Mapcode: a dynamical systems approach to algorithmic program development

Venkatesh Choppella IIIT Hyderabad

23rd December 2022 ACM India CS Ed Workshop, IIT Gandhinagar India

Abstract

Mapcode is a methodology for iterative algorithmic problem solving introduced by Kasturi Viswanath in his book An Introduction to Mathematical Computer Science (Universities Press, 2008). In Mapcode, the requirement and design of an algorithm are expressed as a collection of maps (total functions). Once the design is available, it can be easily coded as a program using the mapcode combinator.

The workshop is an introduction to program development using the mapcode methodology. This will be done through a series of examples which illustrate the mapcode approach to the specification, design and coding of solutions as programs.

Contents

1 Mapcode

 $\mathbf{2}$

1 Mapcode

Mapcode: A Dynamical Systems Approach to Algorithmic Program Development

ACM CS Ed Workshop, IIT Gandhinagar, 23rd December 2022

1. A practical theory of computing (vocabulary, concepts,

3. and their implementation as code.

2. aimed at modular design of sequential algorithms using maps,

Venkatesh Choppella

IIIT Hyderabad

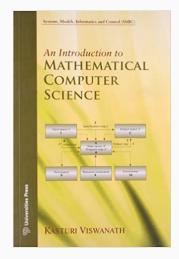
What is Mapcode?

notation)

Contents

Introduction to Mapcode Iteration	
Iteration	
Fixed Points	
Fixed Point Iteration and Limit Map	
Algorithmic Problem Solving	
Solution Specification	
From Design to Code	
Correctness conditions	
Bound maps and Termination	
Invariant Maps and Correctness	
Homework, Submission and Feedback	
	2 / 89
Aapcode is for Programmers	
Mapcode allows programmers	
1 to talk and reason about their programs	
1. to talk and reason about their programs	
 to talk and reason about their programs to structure their programs in a modular way 	
2. to structure their programs in a modular way	

The Mapcode book	
------------------	--



What are computers good at?

1. They are fast.

2. They don't get tired.

3. They don't get bored.

Computers are good at **repeatedly** doing a task.

Repeatedly doing a task is called **iteration**.

An Introduction to Mathematical Computer Science. Kasturi Viswanath. Universities Press 2008. (Foreword by Kesav Nori)

K Viswanath

Contents

Introduction to Mapcode

Iteration

Fixed Points Fixed Point Iteration and Limit Map Algorithmic Problem Solving Solution Specification From Design to Code Correctness conditions Bound maps and Termination Invariant Maps and Correctness Homework, Submission and Feedback

6 / 89

Programming: Instructing a computer what to do

Computers are used to solve problems that take an instance and return an answer after iterating on a task.

But they need to be **instructed**:

- 1. Where to start
- 2. What to do
- 3. When to stop
- 4. How to report the answer

The scientific method	Traces over an Observation Space
 Identifying observables Tracing changes over time Collecting different traces into behaviour Explaining behaviour by generating it from a dynamical model Predicting new behaviour by running models Refining the model to account for discrepancies between real and predicted behaviour 	Observation Space Y: set of observables 1. $Y = \mathbb{N}$ evens = $[0 \rightarrow 2 \rightarrow 4 \rightarrow 6]$ 2. $Y = \mathbb{R}$ asset = $[100.0 \rightarrow 110.0 \rightarrow 121.0 \rightarrow 132.1]$ 3. $Y = \mathbb{Q}$ zeno = $[1 \rightarrow 1/2 \rightarrow 1/4 \rightarrow 1/8 \rightarrow]$ 4. $Y = \{red, green, yellow\}$ trafficLight = $[red \rightarrow green \rightarrow yellow \rightarrow red]$
9 / 89	10 / 89
Traces map naturals to observations	Generating Traces
Traces map naturals to observations $\mathit{trace}: \mathbb{N} \to Y$	Generating Traces Can we <i>generate</i> a trace? 1. Identify a state space X
	Can we <i>generate</i> a trace?
$trace: \mathbb{N} o Y$	 Can we generate a trace? 1. Identify a state space X 2. Start from an initial state x₀ 3. Apply a dynamical map F to transform the current state x
trace : $\mathbb{N} \to Y$ 1. evens: $evens_i = 2i$	 Can we generate a trace? 1. Identify a state space X 2. Start from an initial state x₀ 3. Apply a dynamical map F to transform the current state x to the next state x'. x' = F(x)
trace : $\mathbb{N} \to Y$ 1. evens: $evens_{i} = 2i$ 2. asset: $asset_{i} = 100 \times (1.1)^{i}$	 Can we generate a trace? 1. Identify a state space X 2. Start from an initial state x₀ 3. Apply a dynamical map F to transform the current state x

State and Dynamical Map	Traces, take 2
1. evens: $x_0 = 0, F(x) = x + 2$ 2. asset: $x_0 = 100, F(x) = 1.1 \times x$ 3. zeno: $x_0 = 1, F(x) = x/2$ 4. trafficLight: $x_0 = \text{red},$ $F(x) = \begin{cases} \text{green} & \text{if } x = \text{red} \\ \text{yellow} & \text{if } x = \text{green} \\ \text{red} & \text{if } x = \text{yellow} \end{cases}$	1. $squares = [0 \rightarrow 1 \rightarrow 4 \rightarrow 9]$ 2. $fac4 = [1 \rightarrow 4 \rightarrow 12 \rightarrow 24 \rightarrow 24 \rightarrow 24]$ 3. $pingala = [0 \rightarrow 1 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 5]$ 4. $bubblesort = [8 \ 6 \ 9 \ 7] \rightarrow [6 \ 8 \ 9 \ 7] \rightarrow [6 \ 8 \ 9 \ 7] \rightarrow [6 \ 8 \ 7 \ 9] \rightarrow [6 \ 7 \ 8 \ 9] \rightarrow [6 \ 7 \ 8 \ 9] \dots$
13 / 89	14 / 89
Generating squares: State vs Observation	Display Map projects an observation from the state
Generating squares: State vs Observation Trajectory $(1,0) \longrightarrow (3,1) \longrightarrow (5,4) \longrightarrow (7,9)$ $\downarrow h$ $\downarrow h$ $\downarrow h$ Trace $0 \longrightarrow 1 \longrightarrow 4 \longrightarrow 9$	Display Map projects an observation from the state • State Space X • Observation space Y Display map $h: X \to Y$

Fac4: Display and Dynamical Map
1. Observation Space $Y = \mathbb{N}$ 2. State Space $X = \mathbb{N} \times \mathbb{N}$ state vector $x = (i, a)$ initial state $x_0 = (4, 1)$ 3. Display map $h : X \to X$ h(i, a) = a $F(i, a) = \begin{cases} (i, a) & \text{if } i = 0 \\ (i - 1, a * i) & \text{otherwise} \end{cases}$ $(4, 1)h \to 1$ $(3, 4)h \to 4$ \downarrow $(2, 12)h \to 12$ \downarrow \downarrow $(1, 24)h \to 24$ \downarrow \downarrow $(0, 24)h \to 24$ \downarrow \downarrow $(0, 24)h \to 24$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
Exercise: Construct examples of Iterative Systems
 Give two examples of 1. An observation space and a trace over it. 2. An iterative system and an initial state 3. A display map that connects the trajectory of the initial state to the trace.

19 / 89

Contents	Iterative Systems in pictures
Introduction to Mapcode	
Iteration	
Fixed Points	
Fixed Point Iteration and Limit Map	
Algorithmic Problem Solving	
Solution Specification	
From Design to Code	
Correctness conditions	
Bound maps and Termination	13 9 F
Invariant Maps and Correctness	
Homework, Submission and Feedback	
21 / 89	22 / 89
Trajectories and Orbits	Point types
Let $(X, F : X \to X)$ be an iterative system	
Trajectory of <i>x</i>	1. Fixed : $x = F(x)$
$trj(x) = [x, F(x), F(F(x)), F^{3}(x), \ldots]$	
	2. Transient: $x \neq F(x)$
	2 (Einitaly) Convergents of reaches a fixed point often a fight
	 (Finitely) Convergent: x reaches a fixed point after a finite number of applications of F.
Orbit of x	
$orb(x) = \{x, F(x), F(F(x)), F^{3}(x), \ldots\}$	

Example of fixed, transient and convergent points

fix(F): set of all fixed points of $Fcon(F)$: set of all convergent points of F	Fixed: 5 Transient: all points except 5 Convergent: all blue points	
25 / 89		26 / 89
Exercise: Identify fixed, transient and convergent points	Contents	
Identify the fixed, transient and conver- gent points of the dynamical maps in the 1. Squares example 2. Fac4 example	Introduction to Mapcode Iteration Fixed Points Fixed Point Iteration and Limit Map Algorithmic Problem Solving Solution Specification From Design to Code Correctness conditions Bound maps and Termination Invariant Maps and Correctness Homework, Submission and Feedback	20 / 00
27 / 89		28 / 89

Iterating to a fixed point	Fixed Point iteration
1. How to transform the state at each step: x:=F(x) 2. When to stop: fixed point x=F(x)	<pre># loop: [X, X->X] -> X # loop(x,F) assumes # x is in con(F) # returns the fixed point # reached by x def loop(x,F): while (x != F(x)): # x is transient x = F(x) # update x return x # x is a fixed point</pre>
29 / 89	30 / 89
Limit Map takes convergent points to fixed points	Limit Map implementation
$F^{\infty}: con(F) \rightarrow fix(F)$ $F^{\infty}(x) = \lim_{n \to \infty} F^{n}(x)$ for $x \in con(F)$	<pre>from fpi import loop # Limit Map # takes a function F # returns a function F_infty. # F_infty takes an x in con(F) # and returns an element in fix(F). def limit_map(F): def F_infty(x): return loop(x,F) return F_infty</pre>

Example: Limit Map for Factorial	Contents
1. $fix(F) = \{0\} \times \mathbb{N}$ 2. $con(F) = \mathbb{N} \times \mathbb{N}$ 3. $F^{\infty} : con(F) \rightarrow fix(F)$ $F^{\infty}(i, a) = a * i!$ Exercise: Prove this using induction on <i>i</i> .	 Introduction to Mapcode Iteration Fixed Points Fixed Point Iteration and Limit Map Algorithmic Problem Solving Solution Specification From Design to Code Correctness conditions Bound maps and Termination Invariant Maps and Correctness Homework, Submission and Feedback
33 / 89	34/89
Components of Algorithmic Problem Solving	Instance Space
 specify problem: what to compute? assume datatypes and primitive operations: what to compute with? design solution: how to compute? 	Mapcode Step 1: What is the type of the problem instance? Instance Space /

Mapcode Step 2: What is the type of the answer?: Mapcode Step 3: What is (the map) to be computed?Answer Space A Specification Map $f: I \to A$	
37/89	38 / 89
Machine Datatypes and Primitive Operations Example: Problem Specification for Factorial	
Mapcode Step 4: What are the primitive data types and operations available when designing the solution? Compute Factorial using subtraction and multiplication 1. Instance Space $I = \mathbb{N}$ 2. Answer Space $A = \mathbb{N}$ 3. Specification Map $f(n) = n!$ 4. Machine datatypes: natural numbers \mathbb{N} 5. Primitive operations: decrement, multiply	40 / 89

Exercise: Write Problem Specifications	Contents
 Write down the problem specifications for the following informal requirements 1. Multiplication: Compute the product of two natural numbers using subtraction and addition. 2. GCD: Compute the greatest common divisor of two natural numbers using subtraction and comparison 	Introduction to Mapcode Iteration Fixed Points Fixed Point Iteration and Limit Map Algorithmic Problem Solving Solution Specification From Design to Code Correctness conditions Bound maps and Termination Invariant Maps and Correctness Homework, Submission and Feedback
41/89 State Space	42/89 Example: Statespace for Factorial
Mapcode Step 5: What are the program variables and their types? State space X	State Space $X = \mathbb{N} \times \mathbb{N}$ state vector $x = (i, a)$ (index, accumulator) 44/89

Init map
Mapcode Step 6: How does one take an instance and map it to an initial state? Init map $ ho:I o X$
Init and Answer maps for Factorial
Instance space $l = \mathbb{N}$ Answer space $A = \mathbb{N}$ State space $X = \mathbb{N} \times \mathbb{N}$ Init map $\rho : l \to X$ $\rho(n) = (n, 1)$ Answer map $\pi : X \to A$ $\pi(i, a) = a$ 48/89

Example: Program Map for Factorial

Mapcode Step 8: What is the rule to update the program variables at each step?

Program map $F: X \to X$

 $(3,1) \xrightarrow{\downarrow} (2,3) \xrightarrow{F} (1,6) \xrightarrow{F} (0,6) -$

state

• aka dynamical map.

Execution Diagram for computing 3!

instance

• F acts on X.

 $X = \mathbb{N} \times \mathbb{N}$ x = (i, a) $F : X \to X$ $F(i, a) = \begin{cases} (i, a) & \text{if } i = 0\\ (i - 1, a * i) & \text{otherwise} \end{cases}$ Exercise: Program maps and execution diagrams

Specify the program maps for

- 1. Multiplication problem
- 2. GCD problem

Also draw execution diagrams for computing

1. 2×3

 ρ

 π

 $\xrightarrow{F \searrow} (0,6)$

fixed point

49 / 89

answer

 $\mathcal{M} = (I, A, X, \rho: I \to X, F: X \to X, \pi: X \to A)$

 \mathcal{M} is an *algorithm* if $\rho(I) \subseteq con(F)$, i.e., if for each instance *i*, $\rho(i)$ is a convergent state.

If \mathcal{M} is an algorithm then ρ ; F^{∞} ; π is the map *computed by* \mathcal{M} .

 $\mathcal{M} = (I, A, X, \rho: I \to X, F: X \to X, \pi: X \to A)$

 \mathcal{M} is an *algorithm* if $\rho(I) \subseteq con(F)$, i.e., if for each instance *i*, $\rho(i)$ is a convergent state.

If \mathcal{M} is an algorithm then ρ ; F^{∞} ; π is the map *computed by* \mathcal{M} .

53 / 89

55 / 89

Mapcode Checklist so far

No.	Mapcode artefact	Notation
1.	Instance space	1
2.	Answer space	А
3.	Specification map	$f: I \to A$
4.	Primitive Operations	
5.	State space	X
6.	Init map	ho: I o X
7.	Answer map	$\pi: X \to A$
8.	Program map	$F: X \to X$

Contents

Introduction to Mapcode Iteration Fixed Points Fixed Point Iteration and Limit Map Algorithmic Problem Solving Solution Specification From Design to Code Correctness conditions Bound maps and Termination Invariant Maps and Correctness Homework, Submission and Feedback

The mapcode program generator	Mapcode machine for Factorial
<pre>from fpi import limit_map # F: X->X, rho: I->X, pi: X->A # rho(1) subset of con(F) # mapcode(rho, F, pi): I -> A def mapcode(rho,F,pi): F_inf=limit_map(F) def f(i): return pi(F_inf(rho(i))) return f</pre>	<pre>def rho(n): return ([n,1]) def pi(x): [i,a] = x return a def F(x): [i, a] = x if (i == 0): return x else: return [i-1, a*i]</pre>
57 / 89	58 / 89
Computing factorial using the mapcode machine	Exercise: Specifying mapcode machines
<pre>from mapcode import mapcode fact = mapcode(rho, F, pi) 59/89</pre>	 Implement ρ, π and F and then use the mapcode library function to implement a solution for the following problems 1. Multiplication problem 2. GCD problem

Contents		Finite Convergence (Termination	n)
Introduction to Mapcode			
Iteration			
Fixed Points			Mapcode Step 9: How do we
Fixed Point Iteration and Limit Map			know that $ ho$ maps each instance to a convergent point?
Algorithmic Problem Solving		$I \xrightarrow{f} A$	
Solution Specification		↑	
From Design to Code		\downarrow^{ρ} π	prove
Correctness conditions		$con(F) \xrightarrow{F^{\infty}} fix(F)$	
Bound maps and Termination			$\rho(I) \subseteq con(F)$
Invariant Maps and Correctness			
Homework, Submission and Feedback			
	61/89		62 / 89
Partial Correctness		Contents	
		Introduction to Mapcode	
	Mapcode Step 10:	Iteration	
	Assuming termination, how	Fixed Points	
	do we know that the	Fixed Point Iteration and Limit Ma	ар
$I \xrightarrow{f} A$	diagram commutes?	Algorithmic Problem Solving	
↑		Solution Specification	
\downarrow^{ρ} π		From Design to Code	
$con(F) \xrightarrow{F^{\infty}} fix(F)$	prove	Correctness conditions	
	$f = \alpha \Gamma^{\infty} \cdot \pi$	Bound maps and Termination	
	$f = \rho; F^{\infty}; \pi$	Invariant Maps and Correctness	
		Homework, Submission and Feedba	ack

Motivation	Well-founded relations
• We want to exploit discrete flows and iterative systems to compute answers.	
• The way we wish to do this to construct convergent trajectories.	Let A be a set. Let < be a binary relation on A. $(A, <)$ is well-
• The answer is 'embedded' in a fixed point.	founded if there are no infinite descending chains of the form:
• However, not all states may converge to fixed points.	$\ldots < a_2 < a_1 < a_0$
• Therefore, we are obligated to demonstrate that the initial state we choose indeed converges.	
\bullet In such a case, the computation is said to converge. $^{65/89}$	66 / 89
Examples and non-examples of well-founded relation	Bound Map
 Examples and non-examples of well-founded relation ⟨ℕ, <⟩ (natural numbers and 'less than') is well-founded. ⟨ℤ, <⟩ (integers and 'less than') is not well-founded. ⟨ℚ, <⟩ (rational numbers and 'less than') is not well-founded. 	Definition 1 (Bound Map) Let $(W, <)$ be a well-founded relation. Let $D = \langle X, F \rangle$ be a discrete flow. A map $B : X \to W$ is a bound map for D if whenever $x \in X$ is transient, $B(F(x)) < B(x)$.

Bound Maps: Example 2

• Let $D = \langle \mathbb{N}, F : \mathbb{N} \to \mathbb{N} \rangle$ be a flow, where $F(x) = \begin{cases} 0 & \text{if } x = 0 \\ x - 1 & \text{otherwise} \end{cases}$ • Then the identity function is a bound map for D . 69/89	• Let $D = \langle \mathbb{N}, F : \mathbb{N} \to \mathbb{N} \rangle$ where $F(x) = \begin{cases} k & \text{if } x \ge k \\ x+1 & \text{otherwise} \end{cases}$ • Let $B : X \to \mathbb{N}$ where $B(x) \stackrel{\text{def}}{=} \begin{cases} 0 & \text{if } x = k \\ 1 & \text{if } x > k \\ k-x & \text{otherwise} \end{cases}$ • B is a bound map for D . (Verify this.) 70/89
Bound Map implies convergence	Proof that Bound Map implies convergence
Lemma 2 (Bound map implies convergence) Let $D = (X, F : X \rightarrow X)$ be a discrete flow such that there is a bound map for D. Then every element of X is convergent.	 Let B : X → W be a bound map for D. Suppose X is not convergent. Then there is a trajectory {a_i} where each a_i = Fⁱ(a₀) is transient. For each i, B(F(a_i)) = B(a_{i+1}) < B(a_i) = B(a_i) Hence, we have an infinite descending chain < B(a₁) < B(a₀) But no such chain is possible since (W, <) is well-founded. Contradiction.

Lemma 3 (Convergence for mapcode)

Let $\mathcal{M} = (I, A, X, \rho, F, \pi)$ be a mapcode machine.

Proof:	
--------	--

1. By Lemma 2, orb(S) is convergent, i.e., $orb(S) \subseteq con(F)$.

Let $S = \rho(I)$. Consider the subflow $D_{orb(S)} = (orb(S), F _{orb(S)})$ of (X, F) . If there is a bound map for $D_{orb(S)}$, then $\rho(I) \subseteq con(F)$	2. From step 1 and the fact that $S \subseteq orb(S)$, it follows that $S = \rho(I) \subseteq con(F)$.
73 / 89	74 / 89
Proof Principle for Convergence	Contents
	Introduction to Mapcode
	Iteration
	Fixed Points
	Fixed Point Iteration and Limit Map
To show that ${\mathcal M}$ is an algorithm, it suffices to	Algorithmic Problem Solving
demonstrate a bound map for the flow generated	Solution Specification
by $\rho(I)$.	From Design to Code
	Correctness conditions
	Bound maps and Termination
	Invariant Maps and Correctness
	Homework, Submission and Feedback

Definition 4 (Invariant Map)

• Let *E* be any set.

• Let $D = (X, F : X \to X)$ be a discrete flow.

Let D = (X, F) be a discrete flow. Let $\theta : X \to E$ be an invariant map for D.

Then, for each $x \in X$ and for each $n \in \mathbb{N}$,

$$\theta(x) = \theta(F^n(x))$$

• A map $\theta: X \to E$ is an invariant map for <i>D</i> if, for each $x \in X$,	Corollary 6
$\theta(x) = \theta(F(x))$	If $x \in con(F)$, then
	$\theta(x) = \theta(F^{\infty}(x))$
77 / 89	78 / 89
Partial Correctness via invariant map	Proof of partial correctness via invariant map
Theorem 7 (Partial Correctness via invariant map)	
	$ \rho(I) \subseteq con(F) $ $ \mathcal{M} \text{ algorithm: Given (1)} $
• Consider a specification map $f: I \rightarrow A$ and a mapcode	$s \in I$ assumption (2)
algorithm $\mathcal{M}=\langle I, X, A, ho: I o X, F: X o X, \pi: X o A angle$	$\theta(\rho(s)) = f(s)$ from 'init': Given (3)
• Let $\theta: X \to A$ be an invariant map for (X, F) . Assume	$ \rho(s) \in con(F) $ from 1 and 2 (4)
• init: $\theta(\rho(i)) = f(i)$ for each instance $i \in I$ and	$F^{\infty}(\rho(s)) \in fix(F)$ from 4 and defn of F^{∞} (5)
	$\pi(z) = \theta(z)$ $\forall z \in fix(F)$, 'answer': Given (6)
• answer: $\theta(x) = \pi(x)$ for each fixed point $x \in fix(F)$.	$\pi(F^{\infty}(\rho(s))) = \theta(F^{\infty}(\rho(s))) \qquad \text{from 5 and 6} (7)$
• Then, ρ ; $F^{\infty} \circ \pi = f$.	$= \theta(\rho(s))$ since θ is invariant (8)
• $(n, p, 1) = n = 1$.	$= f(s) \qquad \qquad \text{from 3} (9)$

Proof Principle for partial correctness	Bound Map for Factorial
To prove that a mapcode algorithm $\mathcal{M} = (I, A, X, \rho, F, \pi)$ computes a specification map $f : I \rightarrow A$, it is sufficient to construct an invariant map $\theta : X \rightarrow A$ such that the init and answer conditions are met: 1. init : $\theta(\rho(i)) = f(i)$ for each $i \in I$ 2. answer : $\theta(x) = \pi(x)$ for each $x \in fix(F)$	 I = N, A = N, X = N², ρ(n) = (n, 1) ρ(I) = N × {1} F(i, a) = (i, a) if i = 0, (i - 1, a * i), otherwise Let (W = N, <) denote the usual 'less than' ordering on Let B : X → N be defined as B(i, a) = i. Then B _{orb(ρ(I))} is a bound map for the flow (orb(ρ(I)), F _{orb(ρ(I))}). (Exercise, verify this.)
Invariant Map for Factorial	Exercise: Bound and Invariant maps for Multiplication and
• $I = \mathbb{N}$, $A = \mathbb{N}$, $X = \mathbb{N}^2$, $\rho(n) = (n, 1)$	GCD
• $\rho(I) = \mathbb{N} \times \{1\}$ • $F(i, a) = (i, a)$ if $i = 0$, $(i - 1, a * i)$, otherwise Let $\theta : X \to A$ be defined as $\theta(i, a) = i! * a$. Then θ is an invariant map, since • Assume $n \in I$. Then $\theta(\rho(n)) = \theta(n, 1) = n! = f(n)$ • $(i, a) \in fix(F)$. Then $i = 0$, $\theta(0, a) = 0! * a$ = a $= \pi(0, a)$ 83/89	Define bound and invariant maps for 1. multiplication and 2. GCD 84/89

No.	Mapcode artefact	Notation
1.	Instance space	1
2.	Answer space	А
3.	Specification map	$f: I \to A$
4.	Primitive Operations	
5.	State space	X
6.	lnit map	$\rho: I \to X$
7.	Answer map	$\pi: X \to A$
8.	Program map	$F: X \to X$
9.	Termination condition	$\rho(I) \subseteq con(F$
10.	Partial Correctness	$f = \rho; F^{\infty}; \pi$
	condition	

Contents

Introduction to Mapcode
Iteration
Fixed Points
Fixed Point Iteration and Limit Map
Algorithmic Problem Solving
Solution Specification
From Design to Code
Correctness conditions
Bound maps and Termination
Invariant Maps and Correctness
Homework, Submission and Feedback

85 / 89

Homework Exercises

Write literate programs based on mapcode for the following:

- 1. Finding the maximum of a nonempty array of numbers.
- 2. Factorial using a stack ('recursion')
- 3. Addition using increment
- 4. Bubblesort
- 5. Finding the height of a binary tree.

Acknowledgments

Thank You All

- 1. Neeldhara Misra: Workshop organization and invitation
- 2. Mrityunjay Kumar: Examples, code
- 3. K Viswanath: General discussions about Mapcode
- 4. ACM India: Travel support
- 5. Audience: Participation!

venkatesh.choppella@iiit.ac.in

Submission and Feedback

