approach of scheduling simplifies the resource pro-
visioning but leads to under-utilization of servers.

2) Maximum (MAX) approach: Assuming all the requests
to be homogeneous, the servers can be provisioned ac-
cording to the highest processing rate required. In this
case, the average utilization of any server can be defined
as

γfhs =

∑
u,a λ

afh
su Jmax

msB
, (4)

where Jmax is the maximum mean file size across dif-
ferent application types. This approach also suffers from
resource under-utilization. On the other hand, provision-
ing based on the smallest processing rate required leads
to under-provisioning of resources.

3) Multiplexed (MUX) approach: In a virtualized environ-
ment, any type of workload can be served by one of
the free servers. All the requests are placed in a common
queue and served by a set of identical servers. This model
is followed in most of the recent papers [21]. The average
utilization of a server in this case can be defined as

γfhs =

∑
u,a λ

afh
su Ja

msB
(5)

In this paper, we consider this model for server uti-
lization but study the implications of other models in
Section IV-B8.

C. Cost Models

Server Acquisition: Let the cost of a server normalized over
the duration considered for evaluation be denoted by α. The

total cost of servers across all the data centers, denoted by Φ
is simply given as

Φ = α
∑
s

ms (6)

Data Replication: Let νsg be the bandwidth cost for data
replication from data centers s to g. For every request served
by a data center s, let ξ be the volume of data to be replicated.
We consider two possible replication models.

1) Single site replication: In this case, the data from a
primary data center is replicated to the nearest data center.

2) Multiple site replication: In this case, the data from a
primary data center is replicated to all possible data
centers where the client’s request may be routed without
exceeding the latency bound, denoted by PDs.

We define the cost of replication R for these two options using
the equation below:

R =

{∑
a,f,u,s,h

(
λafhsu ξ νsg

)
Case 1∑

a,f,u,s,h

(
λafhsu ξ

∑
i∈PDs

νsi
)

Case 2
(7)

Power Consumption: Let θhs denote the electricity price at
data center location s in hour h of the day. Let Pidle be
the average power consumed in idle condition and Ppeak be
the power consumed at peak utilization. Let Es be the power
usage effectiveness (PUE) of a data center. The total power
consumed at s over an hour h can be expressed as [8]

P fh
s = ms(Pidle + (Es − 1)Ppeak)

+ ms(Ppeak − Pidle)γ
fh
s . (8)

The cost of power consumed at all data centers Θ can be
expressed as

Θ =
∑
s,h,f

θhsP
fh
s (9)

(10)

Carbon tax: Let δs denote the carbon tax levied at data center
location s and ρs denote the transmission loss incurred. The
total cost due to carbon tax is

τ =
∑
s,f,h

δs(ρs + 1)P fh
s (11)

D. CACP Model

Considering all the cost factors defined above, we can
define the CACP problem as the problem of minimizing the
TCO subject to set of constraints on latency and availability.
The TCO, denoted by z is the sum of server cost Φ, data
replication cost R, electricity cost Θ, and carbon tax τ .
For notational simplicity, we define the following decision
variables:
m , [ms,∀s ∈ S],
λ , [λafusu ,∀s ∈ S, ∀u ∈ U, ∀a ∈ A, ∀h ∈ H,∀f ∈
{0, 1, 2.., S}] and
y , [ysu,∀s ∈ S, ∀u ∈ U ]
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The CACP problem can be formally expressed as an opti-
mization model given below:

minimize
m,λ,y

z = Φ +R+ Θ + τ (12)

subject to,∑
s∈S

λafhsu = Lah
u ∀u, a, h, f (13)

0 ≤ λafhsu ≤ ysuL
ah
u ∀s, u, a, h, f (14)

Mmin ≤ ms ≤Mmax ∀s (15)

P fh
s ≤ Ph max

s ∀s, h, f (16)
2Dsu ysu ≤ Dmax ∀s, u (17)

γfhs ≤ γmax ∀s, h, f (18)

λafhsu = 0 ∀u, a, h, s = f (19)

Among the constraints, Eq. (13) ensures that demand of
all client regions in every hour is met. Eq. (14) ensures that
all the client requests are served by data centers within the
latency limit. Eq. (15) ensures that capacity limit of a data
center (in terms of number of servers) is not exceeded. The
constraint on the total power available at a data center is taken
care in Eq. (16). Eq. (17) ensures that the delay experienced
by a client lies within the maximum bound. Eq. (18) is used
to limit the queuing delay at a data center by bounding the
average server utilization to a constant value (γmax ∈ (0, 1]),
similar to that in [8]. Eq. (19) ensures that no demand is served
by the failed data center.

The inputs to the CACP problem are: the set of data
center locations with the associated costs, maximum average
utilization of servers, processing rate of the servers, maximum
latency, demand distribution, maximum number of servers at
each site, and maximum power available at each site. The
model then gives the number of servers across the sites, request
routing to the data centers and the data centers within the
latency limit for each client location.

E. Complexity Analysis

The number of variables in the above formulation is
S + (S + 1)SUAH and the number of constraints is
S + (S + 1){UAH + SUAH + 2SH} + SUAH + SU .
The asymptotic complexity of proposed CACP model is
O(S2UAH). With an increase in the number of data centers
the complexity increases quadratically but, linearly with the
number of client locations, time slots and application types.
The following theorem states the complexity of the problem.

Theorem 1. The feasibility problem of CACP in a distributed
data center is NP-hard.

Proof. The CACP problem in distributed data center (without
fault tolerance) is NP-hard, even when resources are of unit
size and unit operating cost. The reduction is from the set cover
problem. Details of the proof are given in the Appendix.

Though the formulation is NP-hard, solving it is a one-time
effort only at the time of design. We do not see the running
time to be a matter of concern since the CACP problem is

always solved offline. Currently, the number of data centers
hosted by data center operators is small (15 for Google [22]).
We solved all the models centrally using CPLEX with Matlab
on a server with Intel Xeon processor, 64 GB of RAM and
64-bit OS. We could not solve the model for more than ten
data centers on this server in a reasonable amount of time (few
minutes) for an evaluation period of one day (24 hourly slots).
We can solve the model optimally for capacity planning in
large data centers with higher computational power. For much
larger number of variables, we need to go for online heuristics
or approximate algorithms.

F. Illustration for Working of the CACP Model

In this section, we give simple example to illustrate the
impact of CACP model on TCO. The proposed CACP model
mainly reduces the TCO by exploiting demand multiplexing
and spatio-temporal variation in the demand and electricity
price. For easier understanding on how this works, we show
two examples for (a) the impact of demand multiplexing on
capacity provisioning and (b) the impact of demand multiplex-
ing and electricity price variation on the TCO.
Impact of demand multiplexing on capacity provisioning:
Both the CACP and MS models take into account demand
multiplexing while provisioning capacity while CDN trivially
maps requests to nearest data center to minimize the latency.
Consider a scenario with three data centers and three client
regions with a maximum latency bound of 25 ms for the
service. Fig. 1 shows the system used for illustration. Data
centers DC1,DC2 and DC3 serve the requests from client
regions C1,C2 and C3 given in Table III. Each edge between
a data center and client region is weighted by the propagation
delay. For simplicity, we considered a case where all the data
centers lie within the latency bound (25ms) for all the client
regions.

C1

C2C3

DC1 DC2

10 ms

2
0

 m
s

1
0

 m
s

20 ms

      
      

      
      

      
      

      
     2

0 ms
         20 ms

DC310 ms 20 ms

2
0

 m
s

Fig. 1: System model

Timeslot 1 (in hrs) Timeslot 2 (in hrs) Timeslot 3 (in hrs)
Client 1 100 50 50
Client 2 50 100 50
Client 3 50 50 100

TABLE III: Demand across different intervals

Considering the case of a data center failure, demand of
200 units generated from all the client regions need to be
served by the remaining two data centers. In MS model we
have equally distributed the workload among all the active
data centers. This gives 100 servers at each data center and
the total number of servers to tolerate any data center failure is
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(b)

Fig. 2: Capacity allocation using(a) CDN model, (b) MS model

300 units as shown in Fig. 2b. In case of CDN model, a client
region is always served by the nearest data center after failure.
For example, C1 was served by DC1 before failure whereas,
it is served by DC2 after failure. Therefore, DC2 should be
provisioned not only to satisfy C2’s demand but also with
sufficient spare capacity to make up for failed data center DC1.
This gives rise to DC2 being provisioned with 150 servers
to meet the demand across any interval (when DC1 might
fail). Accounting for the possibility of any data center failure,
the server distribution across all the data centers is obtained
to be 150 units as shown in Fig. 2a. We can conclude that
MS model exploits demand multiplexing while satisfying the
latency bound of 25 ms and requires only 300 servers against
450 units with the CDN model. CACP model also gives the
same result if we ignore the variation in the operating cost
across the data centers.
Impact of demand multiplexing and electricity price varia-
tion on the TCO: Consider three data centers shown in Fig.1
with the electricity price variation as shown in Fig. 4. It may
be noted that electricity price is highest at DC2. The demand
across the three regions C1, C2, and C3, in shown in Fig. 3.
For simplicity, we considered the processing rate as 100/sec,
Ppeak and Pidle as 400 W and 200 W, respectively and server
cost as $2000 (17 cents/hr, assuming 4 years life). We assume
that all the data centers are within the latency limit for any
client region.
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Fig. 3: Demand distribution at three chosen client regions

The server distribution obtained after solving the optimization
model for CDN (minimize average latency), MS (minimize
number of servers), CACP (minimize total cost) is showed
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Fig. 4: Electricity price at three data center locations

in Fig. 5a, Fig. 5b and Fig. 5c, respectively. The number of
servers allocated across all the data center locations is same
with the MS model. However, the CACP model allocates fewer
servers at DC2, where the electricity price is higher. The
CACP model always allocates more capacity at a site where
electricity price is cheaper while satisfying the latency and
other constraints.
The normalized TCO obtained using the model is given in
Table IV. Even though CACP model allocates larger number
of servers than the MS model, the TCO is lowered by
exploiting the spatio-temporal variation in the electricity prices
for demand distribution. Though the MS model minimizes the
number of servers provisioned at each location, it does not
give minimum TCO being oblivious to operating cost.

Models Normalized TCO
CDN 1
MS 0.89

CACP 0.62

TABLE IV: Normalized TCO

IV. NUMERICAL RESULTS

In this section, we solve the CACP model using real-world
data and compare the TCO obtained with two other models
from the literature. The MILP is solved using CPLEX (In-
teractive Optimizer 12.6.2.0.) with Matlab on a Ubuntu 14.04
server based on Intel Xeon processor with 64 GB of RAM.
All the models were evaluated under identical constraints and
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Fig. 5: Capacity allocation using(a) CDN model, (b) MS model, (c)CACP model

we used the same cost factors for all the models. The two
other models considered were:
• MS model: A rudimentary version of this model was defined

in [20]. The main objective of this model is to minimize the
total number of servers deployed across all the data centers.
The TCO for this model would be the cost of data center
provisioned after minimizing the number of servers.

• CDN model: In this model, the objective is to balance the
load across data centers such that average response time is
minimized. The provisioning of servers in this model would
be done such that the client latency is minimum [23].

We compare the TCO obtained using all the three models
in the results. We also studied the advantages of the CACP
model by varying the number of data centers, demand, request
rate, and latency bound. We also studied the impact of server
utilization models and replication models discussed earlier on
the TCO. We first provide details on the scenarios used and
the data set used for the evaluation.

A. Scenarios Used

Data center locations: The locations for the data centers
were (10 of them): California, Oregon, Virginia, Switzerland,
U.K, Ireland, Netherlands, Hong Kong, Japan and Canada. At
each location, the number of servers could vary between 1000
and 100,000. This would help us evaluate smaller and mega
data centers across the world.

Client locations: Based on the data collected for the number
of Internet users from [24] we selected the following client
regions (15 of them): Brazil, China, Egypt, France, Germany,
India, Indonesia, Japan, Mexico, Nigeria, Russia, South Korea,
UK, USA, and Vietnam. The propagation delay between the
data center location and client location is assumed to vary
linearly with geographical distance in the order of 10 ms for
every 1000 km [8].

Electricity Prices: We used historical industrial electricity
price data ($ per MWh) from publicly available government
databases corresponding to various data center locations[10]–
[13]. For the sake of brevity, we do not discuss regulated
electricity market prices. Interested reader may see [10]. We
use the electricity price model similar to the one in [17], where
the price for each location varies during on-peak hours (7
A.M.-11 A.M. and 5 P.M.-7 P.M.), mid-peak hours (11 A.M-
5 P.M.)and off-peak hours (7 P.M.-7 A.M.). The price varies
across the periods by as much as 3 cents/kWh [17]. Some

states in the USA like California and Colorado also add about
$0.04 to $0.6/kWh as carbon tax for power consumed from
brown energy sources. Though our model includes carbon tax,
we ignore the same in results due to its small contribution in
the TCO (less than 1%).

Traffic model: For the traffic we used the trace of requests to
Wikipedia services downloaded from [14]. We downloaded the
workload traces for the month of December 2015, containing
the total number of requests and aggregate response size for
different services of Wikipedia. The demand profile for a 24
hour period, averaged over a month, is plotted in Fig. 6. Since
demand has diurnal pattern we use H = 24. This distribution
of requests is used to derive hourly demand for different client
regions. We upscaled the number of requests by a factor of
3000 to reflect traffic handled by larger service providers [16].
For each client region we divided the workload proportional
to the number of Internet users in that region. Table V shows
the split of workload across different client regions obtained
from the number of Internet users. Fig. 7 shows the hourly
demand for a few client regions. The demand during the on-
peak period is kept as 1.4 times the mid-peak demand and
demand during off-peak period is kept at 0.6 times that in the
mid-peak period.

Inter data center communication cost: For inter data center
communication cost we use pricing model similar to the
one charged by AWS EC2 services [25]. For example, AWS
charges $0.12− $0.2/GB across geographical regions.

Other parameters: Pidle and Ppeak are set to 200W and
400W, respectively [26]. Average PUE is set to 1.5 [27], [28].
Pmax is taken as 100MW/hr for all the locations [17]. The
default value for maximum latency is set to 300ms. The size of
data to be replicated per request is assumed to be 10KB [29].
We set γmax = 0.8 [30]. We use the probability of a single
data center failure as 0.005 corresponding to 1.8 days of failure
per year.

B. Results

In this section, we present the results from evaluating the
models for the TCO by varying the number of data centers,
demand, and latency bound. We also study the effect of
different models for server utilization and data replication
(single site and multi-site) on the TCO. In all the results, we
show the normalized values of TCO, where the normalization
is done using the maximum TCO in all the experiments.
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Country Brazil China Egypt France Germany India Indonesia Japan Mexico Nigeria Russia S. Korea UK USA Vietnam
% Demand 5.33% 31.76% 2.17% 2.78% 3.50% 15.43% 2.04% 5.64% 2.65% 3.37% 4.50% 2.13% 2.93% 13.69% 2.09%

TABLE V: Percentage of demand from different regions

Countries 6 Data Centers 7 Data Centers 8 Data Centers 9 Data Centers 10 Data Centers
CACP MS CDN CACP MS CDN CACP MS CDN CACP MS CDN CACP MS CDN

Japan 20000 15592 20000 20000 12994 20000 20000 11138 20000 20000 9745 20000 16072 8663 20000
Ireland 20000 15592 20000 16203 12994 14495 200 11138 13463 200 9745 13463 200 8663 13463
California, USA 20000 15592 20000 20000 12994 20000 17360 11138 20000 200 9745 20000 200 8663 20000
Hong Kong 200 15592 20000 200 12990 20000 200 11132 20000 200 9745 20000 200 8663 20000
Virginia, USA 20000 15592 20000 20000 12994 20000 20000 11138 20000 20000 9745 20000 20000 8663 12052
UK 17760 15592 20000 1558 12994 20000 200 11138 20000 200 9745 20000 200 8663 20000
Netherlands - - - 20000 12994 20000 20000 11138 20000 17160 9745 20000 1089 8663 20000
Switzerland - - - - - - 20000 11138 20000 20000 9745 20000 20000 8663 20000
Canada - - - - - - - - - 20000 9745 4104 20000 8656 15723
Oregon, USA - - - - - - - - - - - - 20000 8663 8035
No of servers 97960 93552 120000 97961 90954 134495 97960 89098 153463 97960 87705 157567 97961 86623 169273
Normalized TCO 0.69 0.89 0.90 0.65 0.89 0.91 0.63 0.89 0.95 0.60 0.88 0.98 0.57 0.88 1.00
% reduction in TCO (w.r.t CDN) 23.35 0.51 28.20 2.55 33.34 5.66 38.67 10.01 42.62 12.39
% reduction in TCO (w.r.t MS) 22.96 26.32 29.34 31.84 34.50

TABLE VI: Comparison of number of servers provisioned and TCO for all models
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Fig. 7: Illustration of demand distribution from representative client regions

1) TCO comparison:
In this experiment, we increased the number of data centers
between 6 and 10 serving the client requests as reported
earlier within a maximum latency of 300 ms. Fig. 8 shows
the normalized TCO for all the models with varying number
of data centers. In this experiment we used a single site
replication model.

Table VI reports the normalized TCO for different cases
(third row from the bottom). Reduction in the TCO (percent-
age) with the CACP model (compared to MS model and CDN
model) is shown in the last two rows. The fourth row from
the bottom shows the total number of servers provisioned with
each model across the data centers. The table also shows the
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Fig. 8: Normalized TCO with varying number of data centers

locations chosen and the number of servers at each location
as the desired number of locations increases. Since the CACP
model exploits the spatio-temporal variation in the electricity
prices, the TCO is lowest in the case of CACP model. Though
MS model minimizes the number of servers provisioned at
each location, it does not lead to minimum TCO due to being
agnostic to operating cost.

From Table VI it can be observed that even with six data
centers the benefit of CACP model is significant while, the
other two models have similar TCO. This is due to the fact
that with fewer data centers, there is not much scope for
demand multiplexing. On the other hand, CACP model assigns
larger workload at a data center location with lower electricity
price. With addition of another location (Netherlands, with
lower electricity price compared to U.K. and Ireland) the
CACP model shifts the servers provisioned in U.K. and Ireland
to Netherlands (see Table VI). This improves the TCO in
CACP model by about 3.5%.While the CACP model suggests
more servers, the TCO is minimized due to shifting them to
locations with lower operating cost. This can be observed from
the table which shows that MS model gives the same number
of servers at each location. We can observe that the CACP
model achieved a TCO reduction of upto 35% compared to
the MS model, and upto 43% compared to the CDN model.

2) Impact of data center locations on the TCO:
We also studied how the choice of data center
locations affects the TCO with the CACP model. We
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evaluated our model for the following sets of locations:
Set 1: California, Japan, Hong Kong, Ireland,

Switzerland, Virginia
Set 2: California, Japan, Hong Kong, Netherlands,

Oregon, UK
Set 3: Japan, Hong Kong, Netherlands, Oregon,

Switzerland, Virginia
Set 4: California, Japan, Hong Kong, Ireland,

Netherlands, UK
Set 5: California, Japan, Hong Kong, Ireland,

Netherlands, UK
The TCO obtained with the CACP model is shown in Fig. 9.
Between Set 2 and Set 5 Oregon replaces Ireland, where
electricity price is lower (refer Table I). Oregon being in the
USA also meets the latency constraints for the largest number
of users (from Americas as reported in Table V). Both these
factors lead to a lower TCO for Set 2 than Set 5.

3) Impact of Replication Cost:
To understand the contribution of replication cost to the TCO,
we evaluated the CACP model considering the single site
replication (SR) and multiple site replication (MR) models
with varying number of data centers. The maximum latency
was set to 300ms and the demand was generated as reported
in Section IV-A. Fig. 10 shows the TCO split into replication
cost and cost due to power consumed for both the replication
models. It can be observed that in the SR model, contribu-
tion of the replication cost in minimal in the TCO. On the
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 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

150 200 250 300 350

N
or

m
al

iz
ed

 T
C

O

Max Delay in ms

CACP Model MS Model CDN Model

Fig. 12: Normalized TCO by varying maximum latency bound

other hand, the MR model is costly for replication and the
replication cost increases with the number of data centers as
shown in Fig 10. Therefore, this approach may be preferred
only when the post-failure penalty is very high.

Fig. 11 shows the TCO for the CACP model with and
without replication cost being considered. It can be observed
that single site replication cost alone accounts for 20% of
the TCO. Therefore, CACP model without replication cost
lowers the TCO by about 20% compared to the model with
replication.

In all the subsequent experiments, we considered only a
single site replication model while evaluating the TCO.

4) TCO vs Worst-case Latency:
Next, we studied the impact of maximum latency bound on the
TCO. We evaluated the models for 8 data centers, 15 client
regions, and the aggregate demand as mentioned in Section
IV-A. The maximum latency was chosen in the range 150−350
ms. Fig. 12 shows the normalized TCO for all the models with
varying latency. We can observe that the CACP model results
in a lower TCO by upto 38% and 32%, respectively compared
to the CDN and MS models. In the CACP model, there is a
choice in the number of data centers capable of serving the
requests from a particular client region which leads to better
multiplexing of resources and reduced TCO. Apart from this,
CACP model also selects the data centers in regions with lower
electricity prices while meeting the latency bound. Although
the CDN model gives minimum latency, request routing is
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oblivious to the variation in the electricity price. Therefore,
the TCO is higher for the CDN model particularly when
the latency requirements are not very stringent. We conclude
that CACP model is more advantageous for services without
stringent latency requirement.

We also show how the worst-case latency increases when the
CACP model targets the TCO reduction (as compared to the
CDN model) in Table VII. At a worst-case latency of 150 ms,
our model has about 25% lower TCO. When we target higher
reduction in the TCO, the worst-case latency in the CACP
model increases. For about 40% reduction in the TCO, our
model leads to worst-case latency of 300 ms. The reduction
in the TCO is achieved because, the CACP model exploits
demand multiplexing and variation in electricity price when
there is relaxation in the latency requirement.

Target Reduction in the TCO (%) Worst-case Latency (ms)
25 150
30 200
35 250
40 300

TABLE VII: Worst-case latency with the CACP model corresponding to the TCO
reduction (compared to CDN model)

5) Impact of Demand:
We evaluated all the models varying the total demand with 8
data centers and a maximum latency bound of 300ms. Results
in Fig. 13 show that as the demand increases the TCO for
CACP model is lower compared to other models. Due to
the capacity limit of a data center, increased demand causes
saturation of all the data centers in the regions with cheaper
electricity. This reduces the choices available and leads to the
selection of other locations with higher electricity price. The
proposed model is advantageous only when the data center
does not operate at peak utilization. Under heavy load, the
CACP model can help the provider determine an optimal data
center upgrade plan while minimizing the TCO.

6) Impact of demand multiplexing:
To study the impact of demand multiplexing on TCO, we
evaluated the models by varying the number data centers from
6 to 10. Electricity price for all the data centers was fixed at
10 cents per kWh throughout the day and replication cost was
fixed to $0.2/GB. Delay bound was set to 300ms. It can be
observed from Fig.14 that CACP and MS models give lower
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TCO than CDN model, since CDN model does not allow de-
mand multiplexing due to latency minimization objective. The
CACP model reduces the TCO by almost 45% compared to
the CDN model. We also noticed that CACP model eventually
gives same TCO as the MS model because, cost reduction is
only possible by demand multiplexing which minimizes the
total number of servers (due to uniform electricity price). The
TCO reduction of about 10% can be attributed to demand
multiplexing as the number of data centers increases.
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7) Cost of over provisioning:
To study the cost of over-provisioning for fault tolerance, we
evaluated all the models by varying the number of data centers.
Fig. 15 shows the normalized TCO obtained with and without
fault tolerance using each models (normalized with respect
to largest TCO across all the cases). For example, CACP-
w/ ft and CACP-w/o ft corresponds to the TCO achieved
using CACP model with and without failure, respectively.
Results show that when fault tolerance is not considered
the TCO is always lower because, fault-tolerance demands
over-provisioning of servers. This increases both CAPEX and
OPEX and hence the TCO. For the case of 6 data centers,
provisioning for fault-tolerance increases the TCO for CACP,
MS, and CDN models by 47%, 55% and 28%, respectively.
On the other hand when the number of data centers increases
to 10, the cost of over-provisioning is 49%, 61% and 34% for
CACP, MS and CDN models, respectively. We also notice that
the CACP model with failure leads to a lower TCO than the
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geneity

CDN model without failure across all scenarios. CACP model
provides resilience against single data center failure with no
additional cost compared to the CDN model.

8) Server models for heterogeneous workload::
We evaluate the CACP model using each of the three models
discussed in Section III-B to understand their impact on the
TCO. We set the delay bound to 300ms and used the same
demand as in other cases. Fig. 16 shows the TCO for different
server utilization models. It can be seen that MUX approach
results in a maximum reduction in the TCO (about 22% and
18% compared to ME and MAX, respectively). This is due
to the fact that compute resources are effectively utilized
in this approach. The ME and MAX approach both have a
drawback of resource under-utilization (or over-provisioning
of resources). The ME approach incurs the maximum cost
because there is no scope for multiplexing demand across
servers assigned for different types of services. In the MAX
approach there is a scope for multiplexing of servers due to
the use of a single server pool.

Key Observations:
• The CACP model provisions more servers but reduces

the TCO upto 35% compared to the MS model, and upto
43% compared to the CDN model.

• The CACP model is cost effective when the latency
requirement is not stringent and a data center does not
operate at its peak utilization.

• It is possible to achieve availability against single data
center failure with no additional cost using the CACP
model compared to the CDN model. Choice of replica-
tion strategy (SR and MR) plays an important role in
determining the TCO. Particularly, the contribution of
replication cost to the TCO is significantly high when the
number of data centers increases with the MR approach.
Therefore, MR approach is good only when the post-
failure migration penalty is high.

• MUX approach to handle heterogeneous workload at a
data center results in maximum reduction in the TCO
and this is a viable approach due to virtualization.

V. CONCLUSION

In this paper, we addressed the problem of cost-aware
capacity provisioning for geo-distributed data centers capable

of masking single data center failure. We prove that this
problem in NP-Hard and proposed an MILP formulation to
reduce the TCO. The proposed model is observed to be
better than the MS and CDN models due to its ability to
multiplex demand considering the spatio-temporal variation
in electricity prices and the demand. We have also modeled
different approaches to serve heterogeneous demand and data
replication. Numerical results demonstrated that the approach
of minimizing TCO is beneficial when electricity price varies
significantly, which appears to be the case for most of the
cloud providers operating geo-distributed data centers. The
CACP model achieves a cost reduction of upto 34% and 50%
when compared to MS and CDN models, respectively. Our
model is also useful to study the effect of replication cost on
the TCO for planning distributed data centers.

APPENDIX

In this section, we prove Theorem 1 stated in the paper.
In a basic formulation, the cost aware capacity provisioning
problem (without failure considerations) consists of a set of
data center locations DC where cost of running servers at a
data center i is given by Costi, and a set of client locations C
generating demand to be serviced. Each client can be served by
a data center lying within a given latency bound Delay. The
goal is to provision a number of servers across data centers
such that total cost incurred is minimum while satisfying client
demand and latency bound.

In Lemma 1 we reduce the decision version of the set cover
problem to the decision version of the CACP problem which is
sufficient to show that Theorem 1 holds. Formally, the decision
version of the CACP problem is defined as follows. Given a set
of data centers and their server running costs, set of demand
generating client regions and latency bound, does there exist
a sub set of data centers which can satisfy the client demand
with the total cost incurred being at most k.

Lemma 1. The decision version of CACP problem is NP-hard.

Proof: The decision version of the set cover problem is
defined as follows. Given a set system (U ,S) with

⋃
S∈S S =

U and a positive integer k. The question is does there exist
a collection of k or fewer sets of S that cover U [31]. This
problem is known to be NP-complete and we give a reduction
of this problem to the decision version of the CACP problem
as follows.

Given an instance of the set cover problem IS , let us map
it to an instance IC of the decision version of CACP problem.
For each u ∈ U , we assign a client region cu that generates a
demand of unit compute capacity to meet its needs. For each
S ∈ S, we assign a data center dS which is within the delay
bound for the clients specified as its elements. For instance,
if S = {u1, u2, . . . , um} then dS has cu1

, cu2
, . . . , cum

within
delay bound constraint. The cost associated with each data
center is 1 unit and each of them have infinite capacity. This
completes the reduction of instance IS to IC . It is easy to
observe that the reduction from IS to IC is polynomial time
in the input size of instance IS . To complete the proof, we
need to show that IS admits a solution if and only if IC has
a solution which costs at most k units.
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Suppose IC has a solution with less than or equal to cost k
units. Without loss of generality, let dS1 , dS2 , . . . , dSl

be the
solution to IC that meets demands of all client regions. Note
that l ≤ k as each data center consumes 1 unit of energy.
Each of the client cu is served by at least one data center in
dS1

, dS2
, . . . , dSl

. Correspondingly the S1, S2, . . . , Sl covers
each u ∈ U and thus it is a solution to IS having size of
l ≤ k.

Conversely, if IS admits a solution S1, S2, . . . , Sj with j ≤
k we can construct a solution to IC which costs at most k
units. The set of data centers dS1

, dS2
, . . . , dSj

is able to meet
the demand of all the client regions cu as

⋃
1≤i≤j Si = U .

Thus we have constructed a solution to IC which costs j ≤ k
units.
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