
Generalised Dining Philosophers
as Feedback Control

Venkatesh Choppella1, Arjun Sanjeev1(B), Kasturi Viswanath1,
and Bharat Jayaraman2

1 International Institute of Information Technology, Hyderabad, India
arjun.sanjeev@research.iiit.ac.in

2 University at Buffalo (SUNY), New York, USA

Abstract. We examine the mutual exclusion problem of concurrency
through the systematic application of modern feedback control theory,
by revisiting the classical problem involving mutual exclusion: the Gener-
alised Dining Philosophers problem. The result is a modular development
of the solution using the notions of system and system composition in a
formal setting that employs simple equational reasoning. The modular
approach separates the solution architecture from the algorithmic minu-
tiae and has the benefit of simplifying the design and correctness proofs.

Two variants of the problem are considered: centralised and distri-
buted topology with N philosophers. In each case, solving the Gener-
alised Dining Philosophers reduces to designing an appropriate feedback
controller.

Keywords: Feedback control · Modular concurrency · Generalised
Dining Philosophers

1 Introduction

Resource sharing amongst concurrent, distributed processes is at the heart of
many computer science problems, specially in operating, distributed embedded
systems and networks. Correct sharing of resources amongst processes must not
only ensure that a single, non-sharable resource is guaranteed to be available
to only one process at a time (safety), but also starvation-freedom – a process
waiting for a resource should not have to wait forever. Other complexity metrics
of interest (though outside the scope of this paper) are average or worst case
waiting time, throughput, etc. Distributed settings introduce other concerns:
synchronization, faults, etc.

In this paper, we carry out a systematic application of control systems theory
to revisit one of the classical problems in concurrency - the Generalised Dining
Philosophers problem.

Mutual exclusion problems are stated in terms of global properties on the
combined behaviour of multiple actors running concurrently. One way of solv-
ing the mutual exclusion problem is to define a more complex dynamics that
c� Springer Nature Switzerland AG 2020
D. V. Hung and M. D’Souza (Eds.): ICDCIT 2020, LNCS 11969, pp. 144–164, 2020.
https://doi.org/10.1007/978-3-030-36987-3_9

Generalised Dining Philosophers as Feedback Control 145

each actor (process) implements so as to ensure the required behaviour hold. In
the control approach, however, additional actors, controllers, are employed that
restrain the main actors’ original actions in some specific and well-defined way
so as to achieve the same. The role of a controller is to issue commands to the
main actors controlling their behaviour. At the same time, the control exercised
on an actor should be not overly constraining: a philosopher should be allowed
to exercise his/her choice about what to do next as long as it does not violate
the safety conditions.

The objective of this paper is to demonstrate the usefulness of the idea of
control, particularly that which involves feedback. Feedback control, also called
supervisory control, is the foundation of much of engineering science and is
routinely employed in the design of embedded systems. However, its value as
a software architectural design principle is only insufficiently captured by the
popular “model-view-controller” (MVC) design pattern [1], usually found in the
design of user and web interfaces. For example, MVC controllers implement
open loop instead of feedback control. Furthermore, they are elements of an
architectural design pattern that is not designed to address liveness properties.

A key motivation for the controller based approach is modularity of design.
Composition is defined with respect to an interconnect that relates the states and
inputs of the two systems being composed [2]. Viewed from this perspective, the
Dining Philosophers form systems consisting of interconnected subsystems. A
special case of the interconnect which relates inputs and outputs yields modular
composition and allows them to be treated as instances of feedback control. The
solution then reduces to designing two types of components, the main actors and
the controller and their interconnections (the system architecture), followed by
definitions of their transition functions.

The compositional approach encourages us to think of the system in a mod-
ular way, emphasising the interfaces between components and their interconnec-
tions. One benefit of this approach is that it allows us to define multiple types of
controllers that interface with a fixed model system. The modularity in architec-
ture also leads to modular correctness proofs of safety and starvation freedom.
For example, the proof of the distributed solution to the dining philosophers
is reduced to showing that the centralised controller state is reconstructed by
the union of the states of the distributed local controllers1. That said, however,
subtle issues arise even in the simplest variants of the problem. These have to
do with non-determinism, timing and feedback, but equally, from trying to seek
a precise definition of the problem itself2.

2 Systems Approach

The main idea in control theory is that of a system. Systems have state and
exhibit behaviour governed by a dynamics. A system’s state undergoes change
1 Due to page limit constraints, all proofs are delegated to a technical report [3].
2 “In the design of reactive systems it is sometimes not clear what is given and what

the designer is expected to produce.” Chandy and Misra [4, p. 290].

146 V. Choppella et al.

due to input. Dynamics is the unfolding of state over time, governed by laws that
relate input with the state. A system’s dynamics is thus expressed as a relation
between the current state, the current input and the next state. Its output is
a function of the state. Thus inputs and outputs are connected via state. The
system’s state is usually considered hidden, and is inaccessible directly. The
observable behaviour of a system is available only via its output. A schematic
diagram of a system is shown in Fig. 1.

input

output

Fig. 1. System with input and
output

In control systems, we are given a system,
often identified as the plant. The plant exhibits
a certain observable behaviour. In addition to the
plant, we are also given a target behaviour that
is usually a restriction of the plant’s behaviour.

The control problem is to determine what
additional input(s) have to be supplied to the
plant, such that the resulting dynamics as deter-
mined by a new relation between states and
inputs now exhibits output behaviour that is as close as possible to the tar-
get behaviour specified in the problem. The additional input is usually called
the forced or control input. The plant’s dynamics may need to be altered to take
into account the combined effect of the original input and the control input.

The second design question is how should the control input be computed.
Often the control input is computed as a function of the output of the plant (now
extended with the control input). Thus we have another system, the controller,
one of whose inputs is the output of the plant and whose output is (one of)
the inputs to the plant. This architecture is called feedback control. The relation
between the controller’s input and its state and output is called a control law. The
principle of feedback control is well studied and is used extensively in building
large-scale engineering systems of wide variety. Figure 2 is a schematic diagram
representing a system with feedback control.

In the rest of the paper, we follow the formal notion of a system and system
composition as defined by Tabuada [2]. A complex system is best described
as a composition of interconnected subsystems. We employ the key idea of an
interconnect between two systems, which is a relation that relates the states and
the inputs of two systems. While interconnects can, in general, relate states, the
interconnects designed in this paper are modular : they relate inputs and outputs.
Defining a modular interconnect is akin to specifying a wiring diagram between
two systems. Modular interconnects drive modular design.

We also illustrate the approach of modular design using feedback control by
formulating solutions to the well-known mutual exclusion problem - the general-
ized dining philosophers, which is an allegorical example of the mutual exclusion
problem on an arbitrary graph of processes. This problem is used to introduce
the idea of a centralised (hub) controller and also local controllers for the dis-
tributed case.

Generalised Dining Philosophers as Feedback Control 147

Controller

other input

Model

model input

control input output

feedback

Fig. 2. Feedback control system

3 The Generalised Dining Philosophers Problem

The Dining Philosophers problem, originally formulated by Edsger Dijkstra in
1965 and subsequently published in 1971 [5] is a celebrated thought experi-
ment in concurrency control. A generalization of this problem was suggested
and solved by Dijsktra himself [6]. later, the Generalised Dining Philosophers
problem was discussed at length by Chandy and Misra’s [4]. Each philosopher
denotes a process running continuously and forever that is either waiting (hun-
gry) for a resource (like a file to write to), or using that resource (eating), or
having relinquished the resource (thinking). A philosopher may either eat or
think, but can also get hungry in which case she needs to ensure mutual exclu-
sion: that no adjacent philosopher is eating. The problem consists of designing
a protocol by which no philosopher remains hungry indefinitely, the starvation-
freeness condition, assuming each eating session lasts only for a finite time In
addition, progress means that there should be no deadlock: at any given time,
at least one philosopher that is hungry should move to eating after a bounded
period of time. Note that starvation-freedom implies progress.

Individual Philosopher Dynamics: Consider a single philosopher who may
be in one of three states: thinking, hungry and eating. At each step, the philoso-
pher may choose to either continue be in that state, or switch to the next state
(from thinking to hungry, from hungry to eating, or from eating to thinking
again). The dynamics of the single philosopher is shown in Fig. 3. Note that the
philosophers run forever.

tstart

h

e

Fig. 3. Philosopher states and transitions

148 V. Choppella et al.

Definition 1 (Generalised Dining Philosophers problem). N philoso-
phers are arranged in a connected conflict graph G = �V,E� where V is a set of
N = |V | philosophers and E is an irreflexive adjacency relation between them.

If each of the N philosophers was to continue to evolve according to the
dynamics in Fig. 3, two philosophers sharing an edge in E could be eating
together, violating safety. The Dining Philosophers problem is the following:

Problem: Assuming that no philosopher eats forever in a single stretch, con-
struct a protocol that ensures

1. Safety: No two adjacent philosophers eat at the same time.
2. Starvation-freedom: A philosopher that is hungry eventually gets to eat.
3. Non-intrusiveness: A philosopher that is thinking or eating continues to

behave according to the dynamics of Fig. 3.

In the subsequent sections, we design solutions to the problem by designing
appropriate controller systems and composing them with the philosophers form-
ing feedback loops. The solutions may be broadly classified as either centralised
or distributed. The centralised approach assumes a central controller that com-
mands the philosophers on what to do next. The distributed approach assumes
no such centralised authority; the philosophers are allowed to communicate to
arrive at a consensus on what each can do next. In both the approaches, it is
interesting to note that the definition of the philosopher system does not change.

3.1 The Philosopher System

A philosopher can be in 3 states: t (thinking), h (hungry) or e (eating). We
denote the set of states of the philosopher by Act (also called the activity set).

Act = {t, h, e}

The philosopher is designed in such a way that the non-determinism involved
in the decision of the philosopher to either stay in the same state or switch to
a new one is encoded as a choice input, and is captured as a binary input b of
type B to the system, where

B = {0, 1}
The resultant system is deterministic with respect to the choice input. On

choice b = 0 the system stays in the same state; on b = 1 it switches to the new
state.

The interface of the philosopher is also modified to accommodate the addi-
tional control input (or command) c of type Cmd from the controller, where

Cmd = {pass, !1, !0}

With command c equal to pass, the philosopher follows the choice input b.
With the command equal to ! b, the choice input is ignored, and the command
prevails in determining the next state of the philosopher according to the value
of b: stay if b = 0, switch if b = 1.

Generalised Dining Philosophers as Feedback Control 149

The deterministic and transparent philosopher system S may then be defined
as follows:

S = �a : X = Act , a0 : X0 = {t}, (b, c) : U = B × Cmd , fS�

where fS : Act × B × Cmd → Act is defined as

fS(a, b, pass) = fP (a, b) (1)
fS(a, , ! b) = fP (a, b) (2)

where fP : Act × B → Act is defined as

fP (a, 0) = stay(a) (3)
fp(a, 1) = switch(a) (4)

and stay : Act → Act and switch : Act → Act are given by

stay(a) = a

switch(t) = h

switch(h) = e

switch(e) = t

3.2 N Dining Philosophers with Centralised Control

We now look at the centralised controller solution to the problem. We are given
a graph G = �V,E�, with |V | = N and with each of the N vertices representing
a philosopher and E representing an undirected, adjacency relation between
vertices. The vertices are identified by integers from 1 to N.

Each of the N philosophers are identical and modeled as instances of the
system S described in the previous section. These N vertices are all connected
to a single controller (called the hub) which reads the activity status of each of
the philosophers and then computes a control input for that philosopher. The
control input, along with the choice input to each philosopher computes the next
state of that philosopher (Fig. 4).

Notation 31. Identifiers j, k, l ∈ V denote vertices.
An activity map a : V → A maps vertices to their status, whether hungry,

eating or thinking.
A choice map b : V → B maps to each vertex a choice value.
A command map c : V → Cmd maps to each vertex a command.
If v is a constant, then v denotes a function that maps every vertex to the

constant v.

The data structures and notation used in the solution are described below:

1. G = (V, E), the graph of vertices V and their adjacency relation E. G is part
of the hub’s internal state. G is constant throughout the problem.
We write {j, k} ∈ E, or E(j, k) to denote that there is an undirected edge
between j and k in G. We write E(j) to denote the set of all neighbours of j.

150 V. Choppella et al.

Fig. 4. Wiring diagram describing the architecture of centralised controller.

2. a : V → {t, h, e}, an activity map. This is input to the hub controller.
3. D : (j, k) ∈ E → {j, k}, is a directed relation derived from E. D is called a

dominance map or priority map. For each edge {j, k} of E it returns the source
of the edge. The element {j, k} �→ j of D is indicated j �→ k (j dominates k)
whereas {j, k} �→ k is indicated k �→ j (j is dominated by k). If {j, k} ∈ E,
then exactly one of j �→ k ∈ D or k �→ j ∈ D is true.
D(j) is the set of vertices dominated by j in D and is called the set of
subordinates of j. D−1(j) denotes the set of vertices that dominate j in D
and is called the set of dominators of j.

4. top(D), the set of maximal elements of D. top(D)(j) means that j ∈ top(D).
This is a derived internal state of the hub controller.

5. c : V → Cmd , the command map. This is part of the internal state of the
hub controller and also its output.

Informal Introduction to the Control Algorithm. Initially, at cycle t = 0,
all vertices in G = (V, E) are thinking, so a[0] = t. Also, D[0] is D0, top(D)[0] =
{j | D0(j) = E(j)} and c[0] = pass.

Upon reading the activity map, the controller performs the following sequence
of computations:

1. (Step 1): Updates D so that (a) a vertex that is eating is dominated by all its
neighbours, and (b) any hungry vertex also dominates its thinking neighbours.

2. (Step 2): Computes top, the set of top vertices.
3. (Step 3): Computes the new control input for each philosopher vertex: A

thinking or eating vertex is allowed to pass. A hungry vertex that is at the top
and has no eating neighbours is commanded to switch to eating. Otherwise,
the vertex is commanded to stay hungry.

Generalised Dining Philosophers as Feedback Control 151

Formal Structure of the Hub Controller. The centralised or hub controller
is a deterministic system H = �X, X0, U, f, Y, h�, where

1. XH = (E → B) × (V → Cmd) is the cross product of the set of all priority
maps derived from E with the set of command maps on the vertices of G.
Each element xH : XH is a tuple (D, c) consisting of a priority map D and a
command map c.

2. X0
H = (D0, c0) where D0({j, k}) = j �→ k if j > k and k �→ j otherwise for

{j, k} ∈ E, and c0(j) = pass. Note that D0 is acyclic.
3. UH is the set of activity maps. a : UH represents the activity map that is

input to the hub H.
4. fH : X, U → X takes a priority map D, a command map c, and an activity

map a as input and returns a new priority map D� and a new command map.
fH((D, c), a) = (D�, gH(D�, a)) where

D� = dH(D, a) (5)

dH(D, a) def= {dH(d, a) | d ∈ D} (6)

dH(j �→ k, a) def= (k �→ j) if a(j) = e (7)
def= (k �→ j) if a(j) = t and a(k) = h (8)
def= (j �→ k) otherwise (9)

Note that the symbol dH is overloaded to work on a directed edge as well
as a priority map. dH implements the updating of the priority map D to D�

mentioned in (Step 1) above. The function gH computes the command map
(Step 3). The command is pass if j is either eating or thinking. If j is hungry,
then the command is !1if j is ready, i.e., it is hungry, at the top (Step 2), and
its neighbours are not eating. Otherwise, the command is !0.

gH(D, a)(j) def= pass, if a(j) ∈ {t, e} (10)
def= !1, if ready(D, a)(j) (11)
def= !0, otherwise (12)

ready(D, a)(j) def= true, if a(j) = h ∧ (13)
j ∈ top(D) ∧
∀k ∈ E(j) : a(k) 	= e

top(D) def= {j ∈ V
∀k ∈ E(j) : j �→ k} (14)

5. YH = V → Cmd : The output is a command map.
6. hH : XH → YH simply projects the command map from its state: hH(D, c) def=

c.

152 V. Choppella et al.

Note that an existing priority map D when combined with the activity map
results in a new priority map D�. The new map D� is then passed to gH in order
to compute the command map.

Wiring the Hub Controller and the Philosophers. Consider the intercon-
nect I between the hub H and the N philosopher instances sj , 1 ≤ j ≤ N .

I ⊆ XH × UH × ΠN
j=1sj .X × sj .U

that connects the output of each philosopher to the input of the hub, and con-
nects the output of the hub to control input of the corresponding philosopher.

I ={(xH , uH , s1.x, s1.u . . . sn.x, sn.u) |
uH(j) = hS(sj .x) ∧ hH(xH)(j) = sj .u,

1 ≤ j ≤ N}

The composite N Diners system is the product of the N + 1 systems.

Dynamics of the Centralised N Diners System. The following are the
equations that define the dynamics of the centralised N Diners system.

a0 = t (15)

c0 = pass (16)

D0 = {j �→ k | E(j, k) ∧ j > k} (17)

c = gH(D, a) (18)

a� = fS(a, b, c) (19)
D� = dH(D, a�) (20)

Asynchronous Interpretation of the Dynamics. It is worth noting that
the dynamics of the system as shown above can be interpreted as asynchronous
evolution of the philosopher system. A careful examination of the equations
yields temporal dependencies between the computations of the variables involved
in the systems. Consider the equations, consisting of indexed variables a, c
and D:

a[0] = t

D[0] = D0

c[i] = gH(D[i], a[i])

a[i + 1] = fS(a[i], b[i], c[i])
D[i + 1] = dH(D[i], a[i + 1])

Generalised Dining Philosophers as Feedback Control 153

Fig. 5. Dependencies between a, c and D, along with input b, shown for three
calculations.

The asynchronous nature of the system dynamics tells us that the ith value
of c requires the ith values of a and D to be computed before its computation
happens, and so on. This implicitly talks about the temporal dependency of the
ith value of c on the ith values of a and D. Similarly, the (i + 1)th value of a
depends on the ith values of a, c and D, and the (i+1)th value of D depends on
the ith value of D and the (i+1)th value of a. Note that they only talk about the
temporal dependencies between variable calculations, and do not talk about the
clock cycles, nor when the values are computed in physical time. The following
figure depicts the dependencies between the variables (Fig. 5).

It is also worth noting that the asynchronous dynamics can be converted
to synchronous by composing each system with a global clock and introducing
appropriate delays between consecutive computations. This has been discussed
in detail in the tech report.

3.3 N Dining Philosophers with Distributed Control

In the distributed version of N Diners, each philosopher continues to be con-
nected to other philosophers adjacent to it according to E, but there is no cen-
tral hub controller. Usually the problem is stated as trying to devise a protocol
amongst the philosophers that ensures that the safety and starvation freedom
conditions are met. The notion of devising a protocol is best interpreted as
designing a collection of systems and their composition.

Architecture and Key Idea. The centralised architecture employed the global
maps a, b, c and D. While the first three map a vertex j to a value (activity,
choice input, or control) the last maps an edge {j, k} to one of the vertices j
or k.

The key to devising a solution for the distributed case is to start with the
graph G = �V, E� and consider its distributed representation. The edge relation
E is now distributed across the vertex set V . Let αj denote the size of the set
of neighbours E(j) of j. We assume that the neighbourhood E(j) is arbitrarily
ordered as a vector

−→
Ej indexed from 1 to αj . Let j and k be distinct vertices in

V and let {j, k} ∈ E. Furthermore, let the neighbourhoods of j and k be ordered

154 V. Choppella et al.

such that k is the mth neighbour of j and j is the nth neighbour of k. Then, by
definition,

−→
Ej(m) = k and

−→
Ek(n) = j.

In addition, with each vertex j is associated a philosopher system Sj and
a local controller system Lj . The philosopher system Sj is an instance of the
system S defined in 3.1. In designing the local controllers, the guiding principle
is to distribute the state of the centralised controller to N local controllers. The
state of the centralised controller consists of the directed graph D that maps
each edge in E to its dominating endpoint and the map c : V −→ Cmd which is
also the output of the hub controller.

The information about the direction of an edge {j, k} is distributed across
two dominance vectors

−→
dj and

−→
dk. Both are boolean vectors indexed from 1 to αj

and αk, respectively. Assume that k =
−→
Ej(m) and j =

−→
Ek(n). Then, the value of

D({j, k}) is encoded in
−→
dj and

−→
dk as follows: If D({j, k}) = j then

−→
dj (m) = true

and
−→
dk(n) = false. If D({j, k}) = k, then

−→
dj (m) = false and

−→
dk(n) = true.

In the next subsection we define the local controller as a Tabuada system.

Local Controller System for a Vertex j. The controller system Lj has αj +1
input ports of type A which are indexed 0 to αj . The output of Lj is of type
Cmd .

The local controller Lj is a Tabuada system

Lj = �X, X0, U, f, Y, h�

where

1. X = ([1..αj] −→ B)×Cmd . Each element of X is a tuple (
−→
dj , cj) consisting of

a dominance vector
−→
dj indexed 1 to αj and a command value cj .

−→
dj (m) = true

means that the there is a directed edge from j to its mth neighbour k; false
means that there is an edge from its mth neighbour to j.

2. X0 is defined as follows: X0 = �
−→
d0

j , c
0
j � where c0

j = pass and
−→
d0

j (m) = true if
−→
Ej(m) = k and j > k, false otherwise. In other words, there is an edge from
j to k if j > k.

3. U = [0..αj] −→ A: We denote the input to Lj as a vector −→aj , the activities
of all the neighbours of the jth philosopher, including its own activity. −→aj(m)
denotes the value of the mth input port.

4. fL : X, U −→ X defines the dynamics of the controller and is given below.
5. Y = Cmd , and
6. h : X → Y and h(

−→
dj , cj) = cj . The output of the controller Lj is denoted cj .

The function fL takes a dominance vector
−→
d of length M , a command c and

an activity vector −→a of length M + 1 and returns a pair consisting of a new
dominance vector

−→
d� of length M and a new command c�. fL first computes the

new dominance vector
−→
d� using the function dL. The result

−→
d� is then passed

along with −→a to the function gL, which computes the new command value c�.
The functions fL and dL are defined below:

Generalised Dining Philosophers as Feedback Control 155

fL((
−→
d , c), −→a) = (

−→
d� , c�) where

−→
d� =

−→
dL(

−→
d , −→a), and (21)

c� = gL(
−→
d� , −→a) (22)

−→
dL(

−→
d , −→a)(m) def= dL(

−→
d (m), −→a (0), −→a (m)) where m ∈ [1..M] (23)

dL(d, a0, a) is defined as

dL(d, t, t) = d (24)
dL(d, t, h) = false (25)
dL(d, t, e) = true (26)
dL(d, h, e) = true (27)
dL(d, h, h) = d (28)
dL(d, e, h) = false (29)
dL(d, e, t) = false (30)
dL(d, h, t) = true (31)
dL(d, e, e) = d (32)

dL(
−→
d (m), −→a (0), −→a (m)) takes the mth component of a dominance vector

−→
d

and computes the new value based on the activity values at the 0th and mth
input ports of the controller.

The function gL takes a dominance vector
−→
d of size M and an activity vector−→a of size M + 1 and computes a command. It is defined as follows:

gL(
−→
d , −→a)

def
= pass, if −→a (0) ∈ {t, e}
def
= !1, if readyL(

−→
d , −→a) = true

def
= !0, otherwise

readyL(
−→
d , −→a)

def
= true, if −→a (0) = h and topL(

−→
d) and ∀m ∈ [1..M] : −→a (m) �= e

def
= false, otherwise

topL(
−→
d)

def
= true, if ∀m ∈ [1..M] :

−→
d (m) = true

def
= false, otherwise

Wiring the Local Controllers and the Philosophers. Each philosopher
Sj is defined as the instance of the system S defined in Sect. 3.1. Let the choice

156 V. Choppella et al.

input, control input and output of the philosopher system Sj be denoted by the
variables Sj .c, Sj .b⊥ and Sj .a, respectively. The output of Lj is fed as the control
input to Sj . The output Sj is fed as 0th input of Lj . In addition, for each vertex
j, if k is the mth neighbour of j, i.e., k =

−→
Ej(m), then the output of Sk is fed

as the mth input to Lj . (See Fig. 6).

Fig. 6. Wiring between the systems of adjacent philosophers j and k where k and j
are respectively the mth and nth neighbour of each other.

The wiring between the N philosopher systems and the N local controllers is
the interconnect relation I ⊆ ΠjSj .X ×Sj .U ×Lj .X ×Lj .U , 1 ≤ j ≤ N defined
via the following set of constraints:

1. cj = Sj .c: The output of the local controller Lj is equal to the control input
of the philosopher system Sj .

2. Sj .a = −→aj (0): the output of the philosopher Sj is fed back as the input of the
0th input port of the local controller Lj .

3. Sk.a = −→aj (m), where 1 ≤ m ≤ αj and k =
−→
Ej(m): the output of the philoso-

pher Sk is connected as the input of the mth input port of the local controller
Lj where k is the mth neighbour of j.

4.
−→
dj (m) = ¬−→

dk(n), where k =
−→
Ej(m) and j =

−→
Ek(n). The dominance vector at

j is compatible with the dominance vectors of the neighbours of j.

Dynamics of the Distributed N Diners System. Now we can write down
the equations that define the asynchronous dynamics of the philosopher system.

Generalised Dining Philosophers as Feedback Control 157

Consider any arbitrary philosopher j and its local controller Lj :

a0
j = t (33)

For m ∈ [1..αj] :
−→
dj

0(m) = true, if
−→
Ej(m) = k and j > k

= false, otherwise (34)

cj = gL(
−→
dj ,

−→aj) (35)
a�

j = fS(aj , bj , cj) (36)
−→
dj

� = dL(
−→
dj ,

−→
a�

j) (37)

From Eq. 36, it can be seen that the philosopher dynamics has not changed -
it is the same as that of the centralised case. A close examination of the equations
help us deduce that the dynamics we obtained in the distributed case are very
much comparable to that of the centralised case. This identical nature of the
dynamics form the foundation for the correctness proofs.

Correctness of the Solution to the Distributed Case. The correctness
of the solution for the distributed case rests on the claim that under the same
input sequence, the controllers and the philosopher outputs in the distributed
and centralised cases are identical. This claim in turn depends on the fact that the
centralised state may be reconstructed from the distributed state. The detailed
proof is given in the technical report [3].

4 Related Work

This section is in two parts: the first is a detailed comparison with Chandy and
Misra’s solution, the second is a survey of several other approaches.

4.1 Comparison with Chandy and Misra Solution

Chandy and Misra [4] provides the original statement and solution to the Gen-
eralised Dining Philosophers problem. There are several important points of
comparison with their problem formulation and solution.

The first point of comparison is architecture: in brief, shared variables vs.
modular interconnects. Chandy and Misra’s formulation of the problem identi-
fies the division between a user program, which holds the state of the philoso-
phers, and the os, which runs concurrently with the user and modifies variables
shared with the user. Our formulation is based on formally defining the two main
entities, the philosopher and the controller, as formal systems with clearly delin-
eated boundaries and modular interactions between them. The idea of feedback
control is explicit in the architecture, not in the shared variable approach.

Another advantage of the modular architecture that our solution affords is
apparent when we move from the centralised solution to the distributed solution.

158 V. Choppella et al.

In both cases, the definition of the philosopher remains exactly the same; addi-
tional interaction is achieved by wiring a local controller to each philosopher
rather than a central controller. We make a reasonable assumption that the
output of a philosopher is readable by its neighbours. In Chandy and Misra’s
solution, the distributed solution relies on three shared boolean state variables
per edge in the user : a boolean variable fork that resides with exactly one of
the neighbours, its status clean or dirty, and a request token that resides with
exactly one neighbour, adding up to 3|E| boolean variables. These variables are
not distributed; they reside with the os, which still assumes the role of a central
controller. In our solution, the distribution of philosopher’s and their control is
evident. Variables are distributed across the vertices: each vertex j with degree j
has α(j)+1 input ports of type Act that read the neighbours’ plus self’s activity
status. In addition, each local controller has, as a boolean vector

−→
d j of length

α(j) as part of its internal state, that keeps information about the direction of
each edge with j as an endpoint. A pleasant and useful property of this approach
is that the centralised data structure D may be reconstructed by the union of
local data structures

−→
d at each vertex.

The second point of comparison is the algorithm and its impact on reasoning.
Both approaches rely on maintaining the dominance graph D as a partial order.
As a result, in both approaches, if j is hungry and has priority over k, then j eats
before k. In Chandy and Misra’s algorithm, however, D is updated only when a
hungry vertex transits to eating to ensure that eating vertices are sinks. In our
solution, D is updated to satisfy an additional condition that hungry vertices
always dominate thinking vertices. This ensures two elegant properties of our
algorithm, neither of which are true in Chandy and Misra: (a) a top vertex is
also a maximal element of the partial order D, (b) a hungry vertex that is at
the top remains so until it is ready, after which it starts eating. In Chandy and
Misra’s algorithm, a vertex is at the top if it dominates only (all of its) hungry
neighbours; it could still be dominated by a thinking neighbour. It is possible
that a hungry top vertex is no longer at the top if a neighbouring thinking vertex
becomes hungry (Table 1). This leads us to the third property that is true in our
approach but not in Chandy and Misra’s: amongst two thinking neighbours j
and k, whichever gets hungry first gets to eat first.

4.2 Comparison with Other Related Work

Literature on the Dining Philosophers problem is vast. Our very brief survey
is slanted towards approaches that—explicitly or implicitly—address the modu-
larity and control aspects of the problem and its solution. [7] surveys the effec-
tiveness of different solutions against various complexity metrics like response
time and communication complexity. Here, we leave out complexity theoretic
considerations and works that explore probabilistic and many other variants of
the problem.

Generalised Dining Philosophers as Feedback Control 159

Table 1. Example demonstrating two properties of Chandy and Misra’s algorithm: (a)
a top hungry vertex no longer remains top, and (b) In step 3, Vertex 1, which was at
the top, is hungry, but no longer at the top.

i G D Top Remarks

0 {1 : t, 2 : t, 3 : t} {2 �→ 1, 3 �→ 1} {2, 3} initial

1 {1 : h, 2 : t, 3 : h} ditto {2, 3} 3 at top

2 {1 : h, 2 : t, 3 : e} {2 �→ 1, 1 �→ 3} {1, 2} 1 is at the top

3 {1 : h, 2 : h, 3 : e} ditto {2} 2 is at the top

Early Works. Dijkstra’s Dining Philosophers problem was formulated for the
five philosophers seated in a circle. Dijsktra later generalized it to N philosophers.
Lynch [8] generalised the problem to a graph consisting of an arbitrary number of
philosophers connected via edges depicting resource sharing constraints. Lynch
also introduced the notion of an interface description of systems captured via
external behaviour, i.e., execution sequences of automata. This idea was popu-
larized by Ramadge and Wonham [9] who advocated that behaviour be specified
in terms of language-theoretic properties. They also introduce the idea of control
to affect behaviour.

Chandy and Misra [4,10] propose the idea of a dynamic acyclic graph via
edge reversals to solve the problem of fair resolution of contention, which ensures
progress. This is done by maintaining an ordering on philosophers contending
for a resource. The approach’s usefulness and generality is demonstrated by
their introduction of the Drinking Philosophers problem as a generalisation of
the Dining Philosophers problem. In the Drinking Philosophers problem, each
philosopher is allowed to possess a subset of a set of resources (drinks) and
two adjacent philosophers are allowed to drink at the same time as long as
they drink from different bottles. Welch and Lynch [11,12] present a modular
approach to the Dining and Drinking Philosopher problems by abstracting the
Dining Philosophers system as an I/O automaton. Their paper, however, does
not invoke the notion of control. Rhee [13] considers a variety of resource allo-
cation problems, include dining philosophers with modularity and the ability to
use arbitrary resource allocation algorithms as subroutines as a means to com-
pare the efficiency of different solutions. In this approach, resource managers are
attached to each resource, which is similar in spirit to the local controllers idea.

Other Approaches. Sidhu et al. [14] discuss a distributed solution to a gen-
eralised version of the dining philosophers problem. By putting additional con-
straints and modifying the problem, like the fixed order in which a philosopher
can occupy the forks available to him and the fixed number of forks he needs to
occupy to start eating, they show that the solution is deadlock free and robust.
The deadlock-free condition is assured by showing that the death of any philoso-
pher possessing a few forks does not lead to the failure of the whole network,
but instead disables the functioning of only a finite number of philosophers.

160 V. Choppella et al.

In this paper, the philosophers require multiple (more than 2) forks to start
eating, and the whole solution is based on forks and their constraints. Also,
this paper discusses the additional possibility of the philosophers dying when in
possession of a few forks, which is not there in our paper.

Weidman et al. [15] discuss an algorithm for the distributed dynamic resource
allocation problem, which is based on the solution to the dining philosophers
problem. Their version of the dining philosophers problem is dynamic in nature,
in that the philosophers are allowed to add and delete themselves from the
group of philosophers who are thinking or eating. They can also add and delete
resources from their resource requirements. The state space is modified based on
the new actions added: adding/deleting self, or adding/deleting a resource. The
main difference from our solution is the extra option available to the philosophers
to add/delete themselves from the group of philosophers, as well as add/delete
the resources available to them. The state space available to the philosophers is
also expanded because of those extra options - there are total 7 states possible
now - whereas our solution allows only 3 possible states (thinking, hungry and
eating). Also, the notion of a “controller” is absent here - the philosophers’ state
changes happen depending on the neighbours and the resources availability, but
there is no single controller which decides it.

Zhan et al. [16] propose a mathematical model for solving the original version
of the dining philosophers problem by modeling the possession of the chopsticks
by the philosophers as an adjacency matrix. They talk about the various states
of the matrix which can result in a deadlock, and a solution is designed in Java
using semaphores which is proven to be deadlock free, and is claimed to be highly
efficient in terms of resource usability.

Awerbuch et al. [17] propose a deterministic solution to the dining philoso-
phers problem that is based on the idea of a “distributed queue”, which is used
to ensure the safety property. The collection of philosophers operate in an asyn-
chronous message-driven environment. They heavily focus on optimizing the
“response time” of the system to each job (in other words, the philosopher) to
make it polynomial in nature. In our solution, we do not talk about the response
time and instead we focus on the modularity of the solution, which is not con-
sidered in this solution.

A distributed algorithm for the dining philosophers algorithm has been imple-
mented by Haiyan [18] in Agda, a proof checker based on Martin-Lof’s type the-
ory. A precedence graph is maintained in this solution where directed edges rep-
resent precedences between pairs of potentially conflicting philosophers, which
is the same idea as the priority graph we have in our solution. But unlike our
solution, they also have chopsticks modelled as part of the solution in Agda.

Hoover et al. [19] describe a fully distributed self-stabilizing3 solution to the
dining philosophers problem. An interleaved semantics is assumed where only
one philosopher at a time changes its state, like the asynchronous dynamics in
our solution. They use a token based system, where tokens keeps circling the

3 Regardless of the initial state, the algorithm eventually converges to a legal state,
and will therefore remain only in legal states.

Generalised Dining Philosophers as Feedback Control 161

ring of philosophers, and the possession of a token enables the philosopher to
eat. The algorithm begins with a potentially illegal state with multiple tokens,
and later converges to a legal state with just one token. Our solution do not
have this self-stabilization property, as we do not have any “illegal” state in our
system at any point of time.

The dining philosophers solution mentioned in the work by Keane et al. [20]
uses a generic graph model like the generalized problem: edges between processes
which can conflict in critical section access. Modification of arrows between the
nodes happens during entry and exit from the critical section. They do not
focus on aspects like modularity or equational reasoning, but on solving a new
synchronization problem (called GRASP).

Cargill [21] proposes a solution which is distributed in the sense that syn-
chronization and communication is limited to the immediate neighbourhood of
each philosopher without a central mechanism, and is robust in the sense that
the failure of a philosopher only affects its immediate neighbourhood. Unlike our
solution, forks are modelled as part of their solution.

You et al. [22] solve the Distributed Dining Philosophers problem, which is
the same as the Generalized Dining Philosophers problem, using category theory.
The phases of philosophers, priority of philosophers, state-transitions etc. are
modelled as different categories and semantics of the problem are explained.
They also make use the graph representation of the priorities we have used in
our paper.

Nesterenko et al. [23] present a solution to the dining philosophers problem
that tolerates malicious crashes, where the failed process behaves arbitrarily and
ceases all operations. They talk about the use of stabilization - which allows the
program to recover from an arbitrary state - and crash failure locality - which
ensures that the crash of a process affects only a finite other processes - in the
optimality of their solution.

Chang [24] in his solution tries to decentralise Dijkstra’s solution to the dining
philosophers problem by making use of message passing and access tokens in a
distributed system. The solution does not use any global variables, and there is
no notion of “controllers” in the solution like we have in ours. Forks are made
use of in the solution.

Datta et al. [25] considers the mobile philosophers problem in which a
dynamic network exists where both philosophers and resources can join/leave
the network at any time, and the philosophers can connect/disconnect to/from
any point in the network. The philosopher is allowed to move around a ring of
resources, making requests to the resources in the process. The solution they
propose is self-stabilizing and asynchronous.

Supervisory Control. The idea of using feedback (or supervisory) control to
solve the Dining Philosophers program is not new. Miremadi et al. [26] demon-
strate how to automatically synthesise a supervisory controller using Binary
Decision Diagrams. Their paper uses Hoare composition but does not describe
the synthesised controller, nor do they attempt to prove why their solution is

162 V. Choppella et al.

correct. Andova et al. [27] use the idea of a central controller delegating part
of its control to local controllers to solve the problem of self-stabilization: i.e.,
migrating a deadlock-prone configuration to one that is deadlock-free using dis-
tributed adaptation.

Similar to our solution, Vaughan [28] presents centralised and distributed
solutions to the dining philosophers problem. The centralised solution does not
have a hub controller, but has monitor data structures, which store information
like the number of chopsticks available to each philosopher, the claims made by
a philosopher on his adjacent chopsticks, etc. In his distributed solution, the
chopsticks are viewed as static resources and there are manager processes, like
we have controllers, to control them. But unlike our solution, the local manager
processes only control the chopsticks (with the help of a distributed queue to
sequentialize access to the chopsticks for the philosophers) and not the philoso-
phers, and the access to the resources is scheduled by the philosophers by passing
messages between themselves.

Siahaan [29], in his solution, proposes a framework containing an active object
called “Table” which controls the forks and the state transitions of the philoso-
phers. The other active objects in the framework are the philosophers and the
timer controller (which issues timeout instructions to the philosophers to change
state). The table manages the state-change requests of the philosophers depend-
ing on the state of forks, hence serving a purpose similar to the controllers in
our solution. The timer object sends instructions to the philosophers for state
change, but our paper does not involve a timer to do so.

Feedback control has been used to solve other problems too. Wang et al. [30]
model discrete event systems using Petri nets and synthesise feedback controllers
for them to avoid deadlocks in concurrent software. Mizoguchi et al. [31] design
a feedback controller of a cyber-physical system by composing several abstract
systems, and prove that the controlled system exhibits the desired behaviour.
Fu et al. [32] model adaptive control for finite-state transition systems using
elements from grammatical inference and game theory, to produce controllers
that guarantee that a system satisfies its specifications.

Synchronous Languages. Synchronous languages like Esterel, SIGNAL and
Lustre [33] are popular in the embedded systems domain because synchronic-
ity allows simpler reasoning with time. Gamatie [34] discusses the N Dining
Philosophers problem with the philosophers seated in a ring. The example is
presented in the programming language SIGNAL, whose execution model uses
synchronous message passing. The SIGNAL programming language also com-
piles the specifications to C code. The solution uses three sets of processes: one
for the philosophers, one for the forks, and one for the main process used for
coordination. Communication between the philosophers and the forks happens
via signals that are clocked. In this respect, the solution is similar to the one
described in this paper. However, in the solution, each signal has its own clock
(polysynchrony), all derived from a single master clock.

Generalised Dining Philosophers as Feedback Control 163

5 Conclusion and Future Work

This work has three objectives: first, to apply the idea of feedback control to
problems of concurrency; second, to systematically apply the notion of Tabuada
systems and composition when constructing the problem statement and its solu-
tion, and third, to ensure that the solution is as modular as possible. In the
process, we have also come up with a different solution in the case of the Gen-
eralised Dining Philosophers problem, one which reveals how the distributed
solution is a distribution of the state in the centralised solution.

The solutions discussed in this paper using this approach leads us to believe
that this is a promising direction to explore in the future, the formalisation of
software architectures for other sequential and concurrent systems.

References

1. Gamma, E., Helm, R., Johnson, R., Visslides, R.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addisson-Wesley, Reading (1994)

2. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer, Boston (2009). https://doi.org/10.1007/978-1-4419-0224-5

3. Choppella, V., Viswanath, K., Sanjeev, A.: Generalised dining philosophers as
feedback control. arXiv preprint arXiv:1805.02010 (2018)

4. Chandy, M., Misra, J.: Parallel Program Design: A Foundation. Addison–Wesley,
Reading (1988)

5. Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Informatica 1,
115–138 (1971). Also published as EWD 310

6. Dijkstra, E.W.: Two starvation-free solutions of a general exclusion problem. Cir-
culated privately (1977)

7. Papatriantafilou, M.: On distributed resource handling: dining, drinking and mobile
philosophers. In: Proceedings of the First International Conference on Principles
of Distributed Systems (OPODIS), pp. 293–308(1997)

8. Lynch, N.: Upper bounds for static resource allocation in a distributed system. J.
Comput. Syst. Sci. 23, 254–278 (1981)

9. Ramadge, P., Wonham, W.: The control of discrete event systems. Proc. IEEE
77(1), 81–98 (1989)

10. Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM Trans. Pro-
gram. Lang. Syst. 6(4), 632–646 (1984)

11. Welch, J.L., Lynch, N.A.: A modular drinking philosophers algorithm. Distrib.
Comput. 6(4), 233–244 (1993)

12. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)
13. Rhee, I.: A fast distributed modular algorithm for resource allocation. In: Pro-

ceedings of the 15th International Conference on Distributed Computing Systems,
1995, pp. 161–168, May 1995

14. Sidhu, D.P., Pollack, R.H.: A robust distributed solution to the generalized din-
ing philosophers problem. In: 1984 IEEE First International Conference on Data
Engineering, pp. 483–489. IEEE (1984)

15. Weidman, E.B., Page, I.P., Pervin, W.J.: Explicit dynamic exclusion algorithm
16. Zhan, J., Guo, Y., Liu, C.: A deadlock prevention using adjacency matrix on dining

philosophers problem, vol. 121–126 (2012)

164 V. Choppella et al.

17. Awerbuch, B., Saks, M.: A dining philosophers algorithm with polynomial response
time. In: Proceedings of the 31st Symposium on Foundations of Computer Science
(FOCS), pp. 65–74 (1990)

18. Haiyan, Q.: A Distributed Algorithm in Agda: The Dining Philosophers (1999)
19. Hoover, D., Poole, J.: A distributed self-stabilizing solution to the dining philoso-

phers problem. Inf. Process. Lett. 41(4), 209–213 (1992)
20. Keane, P., Moir, M.: A general resource allocation synchronization problem. In:

21st International Conference on Distributed Computing Systems, 2001, pp. 557–
564. IEEE (2001)

21. Cargill, T.A.: A robust distributed solution to the dining philosophers problem.
Softw. Pract. Exp. 12(10), 965–969 (1982)

22. You, Z., Xue, J., Ying, S.: Categorial semantics of a solution to distributed dining
philosophers problem. In: Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS,
vol. 6213, pp. 172–184. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14553-7 18

23. Nesterenko, M., Arora, A.: Dining philosophers that tolerate malicious crashes.
In: Proceedings on the 22nd International Conference on Distributed Computing
Systems, 2002, pp. 191–198. IEEE (2002)

24. Chang, E.: n-philosophers: an exercise in distributed control. Comput. Netw. (1976)
4(2), 71–76 (1980)

25. Datta, A.K., Gradinariu, M., Raynal, M.: Stabilizing mobile philosophers. Inf.
Process. Lett. 95(1), 299–306 (2005)

26. Miremadi, S., Akesson, K., Fabian, M., Vahidi, A., Lennartson, B.: Solving two
supervisory control benchmark problems in Supremica. In: Proceedings of the 9th
International Workshop on Discrete Event Systems, pp. 131–136. IEEE (2008)

27. Andova, S., Groenewegen, L.P.J., de Vink, E.P.: Distributed adaption of dining
philosophers. In: Barbosa, L.S., Lumpe, M. (eds.) FACS 2010. LNCS, vol. 6921, pp.
125–144. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27269-
1 8

28. Vaughan, J.G.: The dining philosophers problem and its decentralisation. Micro-
process. Microprogr. 35(1–5), 455–462 (1992)

29. Siahaan, A.P.U.: Synchronization in dining philosophers problem using lock &
release algorithm

30. Wang, Y., Kelly, T., Kudlur, M., Mahlke, S., Lafortune, S.: The application of
supervisory control to deadlock avoidance in concurrent software. In: 9th Interna-
tional Workshop on Discrete Event Systems, WODES 2008, pp. 287–292. IEEE
(2008)

31. Mizoguchi, M., Ushio, T.: Output feedback controller design with symbolic
observers for cyber-physical systems. arXiv preprint arXiv:1612.04974 (2016)

32. Fu, J., Tanner, H.G., Heinz, J., Chandlee, J.: Adaptive symbolic control for finite-
state transition systems with grammatical inference. IEEE Trans. Autom. Control.
59(2), 505–511 (2014)

33. Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer Academic
Publishers, Dordrecht (1993)

34. Gamatié, A.: Designing Embedded Systems with the Signal Programming Lan-
guage: Synchronous, Reactive Specification. Springer, New York (2009). https://
doi.org/10.1007/978-1-4419-0941-1

