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Abstract—Smart-grids rely on communication networks to
connect the physical devices and the control and computation
technologies. The transmission of sensitive data over the net-
work induces the possibility of leakage of private and sensitive
information about various entities and components in the grid.
To address this issue, this paper proposes a privacy-preserving
framework to enhance the privacy of smart-grids integrated with
Software Defined Networks. The proposed framework uses two
privacy metrics ( mutual information and differential privacy)
and formulates a privacy preserving distributed optimization
algorithm with the objective of minimizing the network cost.
We view the distributed optimization algorithm as an n-player,
non-cooperative game and provide distributed techniques to solve
the optimization problem efficiently. We prove that our algorithm
converges to the Nash equilibrium of the game while preserving
the data privacy. We validate the performance of our approach
using three IEEE bus systems and realistic Internet Service
Provider network topology.

Index Terms—Smart grids, software defined networks, privacy

I. INTRODUCTION

Cyber Physical Systems (CPSs) refer to system where a
physical process is controlled remotely and, through feedback,
adapts to varying real-time requirements. This goal is achieved
by integrating physical processes, networking, and computa-
tion [1]. The data generated by sensors is used to determine
the current operating conditions of the CPS and is sent over a
network to the computing unit where the data is evaluated and
decisions are made. The actuators are then updated of the new
decisions (over the network) and they carry out the planned
actions [2]. CPSs are complex and real-time systems, with
large volumes of data and time-sensitive actuation commands.
Therefore, the underlying communication network is expected
to have low latency, high bandwidth, and high reliability.

Software Defined Networking (SDN) has revolutionized
communication network by decoupling the control plane from
the data plane. This flexibility of SDN has motivated its
application in various domains like wide area networks [3],
enterprises [4], data centers [5], [6], and wireless networks [7].
In the context of CPSs, SDNs find application in domains
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like industrial automation [8], vehicular CPSs [9], and power
grids [10]–[12]. In particular, smart grids rely heavily on
the network performance for the integration and synchronous
functioning of its different components like distributed en-
ergy resources, Supervisory Control and Data Acquisition
(SCADA) systems, automated meter reading, and customer
energy management systems and SDN has been proposed as
a solution to meet the network requirements of a smart power
grid [13]–[16].

While SDNs provide enhanced networking capabilities to
CPSs, the architecture of SDNs is vulnerable to various
security threats that in turn affect the CPS. As the control
plane and data plane are decoupled in SDN, the controller
becomes a critical target for active and passive attacks by
adversaries [17]. While active attacks on controller may allow
the adversary to perform malicious actions, they are relatively
easier to detect. On the other hand, a controller under a passive
attack may be exploited by the adversary to infer critical,
valuable, and private information about the CPS and its users.
In such passive attacks, the adversary may analyze the traffic,
identify the data source and destination, and the frequency
of data generation. Such information may then be exploited
to launch targeted attacks on CPS components or used for
commercial advantage. A controller under passive attacks is
difficult to detect since the adversary does not alter the data
or affect the controller’s operation. Hence, it is important to
develop defenses against such threats to mitigate the loss of
critical system information and privacy.

Preserving user privacy in CPSs is well explored in literature
(see [18] for a survey). Specifically in the context of smart
grids, mechanisms exists in the literature for privacy pre-
serving data aggregation [19]–[21]. While these mechanisms
are effective in conventional CPSs, they are not effective
in the case of a passively compromised SDN controller
because: (i) the compromised controller has sufficient side
channel information like source and destination IP addresses
to uniquely identify a flow and (ii) leakage of other system
critical information (apart from user data) is still possible.

This paper addresses the problem of providing privacy to
CPSs when the SDN controllers are subjected to passive
attacks. The proposed solution formulates a non-cooperative
game among the switches where each switch probabilistically
chooses a controller such that the network cost it incurs is
minimized and its (information theoretic) privacy bound is
satisfied. We show that a Nash equilibrium exists in such
a game and a Nash equilibrium can be achieved using an
iterative best response algorithm. Moreover, we also formulate
another game which incorporates differential privacy along
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with the information theoretic mutual information bound. This
approach provides a framework for trade-off between the
amount of information leaked by a compromised controller
and network cost incurred in mitigating it in a SDN-based
CPS. The proposed framework can be applied to any SDN-
based CPS and for illustration, we consider the specific case
of smart grids. The contributions of this paper can be
summarized as:
• We propose a distributed switch-controller mapping

scheme to mitigate passive information leakage via com-
promised controllers in SDN based CPSs.

• The proposed privacy framework is based on a non-
cooperative game formulation among the switches. The
privacy requirements are quantified using information
theoretic mutual information and differential privacy. The
Nash equilibrium of the game is computed using an
iterative best response algorithm.

• The performance of the proposed scheme is compared
with the globally optimal solution and exponential mech-
anism (for differential privacy). The proposed approach,
in addition to being distributed, also achieves near optimal
cost and better fairness compared to the global solutions.

The rest of the paper is organized as follows. The related
literature is presented in Section II and Section III describes
the system model and the required preliminaries. The proposed
game model is presented in Section IV and Section V presents
the game with differential privacy constraints. The Nash equi-
librium of the game, an iterative best-response algorithm to
solve it, and its convergence are discussed in Section VI. The
performance evaluation of the proposed approach is discussed
in Section VII and Section VIII concludes the paper.

II. RELATED WORK

Game theoretic approaches for data privacy preservation are
well explored in the literature and good surveys can be found
in [22], [23]. The authors of [24] use anonymity to privately
integrate the data of different users. In [25], authors obtain
data privacy by perturbing the sensitive data. Authors of [26]
use differential privacy and distortion privacy to achieve data
privacy. Similarly, authors of [27] apply perturbation to loca-
tion data. The approaches mentioned above discuss ways to
make the user data more private. However, the privacy attack
considered in this paper is not due to the leakage of the data
itself, but based on observing the traffic patterns of different
devices to infer sensitive and private information. Thus, the
existing techniques for data privacy described above are not
applicable in the scenario considered in this paper.

Security and privacy in CPSs has received considerable
attention in literature [18]. As this paper considers SDN based
CPSs and more specifically, SDN based smart grids, we focus
our discussion on literature addressing security and privacy in
smart grids and SDN-based smart grids.

The problem of privacy preserving data aggregation from
smart meters has been well explored in existing literature.
For example, authors in [28], [29] use anonymization where
the data and its source are decoupled. Authors in [21], [30],
[31] use trusted computation where either the data source or

a trusted third party performs the computation. Approaches
using data perturbation like differential privacy are discussed
in [32]–[34]. The above mentioned techniques, in general,
aim to preserve the privacy of the data source from the
computing point of view and do not cater to privacy breaches
possible in the communication network. For example, these
anonymization techniques would fail in case of a compromised
SDN controller as the adversary can still uniquely identify the
data source using the IP addresses.

SDNs can be used to increase the resilience of the smart
grids [14]. The authors of [14] use SDN to minimize the attack
time window of the adversary, reset policies upon the detection
of compromised switches, and hot-swap communication chan-
nels to the public Internet in the presence of attacks. In [13],
the authors leverage SDN to model a flexible and dynamic
network control to meet the communication requirements of
smart grids. Similarly, authors of [16] use SDN for improving
the resilience of Industrial Internet of Things by dynamically
routing flows in the presence of a failure. While the literature
mentioned above address different security threats to smart
grids by leveraging the flexibility of SDNs, they do not
consider the threats posed by SDN itself.

The scenario of a compromised SDN controller is con-
sidered in [35], [36]. Authors of [35] consider a smart grid
with multiple SDN controllers and propose to deploy multiple
intrusion detection systems (IDSs) to detect malicious activi-
ties. Specifically, local IDSs are placed at the substations and
a global IDS runs at the control center which monitors the
control commands of the SDN controller and SCADA master
and generates an alarm whenever an unsteady state of the smart
grid is detected. Such a scheme can detect malicious behavior
of an actively compromised SDN controller but is unable to
detect passively compromised controllers where system critical
and private data is being leaked. In contrast, the proposed
scheme aims to address this problem of passive information
leakage.

The authors of [36] proposed a switch-controller mapping
schedule to minimize information leakage via a passively
compromised controller, albeit in a SDN-based Internet of
Things scenario. The proposed solution is centralized and
the network operator decides the privacy requirement and
determines the mapping schedule. In comparison, we address
a similar problem of information leakage in SDN based CPSs
(or smart grids) using a distributed solution where the user
(or the switch) decides the controller mapping based on its
privacy requirements.

The existing privacy preserving methods for smart-grids
primarily focus on the privacy of the user data like the data
generated by smart meters. The existing approaches use data
obfuscation techniques to preserve user privacy. However, even
while using these data obfuscation techniques, the adversary
can learn private (sensitive) user (system) data by observing
the traffic flow patterns in the network. Our approach aims to
mitigate such privacy attacks.
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Fig. 1. SDN-based smart grid architecture.

III. PRELIMINARIES

A. SDN based Smart-grid Architecture

SDN are capable of providing essential and enhanced net-
working services for smart-grids and SDN-based smart-grid
architectures have been proposed in literature [14], [16], [37].
Here we briefly describe the architecture for completeness.
The SDN-based smart-grid architecture can be viewed as a
three-layered architecture as shown in Figure 1.

1) Infrastructure Layer: The infrastructure layer includes
all the hardware, devices and physical equipment present in
SDN-based smart-grids like SDN switches, gateways, access
points, routers, data and computation servers, various sensors
and actuators (deployed at the substations and power-plants),
field-bus control, and smart-metering infrastructure installed
at the user end. The primary function of this layer is data
forwarding in the network. When a SDN switch receives a
new traffic flow, the SDN switch notifies the control layer for

routing decisions and further policy decisions by the applica-
tion layer. In addition, it also monitors local information and
gathers sensor data. Similar to the traffic data, the gathered
sensor data is sent to the control layer for further processing.

2) Control Layer: The control layer functions as the inter-
face between the application layer and the infrastructure layer.
The control layer comprises of two components. The first is the
network operating system which manages and secures the flow
of data. It defines and controls different network operations
like routing, topology management, and fault tolerance. The
second component is the advanced distribution management
system which controls and monitors the smart-grid system. It
includes Supervisory Control And Data Acquisition (SCADA),
Distribution Management System (DMS), and Distributed En-
ergy Resource Management System (DERMS).

3) Application Layer: The application layer it the topmost
layer where the data acquired by the infrastructure layer is
processed and analyzed. This layer processes the traffic flow
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information obtained from the control layer and verifies that
all the policies and standards are met. It also carries out
functions like utility authentication, load balancing and rate
monitoring. It also processes and analyzes the data generated
by the advanced distribution management system and carries
out various decisions with respect to power generation, trans-
mission and distribution. To summarize, the application layer
uses the data from the lower layers to form a abstract view of
the data network and the smart-grid. Using this abstract view,
it issues instructions to the control layer for proper functioning
of the system as a whole.

B. Overview

To mitigate the impact of a passively compromised con-
troller, we design a switch-controller mapping, A, where a
SDN switch (or the grid substation) is mapped to different
controllers corresponding to the probability distribution output
by A. As we are concerned about the quality of service and
the incurred network resource costs, we consider delay and
controller resource consumption in our cost model. While
requesting for privacy, a switch needs to decide on the appro-
priate mechanism A. As the privacy of a switch depends not
only on its own mechanism but also on the mechanisms chosen
by other switches, we formulate the interactions between the
switches as a game.
Solution Approach: We propose two solution approaches to
address the problem of privacy in the presence of passive
attacks on SDN controllers. The first approach formulates the
problem as a non-cooperative game among the switches. Every
switch solves an optimization problem with the objective to
minimize the total cost incurred while achieving a minimum
privacy level. The privacy level of a switch is quantified using
the Shannon entropy of the system (i.e., mutual information).
We show that a Nash equilibrium exists for this game and that
it can be reached using a greedy iterative approach. While the
second approach is similar to the first, here we also consider
differential privacy constraints along with the Shannon entropy
of the system.

Remark. The idea of switch probabilistically choosing a
controller is a conceptual one. The main idea in our paper for
providing privacy is to allow the switch-controller mapping
to be chosen according to the privacy requirements. This
mapping is done probabilistically and the computation of
the probability vector that is used to determine the switch-
controller mapping is done at the switches. The operator of
the network performs the periodic switch-controller mapping
on behalf of the switches [38], [39]. In the case of SDN based
smart grids, this periodic mapping can be performed by the
application layer (in Figure 1) [14], [37]. To facilitate such
an implementation of the switch-controller mapping using the
framework proposed in this paper, each switch computes its
mapping A and updates the network operator (or application
layer) with A. Then, the network operator (or application
layer) can carry out the required steps to modify the mapping
based on the preferences of the switches. Note that switches
generally have adequate processing capacity to compute A
[38], [40], [41]. The switch needs to securely communicate

the computed mapping probabilities to the network operator.
The switch encrypts the message containing the controller-
switch mapping probabilities before sending it to the network
operator. Discussion on the possible encryption techniques is
beyond the scope of this paper.

C. Differential privacy

Differential privacy was initially defined for two adjacent
databases. Databases D and D′ are said to be adjacent if they
differ on a single row. Differential privacy is defined as:

Definition 1. Differential Privacy. A randomized algorithm A
satisfies ε-differential privacy if for all adjacent databases D
and D′ and all O ⊆ Range(A),

Pr[A(D′) ∈ O] ≤ eε × Pr[A(D) ∈ O]. (1)

Exponential Mechanism. Let D and R be the arbitrary
domain and range, respectively, of a randomized mechanism
A. Then, A is said to follow the exponential mechanism [42]
if for any d ∈ D,A selects an output r ∈ R with a probability
proportional to exp(εu(d,r)

2∆u ). Here u : {D × R} → R is the
utility function and ∆u is the largest possible difference in the
utility when two inputs differ only on a single user’s value,
for any r.

IV. SWITCH-CONTROLLER MAPPING STRATEGY GAMES

A. System Model

Consider a SDN based smart grid as depicted in Figure 1.
We consider a multi-controller SDN network where each
controller controls a subset of the switches. Since substations
have a large number of SCADA devices (like sensors and
actuators), we assume that each substation has an SDN switch.

Let the network consists of R controllers and U switches,
indexed as R = {1, 2, · · · , R} and U = {1, 2, · · · , U}.
In the default scenario, a switch is mapped to one of the
controllers and this mapping is static and deterministic. This
forms a vulnerability since with this mapping information, the
adversary can infer critical and private information by targeting
the mapped controller of a given switch. Therefore, in our
approach the switch is probabilistically mapped to a controller
(which is changed periodically).

Let pru be the probability with which switch u chooses
controller r. Let pu be the vector of probabilities of switch u
corresponding to every controller, pu = [p1

u, p
2
u, · · · , p

|R|
u ]T .

The switch decides on pu based upon the level of privacy
required and the corresponding cost incurred for it. Let qu
be the prior knowledge of the adversary about switch u
and we assume qu is proportional to the amount of traffic
generated by the switch (i.e., substation connected to it). Thus,
qu = λu∑

u′∈U λu′
where λu is the amount of traffic generated

by u.

B. Attack Model

The attack model assumed in this paper is that the adversary
is capable of eavesdropping on the communication channel
between a switch and its controller. While eavesdropping,
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the adversary does not modify any of the data, rather, the
adversary just listens to the communication passively. Such
eavesdropping enables the adversary to learn about the traffic
patterns flowing through the different devices and the users
connected to the switches that are managed by the controller.
We also assume that the adversary is capable of identifying
the source of the traffic using fingerprint techniques [43].

The objective of the adversary is to leverage the observed
traffic patterns to predict the future behavior of the smart
grid system and the users connected to it. Such predictions
by the adversary can lead to serious security and privacy
breaches. For example, the adversary can observe the traffic
pattern of different devices at a substation (like sensors and
actuators) to learn and predict about energy usage patterns at
the substation. Similarly, by observing the traffic pattern of the
users’ smart-meters, the adversary can infer and predict about
users’ energy usage pattern. This information can be further
used by the adversary to plan more serve attacks such as
energy outage. We note that this type of attack by the adversary
will be successful even when the existing privacy preserving
techniques discussed in Section II are applied because in this
attack the adversary does not need to know the exact data being
communicated. Instead, the adversary learns just by observing
the traffic patterns in the network [44].

C. Game Model

We first consider a game where a switch has com-
plete knowledge of other switches’ strategies and the net-
work topology. Under these assumptions, we develop a non-
cooperative game to capture the strategic interactions between
the switches. Then, we extend the game model when these
assumptions are relaxed.

We define a game G as a three tuple {P,S,F} where P is
the set of players, S is the set of strategies, and F is the pay-
off functions. The set of players correspond to U , the set of
all the switches in the network. The set of strategies for every
switch is the different possible values of the probability vector
pu. Hence, an instance of the strategies of all the switches can
be viewed as a strategy matrix P (P is a |R| × |U| matrix).

Let fu(pu) be the cost incurred by switch u when its
strategy is pu. Then, we have fu(pu) =

∑
r∈R f

r
u(pru), where

fru is the cost function of u corresponding to controller r.
The cost function takes two factors into consideration: (i) the
network resource consumed by choosing controller r, which
intuitively is a function of the capacity of r and (ii) the delay
incurred due to choosing r. This factor is independent of
the capacity of r. We assume that fu is a non-decreasing
convex function. The assumption that fu is non-decreasing is
a natural one because when the privacy requirement increases,
the cost incurred would tend to be higher and cannot decrease.
Moreover, the intuition behind the convexity assumption is that
when the privacy requirement is already high, any increase in
the privacy requirement would incur a higher marginal cost (as
compared to the case when privacy is lower). We also note that
if the convexity assumption is relaxed, fu is a non-decreasing
function and therefore fu is a quasi-convex function. When
fu is a quasi-convex function, P0 and DP0 are still solvable.

We solve the game for the case when the cost function is
affine, i.e., fru(pru) = (ĉr + dru)qup

r
u. Here, ĉr corresponds to

the network resource cost and dru corresponds to the delay
cost. Let cru = (ĉr + dru)qu and cu = [c1u, c

2
u, · · · , c

|R|
u ]. Then,

the cost function can be written in vector form as cTup. We
consider the negative cost to be the pay-off function of the
game.

Let U be a random variable corresponding to the adversary’s
prior probability of any flow passing through u, i.e., P [U =
u] = qu. Let R be a random variable corresponding to the
event that controller r is chosen by a switch. Note that P [R =
r|U = u] = pru and thus we have:

P [U = u,R = r] = qup
r
u

P [R = r] =
∑
u′∈U

P [R = r|U = u′]P [U = u′]

=
∑
u′∈U

pru′qu′

P [U = u|R = r] =
P [R = r|U = u]P [U = u]

P [R = r]

=
qup

r
u∑

u′∈U p
r
u′qu′

The mutual information between U and R is then given by:

I(U,R) = −
∑
u∈U

qu log(qu)+
∑

u∈U,r∈R
qup

r
u log

[
qup

r
u∑

u′∈U qu′p
r
u′

]
The switch decides the level of privacy required by con-

straining the mutual information of the system to an upper
bound. Since different substations may have different privacy
requirements, each switch u decides on pu accordingly.

D. Optimal Response

Let us denote the strategies of other switches by matrix
P−u. Then, for any given strategy P−u of other switches, the
set Bu(P−u) of the optimal response of switch u is given by

Bu(P−u) = arg min
pu∈Su

fu(pu,P−u) (2)

The optimal response pu of u in response to P−u minimizes
the total cost incurred for u while subjecting the mutual
information of the system to an upper bound tu. For a given
P−u and q, I(U,R) reduces to a function of pu and for
notational simplicity, we denote I(U,R) as I(pu). The optimal
response of u can be formulated as the following optimization
problem:

P0 : minimize
pu

cTupu (3)

subject to I(pu) ≤ tu (4)
Apu = b (5)
pu ≥ 0 (6)

Here, constraint (4) is the upper bound on the leaked mutual
information. Constraint (5) includes the constraint 1Tpu = 1
which along with constraint (6) ensures that pu is a probability
distribution. Moreover, constraint (5) allows us to accommo-
date for any additional equality constraints. Here, A is an
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m× |R| coefficient matrix and b is a m−dimensional vector.
We assume that m ≤ |R| and that rank(A) = m, i.e., P0
is feasible and has at least one positive feasible solution.
Moreover, we assume that cu does not belong to the column
space of AT , i.e., cu /∈ C(AT ) (if cu = AT y, it would imply
that cTux = yTApu = yTb = constant).

For problem P0, the objective function (3) is affine. Also,
since the function I(U,R) is convex in pu for a given q and
P−u, constraint (4) is convex. Finally, constraints (5) and (6)
are affine. Therefore, P0 is a convex optimization problem.
For completeness , the proof for the convexity of I(U,R) is
presented in Appendix A.

Consider a switch u with low privacy requirements and tu
chosen by it is large enough that the constraint (4) is inactive
for all the feasible points. In this case, optimization problem
P1 reduces to the following linear program:

P1 : minimize
pu

cTupu (7)

subject to Apu = b (8)
pu ≥ 0 (9)

Now, let us decrease the value of tu and at some tmax
u ,

constraint (4) becomes active, and remains active until a point
tmin
u . For any tu less than tmin

u , P1 becomes infeasible. Hence,
when tu ∈ (tmin

u , tmax
u ), constraint (4) is active and this case

is of interest to us. tmax
u is defined as tmax

u = I(pLPu ) =
min{I(pu)|pu is an optimal solution to P1}.

Now, consider the following optimization problem:

P2 : minimize
pu

I(pu) (10)

subject to Apu = b (11)
pu ≥ 0 (12)

Let pmin
u be an optimal solution of P2. Then I(pmin

u ) is the
minimum possible mutual information. Hence, any tu less than
I(pmin

u ) would make P0 infeasible, i.e., tmin
u = I(pmin

u ). Using
the same arguments as used for P0, we note that P2 is a
convex optimization problem.

Lemma 1. For tmin
u < tu < tmax

u , the optimal solution is
strictly positive, i.e., p∗u > 0.

Proof. As tu < tmax
u , we have cTup

∗
u > cTup

LP
u by construc-

tion. Let us consider y > 0 such that 1Ty = 1. For some
k ∈ [0, 1] and l ∈ [0, 1], we define

s = (1− l)p∗u + l[kpLPu + (1− k)y]. (13)

We can easily see that for k < 1 and l > 0, z > 0. If k
is sufficiently close to 1 and l > 0, then cTu z < cTup

∗
u. As

the slope of I(pu) is infinite at the boundary of the feasible
domain, if pru

∗ = 0 we have I(z) < I(p∗u) for 0 < k < 1
and sufficiently small t > 0. Thus, we can construct a feasible
solution z with cTu z < cTup

∗
u. This is a contradiction as p∗u is

an optimal solution. Hence pru
∗ > 0,∀r ∈ R.

Theorem 1. The optimal solution of P1 is given by:
(i) tu ≥ tmax

u : the optimal solution to the linear program-
ming, P1, pLPu ,

(ii) tmin
u < tu < tmax

u : the following solution of P0,

p∗ru =
1

qu

( ∑
v 6=u qvp

r
v

exp((cru + βTar)/quλ)− 1

)
, ∀r ∈ R,

(14)
(iii) tu = tmin

u : the optimal solution to convex problem P2,
pmin
u ,

(iv) tu < tmin
u : no solution,

where β ∈ Rm, λ ≥ 0, and ar is the rth column of A.

Proof. Case (i). For the case tu > tmax
u , the result is immediate

as constraint (4)is inactive for all the feasible points. For the
case tu = tmax

u , we have I(pLPu ) = tu, i.e., pLPu is feasible as
well as optimal (as cTupu cannot be further minimized even if
constraint (4) is removed) and case (i) follows.
Case (ii). For tmin

u < tu < tmax
u , pmin

u is a feasible solution to
P1 such that I(pmin

u ) < tu. This is immediate as I(pmin
u ) =

tmin
u < tu. As I(pu) is strictly convex, there exists at least

one optimal solution p∗u. For tmin
u < tu < tmax

u , constraint (4)
is active for an optimal solution p∗u. To prove this statement,
assume that I(p∗u) < tu. Then, as the constraint is inactive,
pLPu is an optimal solution. Hence, I(pLPu ) ≤ tu. However,
according to this case’s assumption, I(pLPu ) = tmax

u > tu. This
is a contradiction. Therefore, we conclude that constraint (4)
is active and therefore I(p∗u) = tu.

Now, we prove (14). The Lagrangian L of P0 is given by:

L(pu,β, λ) = cTupu+λ (I(pu)− tu)+βT (Apu−b). (15)

From Lemma 1, we note that constraint (6) is satisfied with
strict inequality (i.e., constraint is inactive) and thus, it is not
included in the Lagrangian. The Lagrange dual function is:

g(β, λ) = inf
pu

cTupu + λ (I(pu)− tu) +βT (Apu −b) (16)

From Lemma 1, we observe that when tmin
u < tu < tmax

u ,
there exists a point in the feasible domain that is strictly
feasible. Therefore Slater’s condition is satisfied. As P0 is
convex and satisfies Slater’s condition, strong duality holds
and the optimal duality gap is zero. Now, using the Karush-
Kuhn-Tucker conditions, the gradient of L vanishes at p∗u.
Therefore,

cru + βTar + λqu

[
log(

qup
r
u

qupru +
∑
v 6=u qvp

r
v

)

]
= 0, (17)

∀r ∈ R. Here β ∈ Rm and λ > 0 since constraint (4) is active.
Solving (17) for pru, we get (14). The Lagrangian multipliers
β and λ in (14) are computed in Section IV-E.
Case(iii) and Case(iv). The results of case (iii) and case (iv)
are immediate.

E. Computing the Lagrangian Multipliers
Theorem 1 gives the form of the optimal solution, p∗u, for

P0 in terms of the Lagrangian multipliers. This section focuses
on case (ii) of Theorem 1 and computes the optimal values of
the multipliers. Let p∗u and (β∗, λ∗) be the primal and dual
optimal points. Given that constraint (4) is active, we have the
following from Karush-Kuhn-Tucker conditions:

cru+β∗Tar+λ∗qu

[
log(

qup
r
u
∗

qupru
∗+
∑
v 6=u qvp

r
v

)

]
= 0, ∀r ∈ R,

(18)
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I(p∗u)− tu = 0, (19)
Ap∗u − b = 0, (20)

β∗ ∈ Rm, λ∗ > 0. (21)

Solving (18) for pru
∗, we get

p∗ru =
1

qu

( ∑
v 6=u qvp

r
v

exp((cru + β∗Tar)/quλ∗)− 1

)
, ∀r ∈ R. (22)

We have the primal optimal solution p∗u as a function of
the optimal dual solution (β∗, λ∗). As the optimal solution
needs to satisfy the primal feasibility, i.e., (19) and (20), we
determine the optimal dual solution (β∗, λ∗) by solving the
primal feasibility equations. Here, we have (m+ 1) equations
and (m+ 1) unknown multipliers.

Let us define the mapping Q : Rm+1 → Rm+1 as follows:

Q(β, λ) =

[
Apu − b
I(pu)− tu

]
, (23)

where pu is given by (22). By solving the system Q(β, λ) = 0,
we obtain the optimal dual solution. We solve Q(β, λ) = 0
using the Newton-Kantorovich method. To guarantee local
convergence of this method, the Jacobian Q′ needs to be
continuous and non-singular. Let P (β, λ) = Apu − b and
I(β, λ) = I(pu). Then, Q′ is given by:

Q′ =

[
∂P (β,λ)
∂β

∂P (β,λ)
∂λ

∂I(β,λ)
∂β

∂I(β,λ)
∂λ

]
. (24)

Now, we evaluate the partial derivatives as follows:
(i) The ith row of ∂P (β,λ)

∂β can be written as(
−1

quλ

)∑
r

airwra
T
r ,

where wr is given by:

wr =
1

qu
∑
v 6=u

qvprv

qupru(qup
r
u +

∑
v 6=u

qvp
r
v)

 .

Therefore, we get

∂P (β, λ)

∂β
=

(
−1

quλ

)
AWAT (25)

where W = diag([w1, w2, · · · , w|R|]).
(ii) Similarly, ∂P (β,λ)

∂λ is given as follows:

∂P (β, λ)

∂λ
=

(
−1

quλ

)
Ay (26)

where yr is given by

yr =
1∑

v 6=u
qvprv

[
qup

r
u(qup

r
u +

∑
v 6=u

qvp
r
v)
]
log

[
qup

r
u

qupru +
∑
v 6=u

qvprv

]
.

(iii) Along the same lines, we get:

∂I(β, λ)

∂β
=

(
−1

quλ

)
yTAT , (27)

∂I(β, λ)

∂λ
=

(
−1

quλ

)
yTW−1y. (28)

Now, we can write Q′ as follows:

Q′(β, λ) =
−1

quλ

[
AWAT Ay
yTAT yTW−1y

]
(29)

Theorem 2. If c not in the column space of AT , i.e., cu /∈
C(AT ) then Q′(β,λ) is a non-singular matrix.

Proof. A necessary and sufficient condition for Q′ to be
singular is that any row is a linear combination of the other
m rows (or the rank of Q′ < m + 1). Let us assume that Q′

is singular. Then, as the rows of A are linearly independent,
the (m + 1)th row of Q′ is a linear combination of the first
m rows. Performing row operations (m+ 1)th row of Q′, we
get:

s = yT [AT (AWAT )−1A−W−1]y = 0. (30)

Let Â = AW 1/2 and ŷ = W−1/2y, i.e., ŷr =(
qu(qup

r
u(qup

r
u +

∑
v 6=u

qvp
r
v))

)1/2

log

(
qup

r
u

qupru+
∑
v 6=u

qvprv

)
.

From Lemma 1, we have pru > 0 ∀r, hence

s = ŷT [ÂT (ÂÂT )−1Â− I]ŷ = −ŷTPŷ. (31)

We note that P is the orthogonal projection onto the nullspace
of Â. Therefore,

s = 0⇔ Pŷ = 0⇔ ŷ ∈ C(ÂT )⇔ ŷ = X1/2ATk, for some k
(32)

Simplifying Equation (18) and Equation (32), we get

log

 qup
r
u

qupru +
∑
v 6=u

qvprv

 =
−cru − βTar

quλ
= ar

Tk′ (33)

As βTar = aTr β, we get

cru = ar
T (−β − quλk′), i.e., (34)

cu = AT (−β − quλk′) ∈ C(AT ) (35)

Thus, s = 0 ⇔ cu ∈ C(AT ). But we have assumed cu /∈
C(AT . Therefore, s 6= 0 and Q′ is non-singular.

Theorem 3. Let (β∗, λ∗) be a solution to Q(β, λ) such that
λ > 0 and cu /∈ C(AT . Then (β∗, λ∗) is a point of attraction
of the following Newton Kantorovich method:[
βi+1 − βi+1

λi+1 − λi
]

=
−1

quλi

[
AWiAT Ayi

(Ayi)T (yi)T [Wi]−1yi

]−1

.

[
Apu

i − b
I(piu)− tu

]
(36)

where

wir =
1

qu
∑
v 6=u

qvprv

qu(pru)i(qu(pru)i +
∑
v 6=u

qvp
r
v)

 (37)

yir =
1∑

v 6=u
qvprv

qu(pru)i(qu(pru)i +
∑
v 6=u

qvp
r
v)



. log

 qu(pru)i

qu(pru)i +
∑
v 6=u

qvprv

 (38)
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(pru)i =
1

qu

( ∑
v 6=u qvp

r
v

exp((cru + (βi)Tar)/quλi)− 1

)
(39)

and i represents the values of the ith of the method.

Proof. From Lemma 1 we have pu > 0. As we have λ > 0
and we assume cu /∈ C(AT . Hence, from Theorem 2 the
Jacobian Q′ is continuous and non-singular. λ > 0 is in a
neighborhood of λ∗ as λ∗ > 0. Then (β∗, λ∗) is a point of
attraction [45].

V. DIFFERENTIALLY PRIVATE MAPPING GAMES

This section enhances the mapping game discussed in
Section IV. We add differential privacy constraints to the
existing game model so that for a switch u, the probability
of choosing two controllers with similar cost is similar. As
in Section IV-D, we formulate the differentially private best
response of u as an optimization problem with the objective to
minimize the cost incurred subject to the mutual information
and differential privacy constraints as follows:

DP0 : minimize
pu

cTupu (40)

subject to I(pu) ≤ tu, (41)
pru
pr′u
≤ eεu|cr−cr′ | ∀r, r′ ∈ R, (42)

1Tpu = 1, (43)
pu ≥ 0. (44)

Here, (42) ensures that differential privacy is satisfied for
the choice of controllers for switch u. εu is the differential
privacy parameter for switch u and the difference of the cost
factors |cr − c′r| is taken as the distinguishing metric between
controllers r and r′. From (42), we can see that εu plays
an important role in determining pu. Therefore, assuming εu
as a given input parameter is not ideal. Rather, εu needs to
be chosen such that the constraints of DP0 is satisfied. One
approach to address this problem is to consider both pu and εu
as the decision variables of DP0. In this case, we can observe
that DP0 is no longer a convex optimization problem and is
difficult to solve.

We take the following two step approach to determine
pu: step 1: determine a feasible value of εu by solving the
equation I(pu) = tu and step 2: solve DP0 to obtain the
best response of u using the feasible εu.

A. Determining εu
As the differential privacy constraint (42) holds for any

mechanism that satisfies εu-differential privacy, we use the
exponential mechanism [42] to solve I(pu) = tu and obtain
a feasible εu. According to the exponential mechanism, pru ∝
e−εuc

r/2∆u, i.e., we consider the negative cost coefficient cr

as the utility. Therefore, using (43), we get

pru =
e−εuc

r/2∆u∑
r′∈R

e−εucr
′/2∆u

. (45)

Using pu from (45), we solve I(pu) = tu for εu, e.g., by
using the Netwon-Raphson method. It can be verified that the
corresponding Jacobian is non-zero.

Remark. A vice versa relation also exists, i.e., for a given εu,
we can identify a feasible value of tu. To maintain consistency
with the model in Section IV-D, we evaluate εu for a given
tu.

B. Optimal Response

Next, we solve DP0 using dual conjugate theory to deter-
mine the optimal response of u. Similar to Section IV-D, we
focus on the case where tmin

u < tu < tmax
u (since a non-linear

constraint exists in this case and the optimization problem
is linearly constrained for other cases). First, we define the
following:

Definition 2. Conjugate function. Let f : Rn → R and dom f
be its domain. Then the conjugate function f∗ : Rn → R is
defined as follows:

f∗(y) = sup
x∈dom f

(yTx− f(x)) (46)

dom f∗ = {y | sup
x∈dom f

(yTx− f(x)) <∞, y ∈ Rn} (47)

Note that f(x) + f∗(y) ≥ yTx, ∀x ∈ dom f, ∀y ∈ dom f∗.
Moreover, the equality occurs for the sub-gradient sets, i.e.,

f(x) + f∗(y) = yTx, if y ∈ G(x) or x ∈ G∗(y) (48)

where G(x) and G∗(y) are the sub-gradient of f and f∗ at x
and y, respectively. Next, we define the positive homogeneous
extension of f∗ as follow:

Definition 3. Positive homogeneous extension. Let f∗ : Rn →
R and dom f∗ be its domain. Then the positive homogeneous
extension f+ : Rn × R→ R is defined as

f+(y, λ) =

 λf∗(y/λ), λ > 0

sup
x∈dom f∗

yTx, λ = 0 (49)

dom f+ = {(y, λ)|λ = 0, sup
x∈dom f∗

(yTx), y ∈ Rn}

∪ {(y, λ)|λ > 0, y/λ ∈ dom f∗} (50)

In order to compute the dual of DP0, we first formulate
the following equivalent optimization problem:

DP1 : minimize
pu,x,z

cTupu (51)

subject to I(x) ≤ tu, (52)
Apu − z ≥ 0, (53)
z = b, (54)
pu − x = 0, (55)
pu ≥ 0. (56)

where Apu−b ≥ 0 contains (42) and (43) (i.e., the differential
privacy and probability distribution constraint, respectively).

The objective function of the dual program is computed
as the sum of the conjugate function of the primal objective,
(51), subject to constraint (54) and the positive homogeneous
extension of constraint (52) which is given as:

f(z′,y, λ) = bT z′
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Fig. 2. Abovenet ISP topology. The blue and red nodes are backbone and
access routers, respectively.

−λ
[∑
r∈R

[∑
v∈U
v 6=u

qvp
r
v log

[
qvp

r
v(1−eyr/λqu)∑
v′ 6=u

q′vp
′r
v

]]
+tu

]

subject to s = cu, z = b, λ ≥ 0. Here s and z′ are conjugate
dual variables of pu and z, respectively and λ is the parameter
from the positive homogeneous extension of constraint (52).
For completeness, we derive the conjugate function of I(x)−
tu in Appendix B. Further, from (48), the primal and dual
variables are related as

sr =

∑
v 6=u qvp

r
v

λqu(1− eyr/λqu)
. (57)

Finally, the feasible set of the dual program is the dual cone
of the primal cone generated by (53), (55) and (56). Let α,γ
and δ be the Lagrangian multipliers for constraints (53), (55),
and (56), respectively. Then, using Definition 2, we have s =
ATα+δ+γ, y = −γ, and z′ = −α. Here α ≥ 0, γ ∈ R|R|,
and δ ≥ 0.

Now, we can form the dual program of DP1 as follows:

DP2 : minimize
α,γ,λ

f(−α,−γ, λ) (58)

subject to ATα− cu + γ ≤ 0, (59)
α ≥ 0, (60)
λ ≥ 0, (61)

γ ∈ R|R|. (62)

DP2 is linearly constrained convex optimization problem and
as it satisfies Slater’s condition, strong duality holds and p∗u
can be computed using (57).

Algorithm 1: Iterative Best Response algorithm

1 Iterative Best Response Input: G
Output: pNEu (Nash Equilibrium solution)

2 Randomly choose a feasible p0
u

3 Update(P)
4 do
5 Get(P−u)
6 Pprev ← P
7 pu ← OptimalResponse(P−u)
8 Update(P)
9 while P 6= Pprev;

VI. NASH EQUILIBRIUM

This section shows that Nash equilibrium exists for our
games and presents an iterative best-response algorithm to
compute it.

Definition 4. Nash Equilibrium. A mapping probability matrix
P is a Nash equilibrium if and only if

fu(pu,P−u) ≤ fu(p′u,P−u), ∀p′u ∈ Su, ∀u ∈ U (63)

Theorem 4. For game G, a pure strategy Nash equilibrium
(PNE) exists.

Proof. We can observe from P2 and DP0, that the strategy
space of G is compact, convex, and non-empty and the cost
function is convex. Hence, a pure strategy Nash equilibrium
exists for G [46].

We use Algorithm 1 (IBR) to compute the pure strat-
egy Nash equilibrium. Here, during the ith update round,
all switches compute their optimal response based on the
strategies of other switches. This procedure is continued until
the strategies converge to a Nash equilibrium. We observe that
the optimal response of u does not depend directly on the
strategy of the other individual switches. Rather, it depends on
a few aggregate values (e.g.,

∑
qvp

r
v and

∑
qvp

r
v log(qvp

r
v)).

Theorem 5. The iterative best response algorithm (IBR)
converges to a pure strategy Nash equilibrium.

Proof. The optimal response of u is subject to the constraint
I(pu) < tu. Hence, G is a game of strategic substitutes (with
convex strategy sets) because if a switch with lower privacy
requirement decreases the privacy of the system (to minimize
its cost), then an another switch with higher privacy require-
ment substitutes for it (to meet its own privacy constraint).
Moreover, the computation of best response in each round
can be performed simultaneously in IBR. Then, under the
assumption that all best response correspondences are single
valued, IBR converges to a PNE [47].

VII. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed
mapping approaches. We abbreviate the solution of mapping
game and differentially private mapping game as NM and
NDM, respectively. For comparison we use the globally opti-
mal solutions for the mapping game and differentially private
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Fig. 3. Effect of tu on the cost for IEEE 30
bus system.
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Fig. 4. Effect of tu on the cost for IEEE 118
bus system.
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Fig. 5. Effect of tu on the cost for IEEE 300
bus system.

 0.8

 0.85

 0.9

 0.95

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Fa
irn

es
s 

In
de

x

tu

NM GM NDM GDM EDM

Fig. 6. Fairness index for IEEE 30 bus system.
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Fig. 7. Fairness index for IEEE 118 bus system.
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Fig. 8. Fairness index for IEEE 300 bus system.
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Fig. 9. Min-max load ratio for IEEE 30 bus
system.
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Fig. 10. Min-max load ratio for IEEE 118 bus
system.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M
in

-m
ax

 ra
tio

tu

NM GM NDM GDM EDM

Fig. 11. Min-max load ratio for IEEE 300 bus
system.

mapping game, abbreviated as GM and GDM, respectively. We
also compare with the solution obtained using the exponential
mechanism in (45), abbreviated as EDM.

We consider three power grids following the IEEE 30, 118
and 300 bus systems as our CPS [48]. The physical topology
of the power grid (i.e., the connectivity of the buses and
lines) is obtained using these topologies. An underlying and
separate communication network interconnects the physical
components (i.e., the substations which house the buses) of
the smart grid. We adopt the network topology obtained from
the Rocketfuel network topology traces for the SDN-based ISP,
Abovenet [49], for the communication network to ensure that
our evaluation uses a realistic network topology. The topology
is depicted in Figure 2. We consider each substation (i.e.,
bus) to be a randomly chosen leaf-node in the Abovenet ISP
network topology. Twelve backbone routers of the network are
considered as the SDN controllers and the access routers of
the network are considered as the SDN switches for the bus
systems. We consider the prior probability on the switches to
be uniformly distributed. The cost values in our evaluations

are normalized such that the maximum cost is 1.

First, we examine the effect of tu (i.e., the privacy require-
ment) on our mapping approach. We vary the value of tu
as 0.03, 0.06, · · · , 0.3 (lower value implies higher privacy).
Figures (3)-(5) depict the average cost incurred per switch for
the three power grid topologies. We observe that in general,
as the value of tu increases, the cost incurred decreases. For
larger values of tu, the switch chooses a controller with low
cost with higher probability, thereby reducing the average cost
incurred. We observe that the cost incurred for both NM and
NDM is very close to their respective global solutions GM
and GDM. The average difference in cost for NM and NDM is
10% and 1%, respectively. This extra cost is incurred due to the
selfish behavior of the switches and the distributed nature of
the solution when compared to GM and GDM. The difference
in cost is lesser for DM because of the differential privacy
constraint which renders both DM and GDM similar to each
other. Moreover, due to the differential privacy constraint, the
cost incurred by NDM and GDM is higher than that of NM and
GM. As the value of tu increases, we see that NM, GM, NDM
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and GDM tend to converge. This is intuitive as the mutual
information and the differential privacy constraints relax with
increasing tu. We also note that on an average, EDM incurs
an additional 66% and 24% cost compared to GM and GDM.

Next, we evaluate the fairness of the different approaches.
We use Jain’s fairness index, FI =

(
∑

u∈U fu)2

U
∑

u∈U f
2
u

, to quantify
the fairness. Figures (6)-(8) show the fairness achieved for the
three grid topologies. We observe that for smaller values of
tu (stricter privacy requirement), NM is fairer as compared to
GM. For example, in the IEEE 118 bus system with tu = 0.2,
NM achieves a fairness of 0.98 while GM only achieves a
fairness of 0.94. As the privacy constraint relaxes, NM and
GM converge with respect to fairness. We observe that DM,
GDM, and EDM achieve a fairness very close to 1 in almost
all cases (with EDM being slightly less fair compared to DM
and GDM). This fairness comes at a very high price. For
example, for the IEEE 300 bus system with tu = 0.1, DM,
GDM and EDM incur an additional cost of 41%, 40.5%, and
47%, respectively. From Figures (6)-(8), we observe that NDM
and GDM achieve better fairness compared to NM and GM for
higher values of tu while the cost incurred by the approaches
tend to converge. Hence, NDM is preferred in this scenario to
achieve better fairness for a little extra cost. For example, in
the IEEE 300 bus system with tu = 1, NM and NDM achieve
a fairness of 0.95 and 0.99, respectively, with NDM incurring
12% extra cost.

Next, we examine the effect of our approaches on the traffic
load at the controllers. We plot the ratio of the minimum
controller load to that of the maximum controller load in
Figures (9)-(11) for the three power grid systems. For smaller
values of tu, NDM, GDM and EDM are more balanced
(i.e., higher min-max ratio) when compared to NM and GM.
However, for higher values of tu, NM and GM achieve better
min-max ratio. For example, in the IEEE 30 bus system, when
tu = 0.1, NM and NDM achieve a ratio of 0.4 and 0.7,
respectively, but when tu = 0.9, the respective ratios are 0.3
and 0.1.

We would like to note that balancing the load at the
controller is not the primary goal of our approaches but
we observe an interesting trade-off between NM and NDM,
especially for higher values of tu. While NDM achieves better
cost fairness than NM for a little extra cost, NM achieves
better load balancing at the controllers and incurs lesser cost
than NDM.

As the value of tu decreases (i.e., mutual information
constraint becomes stricter), the polytope formed (separately)
by the differential privacy constraints (42) and the mutual
information constraints (41) converge. For the limiting value of
tu = 0, both constraint (41) and constraint (42) have a single
feasible point, pru = 1

|R| , ∀r ∈ R (the uniform distribution).
Therefore, when differential privacy constraints are added in
NDM, the increase in cost incurred for switches with higher
tu is higher when compared to switches with lower tu. As a
result, the cost fairness for NDM is higher when compared to
NM. Again, as the differential privacy constraints are stricter
when compared to the mutual information constraint, the
feasible region of the switches are more similar for NDM

when compared to NM. As a result, the switches tend to prefer
some controllers more (depending on the feasible region) that
others, and hence, the load is less balanced for NDM when
compared to NM.

VIII. CONCLUSION AND FUTURE WORK

This paper proposed a switch-controller mapping scheme
to mitigate passive information leakage from compromised
controllers in SDN-based CPSs. The mapping is computed in
a distributed manner by formulating a non-cooperative game
among the SDN switches. The Nash equilibrium is computed
using an iterative best response-algorithm. Our results shows
that the proposed approach achieves near optimal results
and better fairness when compared to the global solutions.
The switch-controller mapping approach in this paper can be
extended to include controller utilization and load balancing
constraints to further improve the network performance. Also,
currently we view the interactions between the switches as a
non-cooperative game. Alternatively, we can explore the pos-
sibility of switches cooperating among themselves to achieve
a socially private switch-controller mapping.

APPENDIX

A. Convexity of I(U,R)

The first order derivative of I(U,R) with respect to pru is
evaluated as

∂I(U,R)

∂pru
= (64)

∂

∂pru

[
qup

r
u log

(
qup

r
u∑

u′∈U q
′
up
r
u′

)

+
∑
u′ 6=u

qu′p
r
u′ log

(
qu′p

r
u′

qupru +
∑
v 6=u qvp

r
v

)
=

∂

∂pru

qupru( log(qup
r
u)− log(qup

r
u +

∑
v 6=u

qvp
r
v)

)

+
∑
u′ 6=u

qu′p
r
u′

(
log(qu′p

r
u′)− log(qup

r
u +

∑
v 6=u

qvp
r
v)

)
= qu

log(qup
r
u) + 1− log(qup

r
u +

∑
v 6=u

qvp
r
v)

− qup
r
u

qupru +
∑
v 6=u qvp

r
v

−
∑
u′ 6=u

qu′pu′

qupru +
∑
v 6=u qvp

r
v


= qu

log(qup
r
u)− log(qup

r
u +

∑
v 6=u

qvp
r
v)

 (65)

From Equation 65, we the following second order deriva-
tives:

∂2I(U,R)

∂pru
2 =qu

2

(
1

qupru
− 1

qupru +
∑
v 6=u qvp

r
v

)
, ∀r ∈ R

(66)
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∂2I(U,R)

∂pru∂p
r′
u

= 0, ∀r 6= r′; r, r′ ∈ R

(67)

As qupu and
∑
v 6=u qvp

r
v are non negative, from Equation 66

∂2I(U,R)
∂pru

2 is non negative for all r. Therefore, the Hessian
matrix of I(U,R) has non-negative diagonal elements. From
Equation 67, the non-diagonal elements of the Hessian matrix
are 0. Therefore the Hessian matrix is positive semi-definite
and I(U,R) is a convex function of pu.

B. Conjugate function of I(x)− tu
Let I∗(y) be conjugate of I(x)− tu, then I∗(y)is given by:

I∗(y) = sup
x

(yTx− (I(x)− tu)) (68)

= sup
x

[
yTx−

(
−
∑
u∈U

qu log(qu)

+
∑
u∈U

∑
r∈R

quxr log
( quxr∑

u′∈U qu′p
r
u′

)
− tu

)]
(69)

Using the first order derivative, the supremum occurs at

xr =

∑
u′∈U qu′p

r
u′

qu(e−yr/qu − 1)
(70)

Substituting the value of xr in (69), we get

I∗(y) = −
∑
r∈R

∑
v∈U
v 6=u

qvp
r
v

[
log(1− eyr/qu)

+ log

(
qvp

r
v∑

v′ 6=u
q′vp
′r
v

)]+
∑
u∈U

qu log(qu) + tu

(71)

Computing the positive homogeneous extension is straightfor-
ward by replacing yr with yr/λ for λ > 0.
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