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Abstract—Many next generation Internet architectures exist
in the literature for addressing various issues like increasing
traffic, mobility and efficient content dissemination. One such
emerging fundamental design is Information Centric Networking
(ICN). The Pending Interest Table (PIT) is one of the essential
components of the ICN forwarding plane responsible for the
stateful routing in ICN. Optimal size of the PIT is essential for the
efficient performance of the network and the enhanced consumer
experience. Therefore, the optimal sizing of the PIT under
various network conditions is an important and challenging
problem. To this end, this paper models the PIT of a router
as a GI/M/c/N queue. The model has (i) a general arrival
process to accommodate the diverse nature of traffic, (ii) a service
time model which takes into account the caching at the content
stores and the mobility of producers, and (iii) a sojourn time
distribution which is used to characterize the content delivery
time at the consumers. Using the GI/M/c/N queueing model,
we formulate an optimization problem to minimize the PIT
size while subjecting the interest drop probability to an upper
bound. The accuracy of our analytical model is demonstrated
using simulations on different Internet Service Provider (ISP)
topologies across a wide range of system parameters.

Index Terms—Information centric networks, pending interest
table, optimal PIT sizing, queueing theory, mobile producer.

I. INTRODUCTION

Efficient distribution and retrieval of multimedia content in
the current host centric Internet architecture needs different
solutions like content distribution networks, peer-to-peer net-
works, etc. The focus of many ongoing research has shifted
from the host to the content. Most of the proposed content-
centric architectures for the future Internet have “named-data”
as the principle element of the architecture. Of many such
proposed architectures in this direction, Information Centric
Networking is one. In content centric networks like ICN, the
consumer only needs to know “what” is the content unlike
the current Internet in which the consumer is required to
know “where” the content located as well [1]. ICN has the
following unique characteristics which are fundamental for
the efficient dissemination of contents: (i) Content’s identity
and its location are decoupled; (ii) The transport of content is
consumer driven, i.e., each content has to be explicitly asked
for by the consumer; (iii) The content traverses the reverse
path of its corresponding request (also referred to as interest);
(iv) Content is cached at the content stores of the intermediate
nodes in the network (in-network caching).

This research was supported in part by Singapore Ministry of Education
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The Pending Interest Table (PIT) is one of the essential
components of the ICN forwarding plane responsible for the
stateful routing in ICN. The PIT carries out the following
functions: (i) routing the content on the interest’s reverse
path, (ii) aggregation of interests, (iii) other forwarding tasks
like loop detection etc. PIT sizes are finite and if they are
not dimensioned properly, interests arriving at a router may
experience unacceptably high drop rates. Interests dropped
at routers adversely affect the quality of experience of the
consumer since the dropped interest needs to be retransmitted,
and as a result, the delay experienced by the consumer
increases. Moreover, the interest dropped at the PIT of one
router might still be using up resources at other routers (by
being present at their PITs). The PIT is a component of the
ICN forwarding plane and is required to function at the wire-
speed, thereby making the PIT an expensive resource whose
cost increases with its increasing size. Therefore, designing the
PIT size for minimizing the incurred cost while considering
the interest drop rate is an important problem to be addressed.

Mobile data traffic forms a significant fraction of the total
IP traffic. CISCO Visual Networking index forecasts that by
2021, traffic from mobile and wireless devices will account
for 63% of the total IP traffic [2]. Support for mobility has
become an integral requirement for any Internet architecture.
In ICN, support for consumer mobility is inherent and there are
many proposals for supporting producer mobility [3]–[7]. To
this end, the discussions in our work consider both stationary
as well as mobile producers.

A. Contributions

The contributions of this work are as follows:
• We model the PIT occupancy as a GI/M/c/N queue.

We discuss two queueing models in detail. The first model
considers implicit interest timeouts and the second model
has explicit interest timeouts.

• Our queueing model takes into consideration the caching
at the content stores and the possibility of producer
mobility while modeling the queue’s service time.

• We use this queueing model to formulate an optimization
problem to minimize the PIT size at the router while
subjecting the interest drop probability to an upper bound.

• We extend this queueing model to characterize the dis-
tribution of content delivery time as experienced by the
consumers.
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Fig. 1. Different scenarios at the ICN routers.

• We perform extensive simulations using different ISP
topologies and network conditions to evaluate the accu-
racy of our proposed queueing and optimization model.

The rest of the paper is organized as follows. In Section II
we discuss the existing literature related to our work. Then,
in Section III we develop our queueing and optimization
model for calculating the optimal PIT size at the router
and we discuss the distribution of content delivery time as
experienced by the consumers. The input process for interest
generation in the simulations is discussed in Section IV. The
performed simulations and our findings are discussed in detail
in Section V and Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. ICN Background

In this section, we briefly describe the working of ICN.
ICN requires every content to be uniquely named which is
used by consumers for retrieving them. Consumers generate
an Interest with the unique name in order to request for the
content. The content producers respond with the corresponding
Data. When an interest arrives at a router, the router first
looks for the content in its own cache called the Content
Store (CS). If a hit occurs, the router replies with the data
as depicted by Figure 1a. In case of a miss, the router looks
up the PIT which stores the information to map the pending
interests (interests for which data is not yet received) with
their corresponding incoming links. If an interest is already
pending for the content, then the entry in the PIT is updated to
accommodate the new interest but no new interest is forwarded
by the router as shown in Figure 1b. If no match is found in
the PIT, the router adds an entry for the interest into the PIT.
It then looks up the Forwarding Information Base (FIB) which
maps name prefixes to the next hop router and finally forwards
the interest to the next hop router as depicted in Figure 1c.

When a data packet arrives, a router looks up the PIT for any
matching entires. If found, the router sends the data back to
the requesting router and caches the data in its CS as shown in
Figure 1d. Otherwise, the data is considered to be unsolicited
and is dropped.

B. Related Work

The sizing of router buffers for TCP/IP networks is a well
explored problem in the literature [8]–[10]. In ICN routers,
the PIT can be viewed as a buffer where information about
the pending interests is stored. The PIT is looked up on the
arrival of a data packet. These operations are required to be
performed at wire-speed. The optimal dimensioning of PIT
is an important problem because of the trade-off between
the cost of its wire-speed implementation and the achieved
performance. Authors in [11]–[15] discuss the problem of
wire-speed implementation of PIT.

Prior to our work, the problem of optimal dimensioning
of PIT has been addressed in [16]–[18]. Authors in [16]
systematically evaluate the usability of the existing router
components for the support of Content Centric Networks.
Their evaluation addresses the three main components of ICN
routers, i.e., FIB, CS and PIT. Considering parameters like
interest arrival and data response rate, they discuss a primitive
model for different metrics like PIT hit probability and PIT
miss probability. Using these metrics, the authors evaluate the
worst case memory size required for the PIT. In contrast to our
work, authors do not analytically model the PIT occupancy.

Authors in [17] present an analytical model for the PIT.
They adopt a deterministic fluid model to represent the packet
flows as a continuous flows. They assume that the interest
flows follow a sliding window protocol similar to that of TCP.
Using these assumptions, they describe the PIT state using
Delay Differential Equations and estimate the average and
the maximum PIT size taking into account the interest drop
probability. We note that the authors assume the interest and
data packets to be continuous flows and study the PIT with
no caching nor PIT timeouts. In our work we aim to address
these gaps by modeling the PIT as a GI/M/c/N queue with
interest timeouts and considering caching at the routers while
estimating the mean service time.

The authors in [18] develop a Markov model for the PIT
occupancy with interest timeouts and retransmissions. They
assume the interest arrivals to follow a Poisson distribution
and the interest service time to be exponentially distributed.
Using these assumptions, they model the PIT using a two-
dimensional continuous time Markov chain and estimate the
interest drop probability. While their model takes into account
various factors of ICN like in-network caching, interest drop
probabilities and interest time-outs, the authors assume the
interest arrivals to be Poisson distributed. We compare our
proposed model for PIT occupancy with this model.

Although authors in [17], [18] address the problem of opti-
mal PIT size by analytically modeling PIT occupancy taking
interest drop probability into account, there is no work in the
literature which models the PIT occupancy as a queue (i) with
general arrival process, (ii) whose service time accounts for
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the caching at the content stores, interest time-outs and the
mobility of the producer, (iii) which can be extended to
evaluate the sojourn time distribution at the consumer. This
paper addresses these gaps in existing literature.

III. PIT OCCUPANCY

In this section we model PIT occupancy using two queueing
models and formulate an optimization problem to determine
the optimal PIT size. First, we model the PIT occupancy as
a GI/M/c/N queue and then we extend this model to ac-
commodate for interest timeouts. The service time distribution
(discussed in detail in Section III-D) of this queue accounts for
the content stores in the routers and the mobility of producer
nodes.

A. PIT occupancy model

In this section we describe in detail our GI/M/c/N queue
model for PIT occupancy [19].

Let the size of the PIT be c interests, i.e., there can be a
maximum of c interests that have been forwarded by the router
and are yet to receive their corresponding contents. In our
model, we also allow for an additional buffer of K interests,
i.e., the interests in the buffer are yet to be forwarded by
the router. Hence, we have N = c + K. When the PIT is
full, the additional buffer stores (upto K) new interest arrivals,
while waiting for space (server) to become available in the
PIT (or the interest timeout). In the absence of such additional
buffers, interests that arrive when the PIT is full are dropped
and need to be retransmitted by the consumer. In many of
the existing literature [17], [18], the PIT does not have any
extra buffer available. To accommodate such a system, we
can set K = 0 and our model becomes a GI/M/c/c queue.
We assume that the time required for a requested interest
to be served (also referred to as the service time) follows
an exponential distribution with mean µ. Estimation of µ is
discussed in Section III-D. In order to account for traffic of
diverse nature, we consider a general arrival process. The inter-
arrival time between any two interests is an independently and
identically distributed (i.i.d) random variable having a general
distribution A(u) (u ≥ 0), a probability density function (pdf)
a(u) (u ≥ 0), Laplace-Stieltjes transform (LST) A∗(θ), and
mean 1/λ. Let {t0, t1, t2, · · · } be the successive interest arrival
epochs and {t−0 , t

−
1 , t
−
2 , · · · } be the pre-arrival epoch (time

epoch just before the arrival instant). We consider t−n , n > 0
to be the embedded points for the system. Let N(t−n ) be the
number of interests in the PIT at the time epoch t−n . We define
the state of the system at time t as N(t). It can be easily
observed that the process {N(t−n )} is an embedded Markov
chain. Let the probability that the PIT is in state n at the
pre-arrival epoch be denoted by π−n .

We consider the following exhaustive scenarios:
1) PIT is full (all servers are busy) during an inter-arrival

time: Let dk (k ≥ 0) be the probability that k interests are
served between two consecutive interest arrivals, given
that the number of interests in the system during this
time duration is greater than or equal to c. Note that in
this interval the effective service time is cµ.

2) PIT is not full during an inter-arrival time:
a) PIT is not full before the start of the inter-arrival time:

Let ak,j be the probability that an arriving interest finds
the system in state k − 1 (1 ≤ k ≤ c), while the next
arriving interest finds the PIT in state j (0 ≤ j ≤ k). It
implies that service time of j interests out of existing
k interests is more than the inter-arrival time, and k−j
interests have been served during the inter-arrival time
of an interest.

b) PIT is full before the start of the inter-arrival time:
Similarly, bk,j is the probability that an arriving interest
finds the system in state k − 1 (c < k ≤ N), and the
next arriving interest finds the PIT in state j (0 ≤ j ≤
c).

We calculate dk, ak,j , and bk,j as follows

ak,j = P (N(t−n ) = j|N(t−n−1) = k − 1)

where (1 ≤ k ≤ c), (0 ≤ j ≤ k)

=

∫ ∞
0

(
k

j

)
e−µjt(−1)k−j(e−µt − 1)k−jdA(t)

=

∫ ∞
0

(
k

j

)
e−µjt(−1)k−j .

k−j∑
l=0

(
k − j
l

)
e−µt(k−j−l)(−1)ldA(t)

=

∫ ∞
0

(
k

j

) k−j∑
l=0

(−1)k−j+l
(
k − j
l

)
e−µt(k−j−l+j)dA(t)

=

(
k

j

) k−j∑
l=0

(−1)k−j+l
(
k − j
l

)∫ ∞
0

e−µt(k−l)dA(t)

=

(
k

j

) k−j∑
l=0

(−1)k−j+l
(
k − j
l

)
a∗(µ(k − l)) (1)

dk =

∫ ∞
0

(cµt)k

k!
e−cµtdA(t), (2)

bk,j = P (N(t−n ) = j|N(t−n−1) = k − 1)

where (c < k ≤ N), (0 ≤ j ≤ c),

=

∫ ∞
0

∫ t

0

(µc)k−cuk−c−1e−cµu

(k − c− 1)!

(
c

j

)
e−µj(t−u).

(1− e−µ(t−u))c−jdu dA(t)

=
(µc)k−c

(k − c− 1)!

(
c

j

)∫ ∞
0

∫ t

0

g(u)h(t− u)du dA(t),

(3)

where g(u) = e−cµuuk−c−1 and h(t − u) = e−µj(t−u)(1 −
e−µ(t−u))c−j . The second integral is the convolution of g(u)
and h(t − u), and thus the whole integral is the LST of the
convolution of these two functions [20]. The LST of g(t) can
be computed as∫ ∞

0

e−ste−cµttk−c−1dt =
(k − c− 1)!

(s+ cµ)k−c
.

Similarly, the LST of h(t) can be obtained as∫ ∞
0

e−sth(t)dt =

∫ ∞
0

e−ste−µjt(1− e−µt)c−jdt
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PIT occupancy model
c PIT size (number of servers at the PIT)
K Additional buffer size at PIT
N System size at the PIT ( sum of the number of servers and buffer at the PIT)
A(u) Distribution function of the inter-arrival time between two interests at the consumer
a(u) Probability density function of the inter-arrival time between two interests at the consumer
A∗(θ) Laplace-Stieltjes transform of a(u)
λ Mean interest arrival rate at the consumer
πn Probability that the number of interests in the PIT is n
dk Probability that k interests are served between two consecutive interest arrivals, given that the PIT is fully occupied
ak,j Probability that an arriving interest finds PIT in state k − 1, (1 ≤ k ≤ c) and the next interest finds PIT in state j, (0 ≤ j ≤ k)
bk,j Probability that an arriving interest finds PIT in state k − 1, (c < k ≤ N) and the next interest finds PIT in state j, (0 ≤ j ≤ c)
mi,j ith row and jth column element of the Transistion Probability Matrix
µ Mean service time of the PIT
PIT occupancy model with timeouts
π Stationary Probability Vector for the PIT.
π∗ Laplace-Stieltjes transform of π
α Mean interest timeout time
Estimation of mean service time
Ci The cache size of the ith router
κ Content popularity class
S Number of contents in every content class
σ Average content size
z Zipf’s constant
mk(i) Cache miss rate for content class κ at router i
Bj

i Bandwidth of the link between routers i and j
Rj

i Propagation delay between routers i and j
D Size of the content packet (in bits)
f(i) Probability that the content is served by the ith router
T1(n) The expected content service time when content is served by the nth router
u1 Expected amount of time the producer is connected to a given cellular base station or WiFi access point
v Average speed of the producer
u2 Expected amount of time the producer is not reachable
q Probability that the producer is reachable
Sojourn time distribution
S(t) Distribution function of the sojourn time of the PIT
F (t) Distribution function of the service time of the PIT
Gk(t) Distribution function of the waiting time when the PIT is in state k
Input Process
Q Infinitesimal generator of the underlying m− state continuous time Markov chain for the MMPP
λ Vector of Poisson arrival rates corresponding to the m states of Markov chain

TABLE I
LIST OF VARIABLES AND SYMBOLS USED

=
Γ(j + s/µ)Γ(c− j + 1)

µΓ(c+ s/µ+ 1)
.

Let mi,j denotes the probability for the system transitions
from system-state i to j between two consecutive arrivals, i.e.,
mi,j = P (N(t−n ) = j|N(t−n−1) = i). Observing the state of
the system at two consecutive embedded points, we define the
one step transition probability matrix (TPM) M as:

mi,j =



ai+1,j if i ≤ c− 1, j ≤ i+ 1

bi+1,j if c ≤ i ≤ N − 1, j ≤ c− 1

di−j+1 if c ≤ i ≤ N − 1, c ≤ j ≤ i+ 1

mi−1,j if i = N, j ∈ 0, 1, .., N

0 otherwise

. (4)

Using the TPM, we can solve for the stationary probabilities
at the pre-arrival epochs.

We note that when λ ≥ cµ, the system reaches its buffer
capacity in the steady state (as the system is finite) following
mi,i+1 0 ≤ i ≤ N . As no service is completed during the
inter-arrival time mi,i+1 = d0.

B. PIT occupancy model with interest timeouts

In this section, we model the PIT as a GI/M/c/N queue
with interest timeouts. Let π and π∗ be the stationary proba-
bility vector and its LST, respectively. Let the service time and

the interest timeout time be exponentially distributed. Let µ
and α denote the mean service time and mean interest timeout
time.

Let N(t−n ) be the number of interests in the PIT at the time
epoch t−n . We define the state of the system at time t as
N(t). It can be easily observed that the process {N(t−n )} is
an embedded Markov chain with the state space Ω = {k, 0 ≤
k ≤ N}. Let the probability that the PIT is in state n at the
pre-arrival epoch be denoted by π−n . It may be noted that the
issue of explosivity of Markov chain does not arise in our case
as we have a finite queue, which satisfies the condition of non
explosivity of Markov Chains [21, Theorem 2.7.1 on p. 90].

The state of the system at an arbitrary time t is described
by the following random variables, namely:

• N(t) = number of customers present in the system,
• U(t) = remaining inter-arrival time until the next arrival.

We define the joint probabilities of system-length N(t) and
the remaining inter-arrival time U(t) by:

πi(u)du = lim
t→∞

P
{
N(t) = i, u ≤ U(t) < u+ du

}
,

u ≥ 0, 0 ≤ i ≤ N.

Since we discuss the model in steady-state, i.e., when t→
∞, the above probabilities are denoted by πi, for simplicity.
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Let the LST of πi(u) be defined as follows:

π∗i (θ) =

∫ ∞
0

e−θuπi(u)du, 0 ≤ i ≤ N.

We note that πi ≡ π∗i (0), 0 ≤ i ≤ N . Observing the
system between two arbitrary times u and u − du (where u
represents the remaining time to an arrival of an interest) which
are separated by an infinitesimal small duration and using
the Kolmogorov forward equations, we derive the following
equations:

π0(u− du) = π0(u) + µπ1(u)du

πi(u− du) =
(

1− i(µ+ α)du
)
πi(u) + a(u)πi−1(0)du

+ (i+ 1)(µ+ α)πi+1(u)du, if 1 ≤ i ≤ c− 1,

πi(u− du) =
(

1− (cµ+ iα)du
)
πi(u) + a(u)πi−1(0)du

+
(
cµ+ (i+ 1)α

)
πi+1(u)du if c ≤ i ≤ N − 1,

πN (u− du) =
(

1− (cµ+Nα)du
)
πN (u)

+ a(u)(πN−1(0) + πN (0))du.

To obtain the system-length distributions at arbitrary times,
we develop the differential difference equations that relate the
distribution of number of customers in the system. For this,
we use the remaining inter-arrival time as a supplementary
variable and relate the state of the system at two consecutive
times u and u − du. Hence, the steady-state differential
difference equations can be written as:

− d

du
π0(u) = µπ1(u) (5)

− d

du
πi(u) = −i(µ+ α)πi(u) + a(u)πi−1(0)

+ (i+ 1)(µ+ α)πi+1(u), if 1 ≤ i ≤ c− 1
(6)

− d

du
πi(u) = −(cµ+ iα)πi(u) + a(u)πi−1(0)

+ (cµ+ (i+ 1)α)πi+1(u), if c ≤ i ≤ N − 1
(7)

− d

du
πN (u) = −(cµ+Nα)πN (u)

+ a(u)(πN−1(0) + πN (0)) (8)

We use the following relation for the derivations of Equa-
tions (10)-(13):∫ ∞

0

e−θu
d

du
πi(u)du = θπ∗i (θ)− πi(0). (9)

Multiplying both sides of Equations (5)-(8) by e−θudu, in-
tegrating with respect to u from 0 to ∞ and using the
Equation (9) yields:

−θπ∗0(θ) = µπ∗1(θ)− π0(0) (10)
(i(µ+ α)− θ)π∗i (θ) = ((i+ 1)(µ+ α))π∗i+1(θ)

+A∗(θ)πi−1(0)− πi(0),

if 1 ≤ i ≤ c− 1
(11)

(cµ+ iα− θ)π∗i (θ) = (cµ+ (i+ 1)α)π∗i+1(θ)

+A∗(θ)πi−1(0)− πi(0),

if c ≤ i ≤ N − 1
(12)

(cµ+Nα− θ)π∗N (θ) = A∗(θ)πN−1(0)

+A∗(θ)πN (0)− πN (0). (13)

By adding Equations (10), (11), (12) and (13), we get the
following:

N∑
i=0

π∗i (θ) =
1

θ

N∑
i=0

(I −A∗(θ))πi(0).

We evaluate πi(0) and π∗i (θ) recursively in terms of πN (0)
as follows

πi(0) = RiπN (0) (14)
π∗i (θ) = SiπN (0). (15)

Let us define δi and ζi as follows

δi = cµ+ iα, if c+ 1 ≤ i ≤ N
ζi = i(µ+ α), if 1 ≤ i ≤ c.

After substituting θ = δN in Equation (13), we get

πN−1(0) = [A∗(δN )]−1[I −A∗(δN )]πN (0). (16)

Comparing Equation (14) and Equation (16), we get

RN−1 = [A∗(δN )]−1[I −A∗(δN )]. (17)

We note that A∗ is the Laplace-Stieltjes transform of inter-
arrival times. As the diagonal elements of the rate transition
matrix of the arrival process are greater than or equal to
the corresponding row elements, A∗ is a non singular matrix
and hence the inverse exists. Further, substituting θ = δi in
Equation (12), θ = ζi in Equation (11) and performing some
recursive simplifications, we get

Ri = [A∗(ζi+1)]−1[Ri+1 − ζi+2Si+2(ζi+1)],

if 1 ≤ i ≤ c− 1 (18)

Ri
=[A∗(δi+1)]−1[Ri+1 − δi+2Si+2(δi+1)],

if c ≤ i ≤ N − 2. (19)

Now, using RN−1 from Equation (17) and Equation (13) we
get

SN (θ) =

{
1

δN−θ [A∗(δN )]−1[A∗(θ)−A∗(δN )], if θ 6= δN

−[RN−1 + I][A∗1(θ)], if θ = δN ,

where A∗1(θ) is the first derivative of A∗(θ).
For the case c ≤ i ≤ N−1, we obtain Si(θ) using Equation

(12) as follows

Si(θ) =

{
1

δi−θ [δi+1Si+1(θ) +Ri−1A
∗(θ)−Ri], if θ 6= δi

−[δi+1S
1
i+1(θ) +Ri−1A

∗1(θ)], if θ = δi,

and for the case 1 ≤ i ≤ c−1, using Equation (11) we obtain

Si(θ) =

{
1

ζi−θ [δi+1Si+1(θ) +Ri−1A
∗(θ)−Ri], if θ 6= ζi

−[ζi+1S
1
i+1(θ) +Ri−1A

∗1(θ)], if θ = ζi.
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C. Estimating Optimal PIT size

In order to estimate the optimal size of the PIT at the routers,
we first solve for the stationary probability vector π using
the discussions in Sections III-A and III-B. Depending on the
input process, every element of π can in turn be a vector. In
general, the PIT does not have any extra buffer available, i.e.,
K = 0. Therefore, our queue model becomes a GI/M/c/c
queue. When the PIT is in state c, it implies that the PIT is
full and any incoming interests will be dropped. Hence, the
drop probability at the PIT is πc. Let the maximum desired
drop probability be ε.

As the cost of PIT is an increasing function of the size of the
PIT, the objective of our optimization problem is to minimize
the size of PIT c subject to the upper bound ε on the drop
probability πc.

We formally describe the optimization problem as

minimize c (20)

subject to πTc e < ε,

c ∈ N

where e = (1, 1, · · · , 1)T is a column vector of length |πc|.
The optimal PIT size needs to be evaluated for resource

planning of the network during the initial deployment. Since
this is not a real-time optimization scenario, we do not require
a very fast approach to solve the optimization problem.

We implement the exponential search (a of variant bisection
method) in Matlab to solve the optimization problem. As the
drop probability is a decreasing function of c, we initialize c
to be a lower bound (e.g., c = 1) and then use exponential
search to find the optimal value of c which satisfies the drop
probability constraint. As c ∈ N , the time complexity of this
algorithm is O(T log c), where T is the time complexity of
evaluating the drop probability π for a given c. The time
complexity of matrix multiplication and matrix inversion is
O(N2.373), therefore T ∈ O(N3.373).

D. Estimation of mean service time

In this section we characterize the average service time
(1/µ) in detail and derive a closed form expression for the
same. Our discussion accounts for the caching at the content
stores of the routers as well as for the mobility of producers.
The following discussion holds for stationary producers as
well. The service time for an interest in the PIT depends on
several variables like the transmission rate at the (upstream)
routers, the propagation delay between the routers, the pro-
cessing delay at the routers, the cache hit rate for the interest
at the routers, and the load at the content producer. A complex
general service time distribution is required to accommodate
all these variables. For computational tractability, we consider
that the service time is exponentially distributed and evalu-
ate the mean service time while accommodating the above
mentioned variables. In the existing literature, authors of [15],
[17], [18], [22] have similarly considered the service time to
be exponentially distributed for the interests.

The round trip time (RTT) between the consumer and node
i is denoted by t(i). We can estimate t(i) as follows:

t(i) =

i−1∑
j=1

(
D

Bj+1
j

+ 2Rj+1
j

)
.

Here, D is the size of the data chunk, Bji is the bandwidth
of the link between nodes i and j, and Rji is the propagation
delay between nodes i and j. The size of interests is orders of
magnitude smaller than the typical data packets (i.e.,content).
Hence, transmission time of the interest is negligible when
compared to the propagation and transmission time of the con-
tent and is thus ignored. We note that the interest transmission
time can be easily accounted for by replacing D with D + I
where I is the size of the interest.

1) Caching at content stores: Now, we model the ICN’s
caching at content stores of the routers and in order to do
so, we need to estimate the cache miss probabilities at the
intermediate nodes along the path of requests. As the cache
hits depend on the popularity of the content, let the content
belong to an arbitrary content popularity class κ. Let mκ(i) be
the cache miss probability of the content at the intermediate
node i. Under the assumption that all caches implement the
Least Recently Used (LRU) cache replacement policy, mκ(i)
is evaluated by the following expression [23]:

logmκ(i) =

i−1∏
j=1

(
Cj+1

Cj

)z
mκ(j) logmκ(1), ∀ i > 1,

(21)

mκ(1) = exp

(
−
(

C1

SκκσΓ(1− 1
z )

)z)
.

Here, Ci is the cache size of the ith router (from the consumer),
Sκ is the number of contents in the class κ, σ is the average
size of the contents and z is the Zipf’s constant. The intuition
behind Equation (21) is briefly described in Appendix A. For
simplicity, we consider an arbitrary content class and omit the
class index κ.

Next, we consider the impact of producer’s movement using
the following two scenarios.

2) Before hand-off: The average service time in this case
is evaluated as a weighted sum of the round trip time (RTT)
between the consumer and every intermediate node. Here,
the weights are the probability of finding the data at the
corresponding intermediate nodes. For the data to be served
by the ith node, the data should not be present in the cache
of the previous (i − 1) nodes and it should be present in the
cache of the ith node. Let f(i) denote the probability of this
event to occur. Then f(i) is evaluated as:

f(i) = (1−m(i))

j=i−1∏
j=1

m(j).

Let the producer be the nth node. Then average service time,
T1(n), for this case can be calculated as:

T1(n) =

n∑
i=1

f(i)t(i). (22)
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The amount of time the producer is connected to a given
cellular base station or a Wi-Fi access point (between two con-
secutive hand-offs) can be modeled as a generalized Gamma
distribution [24]. We denote the expectation of this time by
u1. Then, u1 is evaluated as follows:

u1 =
πR

2v
.

Here, every cell is assumed to be a circle, R is the cell radius,
and v is the average speed of the producer. Readers can refer
to [24] for more details.

3) After hand-off occurs: Now, consider the scenario where
the data is not cached at any of the intermediate nodes and
a producer hand-off has also occurred (hence, the producer is
not reachable). Let us denote the path to the producer before
the hand-off by l and the new path after the hand-off by l̂.
This information about the hand-off (and the new path) has
to be propagated to all the nodes in the network and the
respective Routing Information Bases (RIBs) and the FIBs
need to be updated. There are a few approaches proposed in the
literature for the same [6], [7], [25]. Let u2 denote the average
time taken by the chosen approach to update all the (relevant)
nodes. This implies that once the hand-off occurs, the producer
is not reachable for time u2 (although the interests can still
be served if the requested data is present in any of the caches
along l). The average service time in this case is given by

T2 = T1(n) + u2 + T1(n̂), (23)

where n̂ is the index of the producer along the new path l̂.
Let the probability that the producer is reachable at any

arbitrary time be denoted by q. Then, we can calculate q as
follows:

q =
u1

u1 + u2
.

Using Equations (22) and (23), we can estimate the mean
service time, 1

µ , of our system as follows:

1

µ
= qT1(n) + (1− q)T2

= T1(n) + (1− q)(u2 + T1(n̂)).

The value of u2 depends on the approach used for updation.
For example, u2 for the approach in [25] can be considered
to be a constant whereas modeling u2 is more complex for
approaches like [6], [7] as they involve the retransmission of
interests. We note that this analysis also holds for stationary
producers by setting the value of u2 = 0.

E. Sojourn time distribution

The GI/M/c/N queue model discussed in Section III-A
can also be used to characterize the consumer. Here, c denotes
the number of pending interests requested by the consumer and
K denotes the interest buffer at the consumer (N = c + K).
The arrival process and the service time distribution are the
same as the case of PIT. The distribution of sojourn time is
of interest to us as it can be used for estimating parameters
like interest timeout. An arriving interest is subject to one
of the following two mutually exclusive events. First, the

arriving interest is not required to be buffered (queued) and is
forwarded immediately (no waiting time). Second, there are c
pending interests and hence the arriving interest is buffered.
Let S(t) be the CDF of the sojourn time. Then,

S(t) =

c−1∑
k=0

πkF (t) +

N∑
k=c

πk(Gk ∗ F )(t). (24)

Here, πk is the probability of consumer being in state k, and
F (t) and Gk(t) are the CDFs of the service and the waiting
time when the state is k, respectively. As the queue is modeled
as a GI/M/c/N queue, F (t) and G(t) follow the exponential
and the Erlang distributions, respectively, and are given by

F (t) = 1− µe−µt (25)

Gk(t) = 1−
k−c∑
j=0

(cµt)je−cµt

j!
.

Let Hk(t) = (Gk ∗F )(t). Then Hk(t) is evaluated as follows:

Hk(t) =

∫ t

0

1−
k−c∑
j=0

(cµy)je−cµy

j!

µe−µ(t−y)dy

=

∫ t

0

µe−µ(t−y)dy

−
k−c∑
j=0

(cµ)jµe−µt

j!

∫ t

0

yje(−(c−1)µy)dy

= (1− e−µt)−
k−c∑
j=0

(cµ)jµe−µt

((c− 1)µ)j+1
.

∫ t

0

((c− 1)µ)j+1 y
je−(c−1)µy

j!
dy

= (1− e−µt)−
k−c∑
j=0

(cµ)jµe−µt

((c− 1)µ)j+1
.

(
1−

j∑
i=0

((c− 1)µt)i

i!
e−(c−1)µt

)
.

(26)

Using Equations (24), (25) and (26), we get

S(t) =

c−1∑
k=0

πk(1− µe−µt)+

N∑
k=c

πk

(1− e−µt)−
k−c∑
j=0

(cµ)jµe−µt

((c− 1)µ)j + 1
.

(
1−

j∑
i=0

((c− 1)µt)i

i!
e−(c−1)µt

)]
.

(27)

F. Parameter Esitimation

The various parameters required to solve the optimization
problem can be obtained as follows. The interest arrival rate
λ, link bandwidth B, the size of the data packet D, the link
propagation delay R, and the average content size σ can be
observed by the router. The cache size of the router is a
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Fig. 2. Traffic flow in a router

known constant. The average arrival rate can be observed over
a period of time by the router (or historical data can be used)
to classify the contents into different popularity classes and
determine the Zipf’s constant z, and the number of contents
in content class S.

IV. INPUT PROCESS

The GI/M/c/N queue discussed in the previous sections
considers a general arrival process. For the purpose of our
simulations we assume that the consumers generate interests
using the Markov Modulated Poisson Process which is a
doubly stochastic process. MMPP is widely used in models
of communication systems as it is capable of capturing the
correlations of inter-arrival times and qualitatively representing
the time dependent arrival rates while still remaining compu-
tationally tractable. We briefly describe the MMPP and a few
of its properties. The MMPP is defined by two parameters
{Q,λ}. Q is the infinitesimal generator of the underlying
m-state continuous time Markov chain and λ is the Poisson
arrival rates corresponding to the m states. Formally, we define
the following:

Q =


−σ1 σ12 · · · σ1m
σ21 −σ2 · · · σ2m

...
...

. . .
...

σm1 σm2 · · · −σm


σi =

m∑
j=1
j 6=i

σij

λ = (λ1, λ2, · · · , λm)T

Λ = diag(λT).

Property 1. : The superposition of n MMPPs
{Q1,Λ1}, {Q2,Λ2}, · · · , {Qn,Λn} is an MMPP defined
by {Q,Λ} as follows

Q = Q1 ⊕Q2 ⊕ · · · ⊕Qn,
Λ = Λ1 ⊕ Λ2 ⊕ · · · ⊕ Λn,

where ⊕ represents the Kronecker-sum (defined in [26]). If Qi
and Λi are ki× ki matrices, then Q and Λ are k× k matrices
such that k =

∏n
i=1 ki.

Proof. Refer to [27].

Let us consider the traffic flow in an arbitrary router R
as depicted in Figure 2. The incoming interests first enter the

Parameter Value
Network topologies Exodus, Abovenet, and Tiscali
Backbone to backbone link (bandwidth,
propagation delay)

1 Gbps, 20 ms

Backbone to gateway link (bandwidth,
propagation delay)

0.5 Gbps, 10 ms

gateway to access router link (bandwidth,
propagation delay)

0.1 Gbps, 5ms

Content classes 5
Zipf’s constant 2
Mean arrival rate of the content classes 20, 9, 5, 3, 2
Number of contents 2000 in each class
Number of consumers 50
Number of producers 3
Content store (cache) size 1 % of content universe
Data Chunk size 1024 B

TABLE II
SIMULATION PARAMETERS

forwarding engine (queue A), where the forwarding decision is
made. If a content store (CS) hit occurs, the data is responded
back to the corresponding faces. If a PIT hit occurs, the
corresponding entry in the PIT is updated. In the case where
a miss occurs at both CS and PIT, the interest is forwarded to
the appropriate face and an entry is created in the PIT. Let all
the input processes at R be MMPPs. Then, from Property 1,
the resultant input process to R is an MMPP, {Q,Λ}.

We assume that the service capacity of queue A is very large
when compared to the interest traffic intensity (µ >> λ). To
justify this assumption, we note that the size and number of
interests being handled by a router at any time (generally)
is orders of magnitude smaller that the data packets (i.e.,
content). Existing literature on routing table lookup show that
lookups can be performed in constant time [28], [29]. Hence,
we assume that the time required by a router to make the
forwarding decision to be a constant, h. Under the given
assumptions, queue A is a MMPP/D/1 queue with negligible
waiting time.

Property 2. The output process of an MMPP/D/1 queue with
µ >> λ can be approximated as a translation of the input
MMPP.

Proof. See Appendix B.

Remark 1. Our model can easily accommodate cases with
CS and PIT hits. Let p and q be the average hit rates for CS
and PIT and let the input MMPP for the router be defined by
{Q, Λ̄}. Then the adjusted arrival rate Λ can be evaluated as

Λ = (1− p)(1− q)Λ̄.

When MMPPs are superposed the state space of the resul-
tant MMPP grows exponentially. Hence we approximate the
m state MMPP (the resulting arrival process at the router) with
a 2 state MMPP using the following property (Property 3).

Property 3. An m-state MMPP can be approximated by a 2-
state MMPP by matching the first three non-central moments.

Proof. We refer the readers to [30] for the proof and the ac-
curacy of the property. We briefly describe the approximation
methodology in Appendix C.
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(a) Exodus topology

(b) Abovenet topology

(c) Tiscali topology

Fig. 3. Rocketfuel topologies used in the simulations. The blue, green and red nodes are backbone, gateway, and access routers, respectively.

V. SIMULATION RESULTS

In this section, we validate our analytical model and as-
sumptions using realistic networks. We consider five different
content classes and let the mean interest arrival rate be λi for
content class i, i ∈ {1, · · · , 5}. We assume that the content
popularity follows the Zipf’s law with the Zipf’s constant
z = 2. Each data packet is 1024 bytes. The consumers generate
interests according to a two-state MMPP with parameters
Q,Λi as follows:

Q =

[
−0.1 0.1
0.1 −0.1

]
, Λi =

[
λi 0
0 0

]
.

First, we compare the optimal PIT sizes evaluated by our
proposed model and the model proposed in [18] where the
authors model the PIT occupancy using a Markov chain
(refereed to as ‘MC’). Then, to further validate our model,
we compare the optimal PIT sizes and the drop probabilities
estimated by our analytical model and that achieved from the
simulations across various system parameters.

We adopt three different network topologies obtained from
Rocketfuel network topology traces for ISP Exodus, Abovenet
and Tiscali (the topologies are shown in Figure 3a, 3b and 3c).
We refer to the topologies as EX, AB and TI in our results. We
suffix the names with M and S to indicate the results obtained
from our analytical model and simulations, respectively. In
every topology, there are 50 consumers connected to the edge
routers and three producers connected to one of the back bone
routers. The link capacities and delays are set as follows. The
backbone-to-backbone links have a capacity of 1 Gbps and
a propagation delay of 20 ms. The backbone-to-gateway and
gateway-to-gateway links have a capacity of 0.5 Gbps and a
propagation delay of 10 ms. The gateway to access router links
have a capacity of 0.1 Gbps and a propagation delay of 5 ms.
We use the NS-3 based ndnSIM simulator [31]. For all the

simulation scenarios mentioned, we run the simulations 100
times and present our findings which are averaged over all the
simulation runs. The simulation parameters are summarized in
Table II.

A. Comparison with MC model

In this section, we compare the optimal PIT sizes evaluated
by our proposed model and the MC model. We vary the
value of ε as 0.2, 0.1, 0.05, 0.01, and 0.001. Using both the
models, we evaluate the optimal PIT size of the bottleneck
router. The PIT size of other routers in the network are set
such that they do not become the bottleneck. The obtained
optimal PIT sizes for topologies EX, AB and TI are depicted
in Figure 4, Figure 5 and Figure 6, respectively. We observe
that MC overestimates the optimal PIT size for smaller values
of ε. For example, in case of EX topology with ε = 0.01, the
optimal PIT size obtained from MC, our proposed model and
simulations are 80, 53 and 54, respectively. The overestimation
would increase the cost of the PIT. We also observe that for
larger values of ε, MC underestimates the optimal PIT size. For
example, in case of AB topology with ε = 0.1, the optimal PIT
size obtained from MC, our proposed model and simulations
are 34, 34 and 20, respectively. This would result in more
interest drops than expected.

B. Effect of ε

In this section we study the effect of ε on the optimal
PIT size and the drop probabilities. We vary the value of
ε as 0.2, 0.1, 0.05, 0.01, and 0.001. For this scenario, we
evaluate our analytical model to estimate the optimal PIT size
of the bottleneck router of the networks. The PIT size of
other routers in the network are set such that they do not
become the bottleneck. The obtained optimal PIT size and
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Fig. 4. Optimal PIT sizes: EX topology
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Fig. 5. Optimal PIT sizes: AB topology
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Fig. 6. Optimal PIT sizes: TI topology
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of ε.

drop probabilities are depicted in Figure 7 and Figure 8. We
can observe that the optimal PIT size increases as the value
of ε decreases for all the networks. For instance, in the case
of AB, the optimal PIT size increases as 34, 37 and 48 as the
value of ε decreases as 0.1, 0.05 and 0.001, respectively. We
also note that the drop probabilities achieved by simulations
respect the constraint (ε) posed by our analytical model. For
example, in the case of EX the simulation drop probabilities
achieved are 0.08, 0.035 and 0.008 for the ε values 0.1, 0.05,
0.01, respectively. In order to investigate the effect of modeling
the service time as an exponential distribution, we perform
network simulations using the optimal PIT size obtained using
our analytical model (from Figure 7) and compare them with
the simulation drop probabilities (from Figure 8). Note that the
simulation results are based on the exact service time experi-
enced by the interests. The drop probabilities are depicted in
Figure 9. Here, the suffix ‘O’ represents the drop probabilities
obtained while using the theoretical values of optimal PIT
size. We observe that there is a close match between the drop
probabilities which validates our simplification of the service
time to follow an exponential distribution. For example, in
the case of AB, when ε decreases as 0.2, 0.1, and 0.01, the
drop probabilities from theoretical values of optimal PIT size
are 0.21, 0.039, and 0.005, respectively, whereas the drop
probabilities from simulation values of optimal PIT size are
0.199, 0.039, and 0.008, respectively.

C. Effect of Demand

In this section we study the effect of varying demand on the
optimal PIT size and the drop probabilities. We vary the value
of λi with multiplicative factors of 0.75, 1, 1.25, 1.5, 1.75,

and 2. The value of ε is set to 0.01 for all the cases. As in
the previous scenario, we evaluate our model to estimate the
optimal PIT size of the bottleneck router. The obtained optimal
PIT size and drop probabilities are shown in Figure 10 and
Figure 11, respectively. The optimal PIT size increases with
the increasing demand for all the networks. For example, the
optimal PIT size in case of EX increases as 53, 72 and 89
for the demand of 0.75, 1.25 and 2, respectively. Also, as the
value of ε is set to 0.01, we expect the drop probabilities to
be less that 0.01. For instance, in case of EX the simulation
drop probabilities of 0.008, 0.003 and 0.009 are achieved for
the demand of 1, 1.5 and 2, respectively.

D. PITs in tandem

In this section, we study how our model performs while
considering multiple routers in tandem. Using our model we
estimate the optimal PIT sizes for the five most significant
routers in every topology. The value of ε is set to 0.01 for
all the routers in all the topologies. We depict the results
obtained in Figure 12 and Figure 13. In general, we observe
that the simulations closely follow the estimations of our
analytical model. For example, the optimal PIT size estimated
by our model for the routers of TI are 21, 21, 19, 19, 33
and the optimum PIT sizes achieved in simulations are 21,
20, 18, 18, 34 respectively. The simulation drop probabilities
achieved with these PIT sizes are 0.007, 0.002, 0, 0.001,
0.001, respectively, and hence respect the constraint on the
drop probabilities.
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Fig. 12. Optimal PIT size with Tandem PITs.
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E. Effect of α

In this section, we evaluate the model with interest timeouts
presented in Section III-B. For every topology, we consider
one of the access routers (with maximum traffic) directly
connected to consumers in this scenario. We vary the value
of α by varying the interest lifetime as 0.3, 0.5, 1, 2, and
3 seconds and solve the optimization problem presented in
Equation (20) for the access router to estimate its optimal
PIT size. The value of ε is set as 0.01. The obtained optimal
PIT sizes and drop probabilities are shown in Figure 14 and
Figure 15, respectively. We observe that as the value of α
increases the optimal PIT size increases. This is expected as
increasing the value of α implies an increase in the lifetime of
interests and hence an increase in the number of outstanding
interests at the routers. For instance, the optimal PIT size for
EX varies as 20, 22, 24 as α increases as 0.5 s, 1 s, 2 s and
the simulation drop probabilities achieved are 0.009, 0.002,
0.002, respectively.

F. Effect on Content Store

Now we report the effect of our model on the content
store of the routers. We consider the scenario as mentioned
in Section V-B for all the topologies. The content store size
of all the routers is set to 1% of total content universe. We vary
the values of ε as 0.2, 0.1, 0.05, 0.01, and 0.001 and depict the
obtained hit rates at the content store in Figure 16. In general,
we observe that the hit ratio does not vary significantly with
the value of ε. For example, the hit ratios achieved for AB
are 1.04%, 1.02%, 1.01%, 0.8% for the ε values of 0.1, 0.05,
0.01, 0.001, respectively. As the content store size is 1% and
achieved hit ratio is 1% irrespective of the value of ε, we
observe that the content store hit ratio is independent of the
value of ε.

G. Effect of c on Drop probability

In this section we study the effect of c on the drop prob-
abilities. For this scenario, we evaluate our analytical model
to estimate the drop probability at the bottleneck router of the
networks. The PIT size of other routers in the network are
set such that they do not become the bottleneck. The obtained
drop probabilities are depicted in Figure 17. We can observe
that for all the topologies, the drop probability decreases as
c increases. We also note that for EX and AB topologies,
our model slightly over-estimates the drop probabilities when
compared to the simulations. For example, in case of EX with
c = 46 the drop probabilities obtained by the analytical model
and the simulations are 0.048 and 0.035, respectively.

H. Sojourn time

In this section, we evaluate the sojourn time estimation
denoted in Equation (24) by applying our model to the
consumers. The traffic model at the consumers is the same as
discussed in the previous scenarios. In addition, the consumers
have a maximum of 10 pending interests (c = 10) and an extra
buffer of 10 interests (k = 10). The consumer is assumed to
be stationary. We consider real life mobility traces to model
the producer mobility (to evaluate our service time model in
Equation (32)). The traces are obtained from [32] where a
8000 m × 8000 m area in the center of Rome is considered
and the GPS co-ordinates of 370 taxis (in the specified area)
are captured. We use the GPS co-ordinates and the timestamps
from this trace to simulate the movement of the producer. We
assume that the concerned area is well connected by cellular
base stations with an average transmission range of 2000 m.
The consumer and the producer are connected to the cellular
base stations. While there are many approaches to update the
network about the movement of producers [6], [7], [25], we
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Fig. 16. Effect of ε on content store hit.
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use the approach mentioned in [7] in this paper. We model
the value of u2 according to this approach (Appendix D).
We plot the obtained results in the Figure 18 and we note
that the delay obtained from the simulations closely follow
the estimations of our model. We can note that 40% of the
traffic has a low delay of 0.1 s which can be attributed to
the in-network caching at the content stores of the routers.
The remaining traffic experience a delay between 0.1 s and
0.4 s which accounts for the producer mobility and the delay
incurred due to the hand-off.

We note that the drop probabilities obtained by solving
our analytical model and the simulations, while close, are not
an exact match. This is because we assume the service time
distribution to be exponentially distributed in our analytical
model (for analytical tractability) whereas the behavior of the
network is not exactly the same. Inter-arrival time and the
remaining service time play a major role in determining the
performance of the system (in terms of drop probability). Let
νi be the remaining service time of the ith active server. Then
the condition for an interest to be dropped is min

1≤i≤c
νi >

1
λ , i.e.,

all the servers are active and the minimum of the remaining
service times (of the c servers) is greater than average inter-
arrival time. In case of the analytical model, the service time
is exponentially distributed and hence, the remaining service
time is also exponentially distributed with the same mean [19].
However, in real life (and in the simulations) the service time
depends on various factors like the transmission delays at the
routers, propagation delays between the routers, cache hits at
the routers, and the processing delay at the producer. Hence,
the distribution of the service time is not exponential (or
something that can be modeled using standard distributions).
The approximation of exponential service time for analytical
tractability in the model thus leads to the differences in the
drop probabilities. In case the service time is exponential,
our model predicts drop probabilities that match very closely
with the simulations. To demonstrate this, we compare the
system state probabilities obtained by our analytical model
and a discrete event simulation (performed using Matlab)
of a GI/M/c/N queue. Here, we set λ = 45, µ = 10,
and K = 0. We vary the value of c as 5, 7, and 10.
The obtained probabilities are depicted in Figure 19. As the
service distribution used in these simulations is exponentially
distributed, we observe a very close match between the system
state probabilities obtained from our analytical model and the
discrete event simulation.
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VI. CONCLUSION

In this paper, we have modeled the PIT of a router using a
GI/M/c/N queue. Using this model we have evaluated the
optimal size of the PIT to trade-off between the cost of the
PIT and the network performance (in terms of the PIT drop
probability). To this end, we have formulated an optimization
problem with the objective of minimizing the PIT size while
subjecting the interest drop probability to an upper bound. We
have also used the developed model to characterize the content
delivery time for the consumers. We have demonstrated the
accuracy of our analytical model using simulations on different
Internet Service Provider topologies across a wide range of
system parameters.
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APPENDIX
A. Cache Miss Rate

Che’s approximation for an LRU cache of size C [33]
evaluates the cache miss rate for an object n as follows

f(n) = e−q(n)tc ,

where tc is the unique root for the equation
N∑
n=1

(1− e−q(n)t) = C.

This approximation assumes unitary content size. This result
has been extended in [23] assuming that the popularity follows
Zipf’s law and non-unitary content size. Let z be the Zipf’s
constant. The cache miss for a content at the first router can
be derived using Che’s approximation. Let the content belong
to an arbitrary popularity class κ, S be the number of contents
in each class, σ be the average content size, and C1 be the
size of cache of the first router. Then the cache miss is given
by

mκ(1) = exp

(
−
(

C1

SκσΓ(1− 1
z )

)z)
.

Let us consider the jth and (j + 1)th routers along the
path from the consumer to the producer. The requests arriving
at (j + 1)th router are the requests that have a cache miss
at all the previous j routers. Hence, the cache miss rate at
(j + 1)th router recursively depends on the cache miss rate of
1st, · · · , jth routers. Evaluating this relation gives

logmκ(i) =
i−1∏
j=1

(
Cj+1

Cj

)z
mκ(j) logmκ(1), ∀ i > 1.

B. Proof for Property 2

MMPP/D/1 queue is a special case of N/G/1 queue. The
LST of inter-departure times for a N/G/1 queue [34] is as
follows:

D(s) = H(s)

(
N∑
k=1

xke+ x0(sI −R(0))−1(R(1)−R(0))e

)
.

(28)

Here, N is the capacity of the system, xi is the probability of
the system being in state i, H(s) is the LST of the service time,
and for the detailed definition of R(z) we refer the readers
to [34]. Under low traffic intensity with high service capacity
(i.e. µ >> λ), the departing request will leave an empty
system behind for most of the time, i.e., xke ≈ 0, ∀i ≥ 1.
Hence, the Equation (28) reduces to

D(s) = H(s)
(
x0(sI −R(0))−1(R(1)−R(0))e

)
. (29)

For the MMPP/D/1 queue, R(0), R(1) and H(s) are defined
as follows [34]:

R(0) = Q− Λ (30)
R(1) = Q (31)

H(s) = e−sh, (32)

where h is the mean service time. Hence, using Equations (29),
(30), (31) and (32) we can evaluate the LST of inter-departure
times for an MMPP/D/1 queue with negligible waiting times
as follows:

D(s) = x0e
−sh(sI −Q+ Λ)−1Λe. (33)

The LST of inter-arrival times for an MMPP process is given
as

F (s) = (sI −Q+ Λ)−1Λ. (34)

From Equations (33) and (34), we can observe that the inter-
departure times are a convolution of inter-arrival times with
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the constant service time distribution, i.e., the output process
is a translation of the input process. Hence, the output process
is also an MMPP.

C. Approximation methodology for property 3

The ith non-central moment of the arrival rate of the MMPP
{Q,Λ} is given as

αi = πΛie,

where π is the steady state probability vector of the underlying
Markov chain of MMPP.

The covariance function is given by

r(t) = πΛ(eQt − eπ)Λe.

and the time constant is calculated as

τ = ν−1
∫ ∞
0

r(t)dt

= ν[πΛ(eπ −Q)−1Λe−m2],

where ν and m are the variance and mean of the arrival rate
process.

Let the two state MMPP be given as

Q̂ =

[
−r1 r1
r2 −r2

]
Λ̂ =

[
−λ̂1 0

0 −λ̂2

]
.

Computing the first three moments and the time constant
for the 2 state MMPP we get,
α1 = λ̂2π̂1 + λ̂2π̂2; α2 = λ̂21π̂1 + λ̂22π̂2; α3 = λ̂31π̂1 +
λ̂32π̂2; τ = (r1 + r2)−1; π̂1 = r2

r1+r2
.

As the 2 state MMPP is an Interrupted Poisson process,
λ̂2 = 0 and solving the equations we get,
λ̂1 = α2

α1
, r2 = τ−1

α2
1

α2
, r1 = τ−1

α2−α2
1

α2
.

D. Estimation of u2
We model the value of u2 according to the approach men-

tioned in [7]. Let S the random variable denoting the number
of attempts/retransmissions required to locate the producer.
We denote the time between (i − 1)th and ith retransmission
as an i.i.d. random variable Ti with a probability generating
function GT (z). Let p be the success probability of every
retransmission. The event of successfully locating the producer
follows a geometric distribution. Hence, the probability of
locating the producer in nth retransmission is given by

P (S = n) = p(1− p)n−1

Let the total updation time be denoted by random variable R.
Then, R is evaluated as follows

R =

S∑
i=1

Ti

and its probability generating function H(z) is given by

H(z) = E[zR] = E[z
∑S

i=1 Ti ]. (35)

By conditioning the Equation (35) on the value of n we get

H(z) = E

[ ∞∑
n=1

z
∑S

i=1 TiP (S = n)

]

=

∞∑
n=1

p(1− p)n−1[GT (z)]n

= pGT (z)

∞∑
n=1

[(1− p)GT (z)]n−1

=
pGT (z)

1− (1− p)GT (z)
. (36)

Using the Equation (36), we evaluate the mean updation time
u2 follows

u2 =
∂H(z)

∂z
=

pG′T (z)

(1− (1− p)GT (z))
2
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