
Mapcode: a dynamical systems approach to

algorithmic program development

Venkatesh Choppella
IIIT Hyderabad

23rd December 2022
ACM India CS Ed Workshop, IIT Gandhinagar India

Abstract

Mapcode is a methodology for iterative algorithmic problem solving
introduced by Kasturi Viswanath in his book An Introduction to Math-
ematical Computer Science (Universities Press, 2008). In Mapcode, the
requirement and design of an algorithm are expressed as a collection of
maps (total functions). Once the design is available, it can be easily coded
as a program using the mapcode combinator.

The workshop is an introduction to program development using the
mapcode methodology. This will be done through a series of examples
which illustrate the mapcode approach to the specification, design and
coding of solutions as programs.

Contents

1 Mapcode 2

1

1 Mapcode

2

Mapcode: A Dynamical Systems Approach to

Algorithmic Program Development

ACM CS Ed Workshop, IIT Gandhinagar, 23rd December

2022

Venkatesh Choppella

IIIT Hyderabad

1 / 89

Contents

Introduction to Mapcode

Iteration

Fixed Points

Fixed Point Iteration and Limit Map

Algorithmic Problem Solving

Solution Specification

From Design to Code

Correctness conditions

Bound maps and Termination

Invariant Maps and Correctness

Homework, Submission and Feedback

2 / 89

What is Mapcode?

1. A practical theory of computing (vocabulary, concepts,

notation)

2. aimed at modular design of sequential algorithms using maps,

3. and their implementation as code.

3 / 89

Mapcode is for Programmers

Mapcode allows programmers

1. to talk and reason about their programs

2. to structure their programs in a modular way

3. to build reusable libraries

4 / 89

The Mapcode book

An Introduction to Mathematical

Computer Science. Kasturi

Viswanath. Universities Press

2008. (Foreword by Kesav Nori)

KV Nori

K Viswanath

5 / 89

Contents

Introduction to Mapcode

Iteration

Fixed Points

Fixed Point Iteration and Limit Map

Algorithmic Problem Solving

Solution Specification

From Design to Code

Correctness conditions

Bound maps and Termination

Invariant Maps and Correctness

Homework, Submission and Feedback

6 / 89

What are computers good at?

Computers are good at repeatedly doing a task.

1. They are fast.

2. They don’t get tired.

3. They don’t get bored.

Repeatedly doing a task is called iteration.

7 / 89

Programming: Instructing a computer what to do

Computers are used to solve problems that take an instance and

return an answer after iterating on a task.

But they need to be instructed:

1. Where to start

2. What to do

3. When to stop

4. How to report the answer

8 / 89

The scientific method

• Identifying observables

• Tracing changes over time

• Collecting different traces into behaviour

• Explaining behaviour by generating it from a dynamical

model

• Predicting new behaviour by running models

• Refining the model to account for discrepancies between real

and predicted behaviour

9 / 89

Traces over an Observation Space

Observation Space Y : set of observables

1. Y = N evens = [0→ 2→ 4→ 6 . . .]

2. Y = R asset = [100.0→ 110.0→ 121.0→ 132.1 . . .]

3. Y = Q zeno = [1→ 1/2→ 1/4→ 1/8→ . . .]

4. Y= {red , green, yellow}
trafficLight = [red→ green→ yellow→ red . . .]

10 / 89

Traces map naturals to observations

trace : N→ Y

1. evens: evens i = 2i

2. asset: asset i = 100× (1.1)i

3. zeno: zeno i = 2−i

4. trafficLight :

trafficLight i =





red if i(mod 3) = 0

green if i(mod 3) = 1

yellow if i(mod 3) = 2
11 / 89

Generating Traces

Can we generate a trace?

1. Identify a state space X

2. Start from an initial state x0

3. Apply a dynamical map F to transform the current state x

to the next state x ′. x ′ = F (x)

4. Repeat indefinitely to yield a trajectory

trj(x0) = [x0 → F (x0)→ F 2(x0)→ . . .]

5. Project the trace from the trajectory

12 / 89

State and Dynamical Map

1. evens: x0 = 0, F (x) = x + 2

2. asset: x0 = 100, F (x) = 1.1× x

3. zeno: x0 = 1, F (x) = x/2

4. trafficLight: x0 = red,

F (x) =





green if x = red

yellow if x = green

red if x = yellow

13 / 89

Traces, take 2

1. squares = [0→ 1→ 4→ 9 . . .]

2. fac4 = [1→ 4→ 12→ 24→ 24→ 24 . . .]

3. pingala = [0→ 1→ 1→ 2→ 3→ 5 . . .]

4. bubblesort = [8 6 9 7]→ [6 8 9 7]→ [6 8 9 7]→
[6 8 7 9]→ [6 8 7 9]→ [6 7 8 9]→ [6 7 8 9] . . .

14 / 89

Generating squares: State vs Observation

Trajectory (1, 0) (3, 1) (5, 4) (7, 9)

Trace 0 1 4 9

h h h h

15 / 89

Display Map projects an observation from the state

• State Space X

• Observation space Y

Display map

h : X → Y

16 / 89

Squares: Display and Dynamical Map

1. Observation Space Y = N

2. State Space X = N×N

state vector x = (v , d)

initial state x0 = (1, 0)

3. Display Map h : X → X

h(v , d) = d

4. Dynamical Map F : X → X

F (v , d) = (v + 2, d + v)

(1, 0) 0

(3, 1) 1

(5, 4) 4

(7, 9) 9

...
...

h

h

h

h

17 / 89

Fac4: Display and Dynamical Map

1. Observation Space Y = N

2. State Space X = N×N

state vector x = (i , a)

initial state x0 = (4, 1)

3. Display map h : X → X

h(i , a) = a

4. Dynamical Map F : X → X

F (i , a) =




(i , a) if i = 0

(i − 1, a ∗ i) otherwise

(4, 1) 1

(3, 4) 4

(2, 12) 12

(1, 24) 24

(0, 24) 24

(0, 24) 24

...
...

h

h

h

h

h

h

18 / 89

Summary of Spaces and Maps

• Observation Space: Y

• State Space: X

• Trace: N→ Y

• Trajectory: X → (N→ X)

• Display Map: h : X → Y

• Dynamical Map:

F : X → X

• Iterative System: (X ,F)

(also called discrete flow)

19 / 89

Exercise: Construct examples of Iterative Systems

Give two examples of

1. An observation space and a trace

over it.

2. An iterative system and an initial

state

3. A display map that connects the

trajectory of the initial state to the

trace.

20 / 89

Contents

Introduction to Mapcode

Iteration

Fixed Points

Fixed Point Iteration and Limit Map

Algorithmic Problem Solving

Solution Specification

From Design to Code

Correctness conditions

Bound maps and Termination

Invariant Maps and Correctness

Homework, Submission and Feedback

21 / 89

Iterative Systems in pictures

22 / 89

Trajectories and Orbits

Let (X ,F : X → X) be an iterative system

Trajectory of x

trj(x) = [x , F (x), F (F (x)), F 3(x), . . .]

Orbit of x

orb(x) = {x , F (x), F (F (x)), F 3(x), . . .}

23 / 89

Point types

1. Fixed : x = F (x)

2. Transient: x 6= F (x)

3. (Finitely) Convergent: x reaches a fixed point after a finite

number of applications of F .

24 / 89

fix(F) and con(F)

fix(F): set of all fixed points of F

con(F): set of all convergent points of F

25 / 89

Example of fixed, transient and convergent points

Fixed: 5

Transient:

all points

except 5

Convergent:

all blue

points

26 / 89

Exercise: Identify fixed, transient and convergent points

Identify the fixed, transient and conver-

gent points of the dynamical maps in

the

1. Squares example

2. Fac4 example

27 / 89

Contents

Introduction to Mapcode

Iteration

Fixed Points

Fixed Point Iteration and Limit Map

Algorithmic Problem Solving

Solution Specification

From Design to Code

Correctness conditions

Bound maps and Termination

Invariant Maps and Correctness

Homework, Submission and Feedback

28 / 89

Iterating to a fixed point

1. How to transform the state at each step:

x := F (x)

2. When to stop: fixed point

x = F (x)

29 / 89

Fixed Point iteration

l o o p : [X, X−>X] −> X

l o o p (x , F) assumes

x i s i n con (F)

r e t u r n s t he f i x e d p o i n t

r e a c h e d by x

def l o o p (x , F) :

whi le (x != F (x)) : # x i s t r a n s i e n t

x = F (x) # update x

return x

x i s a f i x e d p o i n t

30 / 89

Limit Map takes convergent points to fixed points

F∞ : con(F)→ fix(F)

F∞(x) = lim
n→∞

F n(x)

for x ∈ con(F)

31 / 89

Limit Map implementation

from f p i import l o o p

L i m i t Map

t a k e s a f u n c t i o n F

r e t u r n s a f u n c t i o n F i n f t y .

F i n f t y t a k e s an x i n con (F)

and r e t u r n s an e l em en t i n f i x (F) .

def l i m i t m a p (F) :

def F i n f t y (x) :

return l o o p (x , F)

return F i n f t y

32 / 89

Example: Limit Map for Factorial

1. fix(F) = {0} ×N

2. con(F) = N×N

3. F∞ : con(F)→ fix(F)

F∞(i , a) = a ∗ i !

Exercise: Prove this using induction on i .

33 / 89

Contents

Introduction to Mapcode

Iteration

Fixed Points

Fixed Point Iteration and Limit Map

Algorithmic Problem Solving

Solution Specification

From Design to Code

Correctness conditions

Bound maps and Termination

Invariant Maps and Correctness

Homework, Submission and Feedback

34 / 89

Components of Algorithmic Problem Solving

1. specify problem: what to compute?

2. assume datatypes and primitive operations: what to compute

with?

3. design solution: how to compute?

35 / 89

Instance Space

Mapcode Step 1: What is the type of the problem instance?

Instance Space I

36 / 89

Answer Space

Mapcode Step 2: What is the type of the answer?

Answer Space A

37 / 89

Specification Map

: Mapcode Step 3: What is (the map) to be computed?

Specification Map f : I → A

38 / 89

Machine Datatypes and Primitive Operations

Mapcode Step 4: What are the primitive data types and

operations available when designing the solution?

39 / 89

Example: Problem Specification for Factorial

Compute Factorial using subtraction and multiplication

1. Instance Space I = N

2. Answer Space A = N

3. Specification Map f (n) = n!

4. Machine datatypes: natural numbers N

5. Primitive operations: decrement, mulitiply

40 / 89

Exercise: Write Problem Specifications

Write down the problem specifications

for the following informal requirements

1. Multiplication: Compute the

product of two natural numbers

using subtraction and addition.

2. GCD: Compute the greatest

common divisor of two natural

numbers using subtraction and

comparison

41 / 89

Contents

Introduction to Mapcode

Iteration

Fixed Points

Fixed Point Iteration and Limit Map

Algorithmic Problem Solving

Solution Specification

From Design to Code

Correctness conditions

Bound maps and Termination

Invariant Maps and Correctness

Homework, Submission and Feedback

42 / 89

State Space

Mapcode Step 5: What are the program variables and their

types?

State space X

43 / 89

Example: Statespace for Factorial

State Space X = N×N

state vector x = (i , a) (index, accumulator)

44 / 89

Exercise: Specify Statespaces

Specify statespaces for

1. Multiplication problem

2. GCD problem

45 / 89

Init map

Mapcode Step 6: How does one take an instance and map

it to an initial state?

Init map ρ : I → X

46 / 89

Answer Map

Mapcode Step 7: How does one extract the answer from a

(final) state?

Answer map π : X → A

47 / 89

Init and Answer maps for Factorial

Instance space I = N

Answer space A = N

State space X = N×N

Init map ρ : I → X

ρ(n) = (n, 1)

Answer map π : X → A

π(i , a) = a

48 / 89

Program Map

Mapcode Step 8: What is the rule to update the program

variables at each step?

Program map F : X → X

• aka dynamical map.

• F acts on X .

49 / 89

Example: Program Map for Factorial

X = N×N

x = (i , a)

F : X → X

F (i , a) =




(i , a) if i = 0

(i − 1, a ∗ i) otherwise

50 / 89

Execution Diagram for computing 3!

• instance

3

(3,1)

ρ

•

convergent point

(2,3)
F

(1,6)
F

(0,6)
F

(0,6)
F

F∞

6

π

f

•answer

•

state •

fixed point

51 / 89

Exercise: Program maps and execution diagrams

Specify the program maps for

1. Multiplication problem

2. GCD problem

Also draw execution diagrams for com-

puting

1. 2× 3

2. gcd(12, 8)

52 / 89

Mapcode Machine

M = (I ,A,X , ρ : I → X ,F : X → X , π : X → A)

M is an algorithm if ρ(I) ⊆ con(F), i.e., if for each instance

i , ρ(i) is a convergent state.

If M is an algorithm then ρ;F∞; π is the map computed by

M.

53 / 89

Problem solving via Mapcode

M = (I ,A,X , ρ : I → X ,F : X → X , π : X → A)

M is an algorithm if ρ(I) ⊆ con(F), i.e., if for each instance

i , ρ(i) is a convergent state.

If M is an algorithm then ρ;F∞; π is the map computed by

M.

54 / 89

Mapcode Checklist so far

No. Mapcode artefact Notation

1. Instance space I

2. Answer space A

3. Specification map f : I → A

4. Primitive Operations

5. State space X

6. Init map ρ : I → X

7. Answer map π : X → A

8. Program map F : X → X

55 / 89

Contents

Introduction to Mapcode

Iteration

Fixed Points

Fixed Point Iteration and Limit Map

Algorithmic Problem Solving

Solution Specification

From Design to Code

Correctness conditions

Bound maps and Termination

Invariant Maps and Correctness

Homework, Submission and Feedback

56 / 89

The mapcode program generator

from f p i import l i m i t m a p

F : X−>X, rho : I−>X, p i : X−>A

rho (I) s u b s e t o f con (F)

mapcode (rho , F , p i) : I −> A

def mapcode (rho , F , p i) :

F i n f=l i m i t m a p (F)

def f (i) :

return p i (F i n f (rho (i)))

return f

57 / 89

Mapcode machine for Factorial

def rho (n) :

return ([n , 1])

def p i (x) :

[i , a] = x

return a

def F (x) :

[i , a] = x

i f (i == 0) :

return x

e l s e :

return [i −1, a∗ i]

58 / 89

Computing factorial using the mapcode machine

from mapcode import mapcode

f a c t = mapcode (rho , F , p i)

59 / 89

Exercise: Specifying mapcode machines

Implement ρ, π and F and then use the

mapcode library function to implement

a solution for the following problems

1. Multiplication problem

2. GCD problem

60 / 89

Contents

Introduction to Mapcode

Iteration

Fixed Points

Fixed Point Iteration and Limit Map

Algorithmic Problem Solving

Solution Specification

From Design to Code

Correctness conditions

Bound maps and Termination

Invariant Maps and Correctness

Homework, Submission and Feedback

61 / 89

Finite Convergence (Termination)

I A

con(F) fix(F)

f

ρ

F∞

π

Mapcode Step 9: How do we

know that ρ maps each

instance to a convergent point?

prove

ρ(I) ⊆ con(F)

62 / 89

Partial Correctness

I A

con(F) fix(F)

f

ρ

F∞

π

Mapcode Step 10:

Assuming termination, how

do we know that the

diagram commutes?

prove

f = ρ; F∞;π

63 / 89

Contents

Introduction to Mapcode

Iteration

Fixed Points

Fixed Point Iteration and Limit Map

Algorithmic Problem Solving

Solution Specification

From Design to Code

Correctness conditions

Bound maps and Termination

Invariant Maps and Correctness

Homework, Submission and Feedback

64 / 89

Motivation

• We want to exploit discrete flows and iterative systems to

compute answers.

• The way we wish to do this to construct convergent

trajectories.

• The answer is ‘embedded’ in a fixed point.

• However, not all states may converge to fixed points.

• Therefore, we are obligated to demonstrate that the initial

state we choose indeed converges.

• In such a case, the computation is said to converge.

65 / 89

Well-founded relations

Let A be a set. Let < be a binary relation on A. (A,<) is well-

founded if there are no infinite descending chains of the form:

. . . < a2 < a1 < a0

66 / 89

Examples and non-examples of well-founded relation

• 〈N,<〉 (natural numbers and ‘less than’) is well-founded.

• 〈Z,<〉 (integers and ‘less than’) is not well-founded.

• 〈Q,<〉 (rational numbers and ‘less than’) is not well-founded.

67 / 89

Bound Map

Definition 1 (Bound Map)

Let (W ,<) be a well-founded relation. Let D = 〈X ,F 〉 be a

discrete flow.

A map B : X → W is a bound map for D if whenever x ∈ X is

transient, B(F (x)) < B(x).

68 / 89

Bound Maps: Example 1

• Let D = 〈N,F : N→N〉 be a flow, where

F (x) =





0 if x = 0

x − 1 otherwise
.

• Then the identity function is a bound map for D.

69 / 89

Bound Maps: Example 2

• Let D = 〈N,F : N→N〉 where

F (x) =




k if x ≥ k

x + 1 otherwise
.

• Let B : X →N where B(x)
def
=





0 if x = k

1 if x > k

k − x otherwise

• B is a bound map for D. (Verify this.)

70 / 89

Bound Map implies convergence

Lemma 2 (Bound map implies convergence)

Let D = (X ,F : X → X) be a discrete flow such that there is a

bound map for D. Then every element of X is convergent.

71 / 89

Proof that Bound Map implies convergence

1. Let B : X → W be a bound map for D.

2. Suppose X is not convergent. Then there is a trajectory {ai}
where each ai = F i (a0) is transient.

3. For each i , B(F (ai)) = B(ai+1) < B(ai) = B(ai)

4. Hence, we have an infinite descending chain

. . . < B(a1) < B(a0)

5. But no such chain is possible since (W ,<) is well-founded.

Contradiction.

72 / 89

Convergence in mapcode

Lemma 3 (Convergence for mapcode)

Let M = (I ,A,X , ρ,F , π) be a mapcode machine.

Let S = ρ(I). Consider the subflow Dorb(S) = (orb(S),F |orb(S))
of (X ,F).

If there is a bound map for Dorb(S), then ρ(I) ⊆ con(F)

73 / 89

Proof of convergence in mapcode

Proof:

1. By Lemma 2, orb(S) is convergent, i.e., orb(S) ⊆ con(F).

2. From step 1 and the fact that S ⊆ orb(S), it follows that

S = ρ(I) ⊆ con(F).

74 / 89

Proof Principle for Convergence

To show that M is an algorithm, it suffices to

demonstrate a bound map for the flow generated

by ρ(I).

75 / 89

Contents

Introduction to Mapcode

Iteration

Fixed Points

Fixed Point Iteration and Limit Map

Algorithmic Problem Solving

Solution Specification

From Design to Code

Correctness conditions

Bound maps and Termination

Invariant Maps and Correctness

Homework, Submission and Feedback

76 / 89

Invariant Map

Definition 4 (Invariant Map)

• Let D = (X ,F : X → X) be a discrete flow.

• Let E be any set.

• A map θ : X → E is an invariant map for D if, for each

x ∈ X ,

θ(x) = θ(F (x))

77 / 89

Invariant map, iterates and limit map

Lemma 5 (Invariant map and iterates)

Let D = (X ,F) be a discrete flow. Let θ : X → E be an

invariant map for D.

Then, for each x ∈ X and for each n ∈N,

θ(x) = θ(F n(x))

Corollary 6

If x ∈ con(F), then

θ(x) = θ(F∞(x))

78 / 89

Partial Correctness via invariant map

Theorem 7 (Partial Correctness via invariant map)

• Consider a specification map f : I → A and a mapcode

algorithm M = 〈I ,X ,A, ρ : I → X ,F : X → X , π : X → A〉

• Let θ : X → A be an invariant map for (X ,F). Assume

• init: θ(ρ(i)) = f (i) for each instance i ∈ I and

• answer: θ(x) = π(x) for each fixed point x ∈ fix(F).

• Then, ρ;F∞ ◦ π = f .

79 / 89

Proof of partial correctness via invariant map

ρ(I) ⊆ con(F) M algorithm: Given (1)

s ∈ I assumption (2)

θ(ρ(s)) = f (s) from ‘init’: Given (3)

ρ(s) ∈ con(F) from 1 and 2 (4)

F∞(ρ(s)) ∈ fix(F) from 4 and defn of F∞ (5)

π(z) = θ(z) ∀z ∈ fix(F), ‘answer’: Given (6)

π(F∞(ρ(s))) = θ(F∞(ρ(s))) from 5 and 6 (7)

= θ(ρ(s)) since θ is invariant (8)

= f (s) from 3 (9)

80 / 89

Proof Principle for partial correctness

To prove that a mapcode algorithm M =

(I ,A,X , ρ,F , π) computes a specification map

f : I → A, it is sufficient to construct an invari-

ant map θ : X → A such that the init and answer

conditions are met:

1. init: θ(ρ(i)) = f (i) for each i ∈ I

2. answer: θ(x) = π(x) for each x ∈ fix(F)

81 / 89

Bound Map for Factorial

• I = N, A = N, X = N2, ρ(n) = (n, 1)

• ρ(I) = N× {1}

• F (i , a) = (i , a) if i = 0, (i − 1, a ∗ i), otherwise

• Let (W = N,<) denote the usual ‘less than’ ordering

on

Let B : X → N be defined as B(i , a) = i . Then B |orb(ρ(I))
is a bound map for the flow (orb(ρ(I)),F |orb(ρ(I))). (Exer-

cise, verify this.)

82 / 89

Invariant Map for Factorial

• I = N, A = N, X = N2, ρ(n) = (n, 1)

• ρ(I) = N× {1}

• F (i , a) = (i , a) if i = 0, (i − 1, a ∗ i), otherwise

Let θ : X → A be defined as θ(i , a) = i ! ∗ a. Then θ is an

invariant map, since

• Assume n ∈ I . Then θ(ρ(n)) = θ(n, 1) = n! = f (n)

• (i , a) ∈ fix(F). Then i = 0,

θ(0, a) = 0! ∗ a
= a

= π(0, a)

83 / 89

Exercise: Bound and Invariant maps for Multiplication and

GCD

Define bound and invariant maps for

1. multiplication and

2. GCD

84 / 89

Final mapcode checklist

No. Mapcode artefact Notation

1. Instance space I

2. Answer space A

3. Specification map f : I → A

4. Primitive Operations

5. State space X

6. Init map ρ : I → X

7. Answer map π : X → A

8. Program map F : X → X

9. Termination condition ρ(I) ⊆ con(F)

10. Partial Correctness f = ρ;F∞; π

condition

85 / 89

Contents

Introduction to Mapcode

Iteration

Fixed Points

Fixed Point Iteration and Limit Map

Algorithmic Problem Solving

Solution Specification

From Design to Code

Correctness conditions

Bound maps and Termination

Invariant Maps and Correctness

Homework, Submission and Feedback

86 / 89

Homework Exercises

Write literate programs based on map-

code for the following:

1. Finding the maximum of a

nonempty array of numbers.

2. Factorial using a stack (‘recursion’)

3. Addition using increment

4. Bubblesort

5. Finding the height of a binary tree.

87 / 89

Acknowledgments

Thank You All
1. Neeldhara Misra: Workshop organization and invitation

2. Mrityunjay Kumar: Examples, code

3. K Viswanath: General discussions about Mapcode

4. ACM India: Travel support

5. Audience: Participation!

venkatesh.choppella@iiit.ac.in

88 / 89

Submission and Feedback

https:
//bit.ly/mapcode2022

89 / 89

	Mapcode

