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Abstract—Many popular e-commerce applications run on geo-
distributed data centers requiring high availability. Fault-tolerant
distributed data centers are designed by provisioning spare
compute capacity to support the load of failed data center, apart
from ensuring data durability. The main challenge during the
planning phase is how to provision spare capacity such that the
total cost of ownership (TCO) is minimized. While the literature
handled spare capacity provisioning by minimizing the number
of servers, variation in electricity cost and PUE corroborate the
need to minimize the operating cost for capacity provisioning.
We develop an MILP model for spare capacity provisioning for
geo-distributed data centers with durability requirements. We
consider spare capacity provisioning problem with the objective of
minimizing TCO. We model variation in the demand, fluctuation
in electricity prices across locations, cost of state replication,
carbon tax across different countries, and delay constraints while
formulating the optimization model. Solving the model shows that
TCO is reduced while leveraging the electricity price variation
and demand multiplexing. The proposed model outperforms the
CDN model by 50% and the minimum server model by 34%.
Results also demonstrate the effect of power usage effectiveness
(PUE), latency, number of data centers and demand on the TCO.

I. INTRODUCTION

Many popular cloud services, web services, e-commerce
applications and other large-scale applications are deployed
over geo-distributed data centers. A geo-distributed data center
is simply a collection of networked data centers interconnected
via high capacity WAN links. See Fig. 1 for an illustration.
The advantages of geo-distributed data centers are typically:
increased data center availability and reliability, reduced access
time for users across the globe and possibility of horizontal
scale out against capacity constraints (electricity, physical
space etc.). These advantages are driving several cloud service
providers to move to geo-distributed data centers (henceforth
simply referred as distributed data centers). For example
Google is spread across 15 counties and has more than 30
data centers with an estimated 900,000 servers [1]. Akamai
has nearly hundred thousand servers in over 1,900 networks
across 71 countries.

However, business applications like e-commerce websites
demand high availability as their downtime translates directly
to lost revenue, lost productivity, and reduced customer sat-
isfaction. A survey conducted by Gartner [2] on estimated
financial cost of downtime suggests that a loss of revenue
in the range of $250,000-$500,000 was incurred by 60%
companies for an hour of downtime and one sixth of the
organizations incurred a loss of $1 million or more. Data
center unavailability has been reported by many cloud service
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Fig. 1: Illustration of geo-distributed data center

providers like Amazon, Facebook and Google [3]-[5]. This
could be due to reasons like building fire, power outage, human
error, software bug, ISP router misconfiguration, and other
man-made or natural disasters. Similarly, EMC survey 2013
[6], reported that 67% of IT managers and professionals give
highest priority to storage technology for backup, recovery
and archiving in their organizations. High availability and data
durability to protect data destruction at the primary site, are
ensured by state replication to a remote site, preferably to a
nearest location. In this paper failure of single data center is
the only kind of failure and state replication to nearest data
center has been considered.

Designing a fault-tolerant, durable, distributed data center
involves spare capacity provisioning across data centers (al-
location of additional servers and state replication to mask
failures).There is an immediate question of where this spare
capacity needs to be allocated. We call this problem as cost-
aware capacity provisioning (CACP) problem, satisfying a
set of constraints based on electricity prices, infrastructure
cost, demand at each location, and latency constraints dictated
by clients. A straight-forward approach for spare capacity
provisioning could be to simply provision additional capacity
uniformly across data centers lying within the latency bounds
of the concerned client region. However, the main challenge
in designing the fault tolerant distributed data center is in
minimizing the cost of operating services over distributed
data center reaping the benefit of variation in the carbon tax,
electricity cost, and bandwidth cost across space and time.
It may be noted that CACP problem is a variant of facility
location problem proved to be NP hard [7].

Motivation: The work in this paper is motivated by the



following observations from the literature:

e High inter-data center communication cost: Usually, cloud
service providers connect their data centers with dedicated
WAN links which are significantly expensive. For example, a
cost of $1 to transfer 2.7 GB of data over 100km was reported
in [8]. Therefore, informed state replication must be carried
out in order to minimize the operating cost involved.

o Multiplexing of resources: In all Internet-scale applications,
client demand varies over time of the day. This variation can
be exploited by cloud providers by multiplexing the demand
on compute servers [9].

e FElectricity price variations: In current multi-electricity mar-
ket, electricity price varies across space and time. Electricity
cost is also slowly exceeding the cost of data center equip-
ment. For example, let us assume life of a server to be 4
years and the cost of a server to be $2000 [10]. We calculate
the energy to acquisition cost (EAC) defined to be the ratio
of cost of running a server for 4 years to its acquisition cost,
as given below in Eqgs. (1) and (2).

Power cost = 4 years * (8760 hours/year)

ey

* (electricity cost) x server power x PUE

power cost
—

EAC = 100 (@)

server cost

We used the electricity prices given in Table I,obtained
from [11], peak power used per server as 400W and an
optimistic power usage effectiveness (PUE) value of 1.2, to
calculate the EAC in different countries. The EAC values
in Table I indicate that for most of the countries cost
of power and cooling exceeds the cost of buying servers
which suggests that a greater attention should be put on
optimizing data center power consumption cost instead of
only minimizing the servers while designing fault-tolerant
data centers.

Country Electricity price($/kWh) | Operating Cost(in $) EAC
Belgium 0.29 4877 243%
Brazil 0.16 2691 134%
Canada 0.11 1850 92%
France 0.19 3261 163%
Germany 0.32 5382 269%
Hong Kong 0.18 3027 151%
Ireland 0.28 4769 238%
Italy 0.28 4774 238%
Japan 0.22 3700 185%
Netherlands 0.29 4857 243%
Russia 0.08 1345 67%
Singapore 0.28 3920 196%
Switzerland 0.25 4204 210%
UK 0.25 3363 168%
USA 0.12 2018 101%

TABLE I: EAC for different countries

Therefore, we propose an optimization framework for cost-
aware capacity provisioning in distributed data centers such
that, apart from meeting the customer demand after a single
data center fails, it is still cost-effective. The main contributions
of this paper are as follows:

e We develop an MILP model for cost-aware capacity provi-
sioning (CACP) with the objective of minimizing the TCO,
subject to latency and availability constraints (i.e. to mask

failure of single data center). Along with the server acqui-
sition cost we also consider electricity cost, state replication
cost and carbon tax.

e By solving the optimization model using real-world data,

we demonstrate that CACP model has greater potential of
reducing the TCO by exploiting the variation in electricity
prices, bandwidth prices and client demand.

o We demonstrate that the CACP model has 50% improvement

over the model which minimizes the average response time
by routing to nearest data center (CDN model) and 35%
over the model that minimizes total number of servers (MS
model).

e We also demonstrate the impact of number of data centers,

customer latency requirements,PUE, and variation in client
demand on the TCO with the help of the proposed optimiza-
tion model.

The rest of the paper is organized as follows. Section II dis-
cusses the work related to capacity provisioning in distributed
data centers. Section III discusses the proposed CACP model
and list the other models used in comparison. The advantages
of the proposed CACP model over the existing models in
minimizing the TCO are showed in Section IV. Section V
concludes the paper.

II. RELATED WORK

Data center placement and capacity provisioning has been
addressed previously in both industry white papers and re-
search papers. A few studies addressed data center place-
ment, expansion and capacity provisioning based on MILP
optimization which considers capital cost and operating cost.
Their objective functions span across minimizing total cost,
minimizing total carbon footprint, and minimizing average
service latency abiding by the QoS constraints [8], [10], [12].

The work in [13] presented an approach for solving
placement, capacity provisioning and request routing jointly.
The objective was to minimize the total cost of building
a new or expanding existing data center, subject to latency
constraint on every routing path bounded by a maximum value.
The authors of [14] proposed general guidelines to design
a disaster resilient data center which described quality of
resilience metrics like service availability and time to recovery
and discussed how these affected the decision of selecting
data center recovery mechanism, site placement and topology
design, VM placement and backup strategies.

Although the problem of data center placement and capac-
ity provisioning has been addressed in most articles, failure
of data centers which affects the revenue of cloud service
providers running business critical applications has been ig-
nored. The closest work to our study of capacity provisioning
in fault tolerant distributed data center is that in [9], where the
authors designed a simple optimization model to minimize the
total number of servers required across all the data centers such
that latency constraints and availability constraints (masking
failure of single data center) are met. However, it has been
observed that server operating cost is comparable to or in some
countries even dominate the server acquisition cost. Therefore,
we use minimization of the TCO as an objective to minimize
total cost (operating cost and server acquisition) of spare ca-
pacity provisioning. Our model reaps the benefit of electricity



and bandwidth price variation and demand multiplexing (for
diurnal applications) to minimize the TCO.

III. OPTIMIZATION MODEL

In this section, we formulate the problem of cost aware
spare capacity provisioning (CACP) as an MILP model. We
first state the assumptions made in building the model, fol-
lowed by system model used, and the present the optimization
model. Table II summarizes the notation used in the model
with the definitions.

Variable Meaning

Input Parameters

s Data center location

u Client region

pfh Power consumed at data center s during hour h with failed
data center f

ph maz Maximum power available at data center s during hour h

7;‘ h Average server utilization at data center s during hour h and

failed data center f

Maximum value of v to avoid waiting

LZ Total number of requests generated from user location u
during hour h

max

Dy, Propagation delay between client region u and data center s
Dpax The maximum tolerable latency

02‘ Electricity price per kWh at data center s at hour h

Ps Transmission loss of electricity at data center s

« Server acquisition cost

ds Carbon tax at data center s

M Minimum number of servers at any data center

M Maximum number of servers at any data center

Vs Bandwidth cost for state replication of data center s, to the
nearest data center (this cost is a known constant value, for
a given data center)

13 Number of bytes required for state replication of single
request

Decision Variables

Number of servers in data center s

Number of requests from user location wu, served by data
center s during hour h and failed data center f

Ysu Binary variable that denotes whether client location w lies
within the latency bound of data center s

ms
ML

Cost Components

F Total cost of ownership, including server acquisition cost,
operating cost and state replication cost

P Operating cost and server acquisition cost

n Cost of state replication to nearest data center for durability

TABLE II: Summary of notation used in the paper

A. Assumptions

The following assumptions were made in the model.

Failure of only single data center (a site) is considered. Failure
of more than one data center at the same time is assumed to be
unlikely because, two sites do not share a common resource
group by choice of locations.

Though the failure of a data center is inevitable, its probability
is often observed to be low. Hence, no failure case (f = 0)
has a probability of 0.95 and any one of the data centers
f € {1,|S|} can fail uniformly at random with probability
0.05, where S is the set of data center locations [15].
Mechanism for failure detection and request re-routing is
already in place. We can use any state-of-art approach similar
to the one in [16].

Each pair of data center sites are connected by dedicated link
and it is charged based on actual usage over a billing cycle.

e Client demand at a location is proportional to its population.
Propagation delay within the client region is assumed to be
negligible.

B. System Model

Cost: Let S and U denote the set of data centers and client
locations, respectively. The cost of server (acquisition cost)
be a. Since the electricity cost usually varies across time and
space, 0" denotes the electricity cost at data center location
s € S during the hour & of the day. Let d, be the carbon tax
levied at data center location s € S and v, be the bandwidth
cost for state replication from data center s, to its nearest data
center (this cost is a assumed to be constant for a pair).

Demand: Let A/ denote the number of requests from client
region u served by data center at location s, during hour h
when data center indexed f € F' = {0, |S|} has failed. Let L”
be the total demand for user location v at hour h.

Delay: Let D,,,,, be the maximum latency allowed for a client
based on the service level agreements with the cloud provider.
Let Dy, be the propagation delay between user location u and
data center location s. The data center must be designed such
that even after the failure of a site, the latency continues to be
lower than D,,, ..

State replication: For every request served by a data center
s, let £ be the size of data that needs to be replicated to its
nearest data center and v be the bandwidth cost to the nearest
data center of s. The cost of state replication denoted by 7 is

modeled as
n=Y, (\l¢w) 3)
fu,s,h

Server Provisioning: Let m denote the number of servers
required in a data center at s. We define M™" and M™®
to be the minimum and maximum number of servers that can
be provisioned at any data center due to limitations associated
with space and power.

Power Consumption: Let P, ;. be the average power drawn in
idle condition and P, be the power consumed when server
is running at peak utilization. Then total power consumed at
a data center location s € .S, at hour h € H is given by [8]:

Psfh = ms(Pidle + (Es - 1)Ppeak)

+ Ms(Ppeak — Piare)v]"

+ e @
where FE is the PUE of a data center at s, € is an empirical
constant, and /" is the average server utilization defined by

, _ Zuev M
Wt = =L )

mgl

where p is the service rate of the server.

C. CACP Model

For notational convenience, we define the following vari-
ables:
m £ [my, Vs € 9],
A& [NUVse S YueU, Vhe HVf € F| and

Y 2 [Ysu,Vs €S, Yu € U]



We define the TCO, denoted by f, to be the sum of state
replication cost 7 (defined in Eq. 3), and the sum of operating
cost and server acquisition cost, denoted by W, defined as

v= 3 (X (MR +aips + VPM) +maa)

s€S heH
(6)

With these cost factors the CACP problem is expressed by the
following optimization model.

e .. —
m:g’lir’lzllze F +n (7
subject to,

Mok =1 Yu,h, f (8)

seS
0 < M} < yall Vs,uh, f - (9)
M™n <, < MM Vs (10)
Psfh S PS}L max VSJI (11)
2DSU ysu S Dmam (12)
yih < qymes Vs,h  (13)
Yysu € {0,1} Vs, u (14)

Among the constraints, Eq. (8) ensures that demand of
all client regions in every hour is met. Eq. (9) ensures that
all the client requests are served by data centers within the
latency limit. Eq. (10) ensures that capacity limit of a data
center (in terms of number of servers) is not exceeded. There
is also a constraint on the total power available at a data center
which is taken care by Eq. (11). Eq. (12) ensures that the delay
experienced by a client lies within the maximum delay bound.
Since our focus is only on network latency [9], in order to
ensure that the service time is independent of the data center
used, we capped the server utilization by Eq. (13).

D. Existing Models

We present two models from the literature with different
objectives that are used in data center planning. We compare
the proposed model with these in the next section.

e CDN Model: In principle, CDN’s objective is to balance
load such that average response time is minimized. By
defining the average response time as

Zf,u,s,h )‘gv}jDSU
Zf,u,h LZ

The CDN model for fault-tolerant operation is

A= 15)

minimize A
m,\,y (16)
subject to eqs. (8) - (14)

This model is designed to route the requests after the
failure to the nearest data center with the spare capacity.
It does not consider any other operating cost factors to
optimize the TCO.

e MS Model: This model has been defined in [9]. The
main objective of this model is to minimize the total

number of servers deployed across all the data centers
with availability and latency constraints. This model also
does not consider any cost factors associated with the
operation of the data centers.

IV. NUMERICAL RESULTS

In this section, we evaluate the proposed CACP model and
the two existing models (MS and CDN) under different scenar-
i0s. The proposed optimization model is an MILP, solved using
CPLEX with Matlab on a server with Intel Xeon processor
and 64 GB of RAM, running Ubuntu 14.04 (64 bit) OS. To
understand the advantage of considering the operating cost in
spare capacity provisioning, we compared the cost of solutions
obtained with the other models. We not only demonstrate
that CACP model outperforms MS and CDN models in the
reduction of the TCO but also, show the sensitivity of the
models to the number of data centers, user demand, maximum
latency bound and PUE.

A. Experimental Setup

Data center locations: Availability of (cheaper) power
dictates the selection of locations for data centers on global
scale. We consider data center locations around the world
from the USA, Europe and Asia viz. Oregon, Pennsylvania,
South Carolina, Chicago, U.K., Germany, France, Belgium,
Japan, China, Hong Kong and Singapore. The minimum and
maximum number of servers at each location are set to 1000
and 100,000, respectively.

Client locations: From the data in [17], we considered
top 15 countries in terms of Internet usage as our client loca-
tions. These are Brazil, China, Egypt, France, Germany, India,
Indonesia, Japan, Mexico, Nigeria, Russia, South Korea, UK,
USA, and Vietnam. The propagation delay between data center
and client location is considered to be linearly proportional to
the distance between them, and it increases by 10 ms for every
1000 km [8].

Input parameters: For the electricity price 6", we con-
sidered the data reported in [18]. We used carbon tax of 0.49
cents/kWh [8] for the power being consumed. P;q;. and Ppeqk
are taken to be 400W and 200W, respectively [19]. Average
PUE is set to 1.8 [20]. The empirical constant € is assumed
to be 0 [13]. P™%* js taken to be 100MW/hr for all the
locations [12]. The default value for maximum latency is taken
to be 300ms. We considered the data size for replication per
request to be 1KB [21] and inter-data center bandwidth cost
(for state replication) as $1 for 2.7 GB over 100km [8].

Traffic model: We assumed that the demand from a client
region is proportional to the number of Internet users from that
region [17]. Aggregated demand is a uniform random variable
lying between 100,000 and 300,000 requests/second [22].
Table III shows the distribution of requests across various
client regions. A day is divided into 12 off-peak, 6 mid-peak
and 6 on-peak hours, to accommodate the behavior of diurnal
applications.

B. Results

We present the results obtained from solving the models
under different scenarios constructed by varying the number



Country Brazil China Egypt | France | Germany India

Indonesia | Japan

Mexico Nigeria Russia S. Korea UK USA Vietnam

% Demand 5.33% 31.76% 2.17% 2.78% 3.50% 15.43%

5.64% 2.65% 3.37% 4.50% 2.13% 2.93% 13.69% 2.09%

Request Range (XIOS) 10-16 63-95 4-6 6-8 7-10 30-46

11-17 5-8 7-10 9-13 4-7 6-9 27-46 4-6

TABLE III: Demand variation across space and time
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Fig. 2: Normalized TCO with varying number of data centers
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Fig. 3: Normalized TCO with varying maximum latency bound

of data centers, the demand, latency bound, and PUE value.
The metric used to compare the three optimizations models
is the total cost of ownership as defined in Eq. 6. In each
graph, we plotted the normalized values of TCO wherein,
the normalization is done with respect to the maximum TCO
across all the experiments.

TCO comparison : In this experiment, we compared the TCO
from the CACP model with that from the existing models.
We increased the number of data centers between 6 and
12, with the total demand fixed at 300,000 requests/sec and
maximum latency at 300 ms. For each case(fixed number
of data centers), we solved the optimization models and
computed the normalized TCO. Fig. 2, shows the normalized
TCO as the number of data centers increases with the state
being replicated only at the nearest data center.

We can see that the TCO for CACP and MS model reduces
with the number of data centers since, they take advantage of
diurnal pattern in the demand resulting in better multiplexing.
The reduction in the TCO with the CACP model is larger
compared to that with the MS model. The CACP model also
leverages the electricity price variation across space and time
reducing the TCO further. We can observe that the CACP
model achieved a TCO reduction of upto 34% compared to
the MS model, and upto 50% compared to the CDN model.
Impact of Latency: In this experiment we studied the im-
pact of maximum latency bound on the TCO. We ran the
models with 12 data centers, 15 client regions, an aggregate
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Fig. 4: Normalized TCO with varying demand
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Fig. 5: Normalized TCO with varying PUE values

demand of 300,000 requests/second. The maximum latency
was chosen from [150,180,200,250,300,350] sec. Fig. 3 shows
the normalized TCO for the three models. We can see that
CACP improved the TCO upto 55% and 40% compared to
the CDN and MS models, respectively. In the CACP model,
we get greater number of data centers capable of serving
the requests from a particular client region, leading to better
multiplexing of resource, which in turn reduces the TCO.
Along with this, CACP model also selects the data centers in
regions with lower electricity prices while meeting the latency
bound. Although the CDN model gives minimum latency,
request routing is oblivious to the variation in the electricity
price and bandwidth price. Therefore, the TCO is higher with
CDN model particularly when the latency requirements are
not very stringent.

Impact of Demand: We solved the optimization models on
12 data centers while varying the total demand with the
maximum latency at 300ms. Results showed in 4 indicate
that as the demand increases, the advantage of CACP model
over the existing models decreases. Since, there is an upper
bound on the capacity of a data center, increasing demand
leads to saturation of all the data centers in the regions
with cheaper electricity. This reduces the choice available for
CACP model and leading to the selection of locations with
higher electricity prices. We can conclude that the proposed
model is advantageous only when the data center does not
operate at peak utilization. Under heavy load, the CACP
model can help the provider to determine an optimal data



center upgrade plan while minimizing the TCO.

Impact of PUE: Finally, we studied the sensitivity of the
models to data center PUE values. We considered 12 data
centers serving 15 client regions, peak demand of 300,000
requests per second and maximum latency of 300ms. With
an increasing PUE the power efficiency of the data center
reduces, leading to greater power consumption and higher
operating cost. Fig. 5 shows that CACP model significantly
reduces the TCO for every PUE value considered. For a PUE
value of 2 the reduction in the cost is 60% with respect to
CDN model and is 40% with respect to the MS model. This
suggests that cloud service providers should use CACP model
when the PUE is large.

V. CONCLUSION

In this paper we consider the problem of spare capacity
provisioning while planning fault tolerant and durable geo-
distributed data centers, capable of masking single data center
failures. In the CACP problem formulation, we minimized
the TCO reaping the benefit of electricity cost and demand
variation across the data centers. We used real world data, to
show that the CACP model outperforms the existing models
reported in the literature in minimizing the TCO. The CACP
model achieves a cost reduction of upto 34% and 50% when
compared to MS and CDN models, respectively. We also
demonstrated that the CACP lowers the TCO when the varia-
tion in the electricity price and demand across the data centers
is higher. We showed that the CACP model is promising for
cloud providers when the load is high and the PUE values are
high.
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