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Abstract—India graduates 1.5 million engineering students
every year, majority of them from its Tier 2 and Tier 3 colleges
where there is severe shortage of qualified faculty and lab
infrastructure, and where English is second or third language
for most students. To provide affordable virtual laboratories to
these engineering colleges, Government of India runs the Virtual
Labs project with a select set of participating institutions to create
virtual labs required for entire engineering student population
of India. The program suffers from two problems: 1) lack of
focus on pedagogy and learnability of labs being created, and
2) little ability to scale to more teachers and subject matter
experts to produce labs aligned to local contexts. This paper
presents a model (LEAD model) for the design of virtual labs
for a data structures and algorithms course in computer science
and is intended to address the problems stated above. The model
encodes the principles of learning in the design and structure
of an experiment so that labs can be learnable by design. The
model is based on constructivist theory of learning. It uses
Bloom’s Taxonomy for defining learning objectives and applies
Merrill’s first principles and Gagne’s 9 events of instruction
as instructional design methodologies. To ensure tasks in an
experiment indeed aid learning, the model requires a mapping
between tasks and learning principles to be created and published
along with the experiment. The model uses a pedagogy that lays
strong emphasis on conceptual understanding without the use of
code or program. To demonstrate the efficacy of this model, we
present the data analysis of the feedback from early users of one
the experiments. Even though limited in scope, data shows that
experiments built using LEAD model can aid understanding for
the students.

Keywords—virtual labs, undergraduate engineering, data
structures, bloom’s taxonomy, Gagne’s 9 events of instruction

I. INTRODUCTION

A virtual lab provides hands-on experience to engineering

students and augments their understanding of the concept

taught in the classroom. It is a learning resource that the stu-

dent engages with, with or without a teacher’s supervision. The

utility of virtual labs in science education is well-established

[1].

Of the 1.5 million engineering students graduating every

year, hardly 6-12% of these students are employable. While

employability is not a great measure of learning, the statistic

certainly indicates lack of learning. To address this challenge,

The Ministry of Human Resource Development, India initiated

Virtual Labs - a large-scale open source collaborative project

for creating simulation-based engineering labs that can be

accessed remotely over the internet [2]. Target audiences

include, among others, students from engineering colleges

from Tier-2 and Tier-3 cities who lack access to physical

lab infrastructure and good faculty. They also don’t have

English as their primary language. Teachers frequently use

local language and context while teaching these students.

One of the authors (Kumar [3]) reviewed the usability of

some of these existing Virtual Labs from technical as well

as pedagogical usability perspective and found the labs to

be lacking in many of the usability dimensions. One of the

recommendations in the paper was to define a consistent model

of the lab so that design and implementation inconsistencies

can be reduced. This paper presents a model of an experiment

that addresses this recommendation.

Given the diversity of language, culture and resource access

across colleges in India, there is a need to involve local

teachers and subject matter experts to produce these labs that

are contextualized to local needs. However, involving them

requires addressing two challenges:

• Labs may be inconsistent and not aligned to learning

principles.

• Teachers may not have the capability to produce these

labs

The model we have built takes these into account when

proposing a design of the experiment, ensuring consistency

and adherence to the learning principles, while allowing local

teachers and subject matter experts to design these exper-

iments. This model is influenced by multiple learning and

instructional design theories that apply to laboratories and

online learning, particularly three key ones:

1) Constructivist learning theory (for specifying the ele-

ments of structure of the experiment)

2) Bloom’s taxonomy (for specifying the learning objec-

tives)

3) Merrill’s first principles and Gagne’s 9 events of instruc-

tion (for specifying instructional design principles to be

applied)

In the rest of the paper, we refer to this model as learnable-

by-design (LEAD) model, Fig. 1 describes the model visually.

When defining LEAD model, we focused on 3 key at-

tributes:
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1) Define an abstract model that is strongly driven by

learning principles and pedagogy so that learnability can

be designed into the model

2) Define a concrete structure of the experiment that en-

codes the learning principles so that learnability doesn’t

get lost during construction phase

3) Define a mapping between learning principles and struc-

tural elements so that learnability can always be vali-

dated

To ascertain the utility of such a model, primary research

question we posed was this:

RQ1 Does an experiment created using LEAD model help

students understand the topic better?

RQ2 Is it easy to create an experiment using LEAD model?

To answer RQ1, we asked a small group of first year

undergraduate computer science students to use this ”Stacks

and Queues” experiment and collected their response to the

questions about how well this aided their understanding of the

topic.

To answer RQ2, the paper records our observations from

having a team of 2nd year undergraduate students create one

of the experiments using this model.

The experiment we use, ’Stacks and Queues’, is part of a

series of (twenty-three) experiments being built for two Data

Structures and Algorithms labs, and a subsequent paper will

report the results from these other experiments.

Rest of the paper is organized as follows. Section 2 dis-

cusses related work, from model as well as implementation

perspective. Section 3 presents the experiment model and the

motivation behind the structure. Section 4 presents the exper-

iment implementation (stacks and queues) and its mapping to

learning principles and model structure. Section 5 presents the

user feedback and its insights. Section 6 concludes the paper

and points to the future work.

II. RELATED WORK

We looked at the literature around how various learning

theories and principles have been applied in the context of

virtual experiments and labs.

Technology innovations like MOOC have altered the land-

scape of learning [4]. However, there are concerns on the

pedagogy being used, esp. lack of focus on labs for science

education [5]. Laboratories aid in conceptual understanding of

theoretical concepts via hands-on experience, and virtual labs

bring value to students [1]. Effectiveness of the virtual labs has

been questioned sometimes but multiple studies reiterate the

utility of virtual labs [6] [7]. New technologies are fueling the

growth of virtual laboratories [8]. These reiterate the fact that

Virtual Labs initiative is the right way forward for a country

like India for furthering their engineering education.

For Virtual labs, visualization is an important tool for

teaching concepts. However, lack of widespread usage and

effectiveness challenges around visualizations [9] [10] [11]

is concerning. As Hundhausen suggests in [12], ’Despite the

intuitive appeal of the technology (visualization), it has failed

to catch on in mainstream computer science education’, but he

does conclude that ’algorithm visualizations are educationally

effective insofar as they enable students to construct their

own understandings of algorithms through a process of active

learning’. Hansen suggests in [13] that interactive content or

visualization is not enough, a focus on pedagogy is essential

and yields results when applied.

A good lab or experiment needs to apply sound learning

theories and principles. Constructivist theory of learning has

been the most prevalent approach towards science learning

[14] [15]. Its implication for instructional practices and labs

has also been well-studied [16]. We find it suitable for virtual

labs where focus is on hands-on activities and interactions for

practice and exercises. Fuller [17] presents Bloom’s taxonomy

[18] as the most cited in the literature for taxonomy. Manaris

[19] reports using Bloom’s taxonomy for defining learning

objectives and finds it a useful tool for defining and refining

objectives as well as for assessment. Starr [20] applies them

to define assessable learning objectives throughout the CS

curriculum.

Ertmer [21] discusses elements of instructional design for

Constructivist learning theory (anchoring, active use of learn-

ing, multiple presentations, use of problem-solving skills).

Merrill’s first principles [22] and Gagne’s 9 events of in-

structions [23] [24] are the most prevalent instructional design

principles aligned to constructivist theory.

Technical and pedagogical usability [3] are key consider-

ation for virtual labs. So is a clearly defined structure [25].

LEAD model includes these elements, though some of these

aspects will be more relevant during construction phase of the

experiment. The survey of related work suggests that virtual

labs require a strong pedagogy, visualization is useful for

engagement but can’t be used alone, and that constructivist

theory, bloom’s taxonomy and Merrill’s and Gagne’s instruc-

tional design principles, are very aligned to virtual labs.

A. No interactive content in MOOCs

We also did a short analysis of MOOC courses and their

use of labs or other interactions (results shared in Section

III), given their widespread use in learning computer science

topics. Results continue to be disappointing - there is very

little evidence of hands-on, interactive elements or experiments

being used.

We reviewed data structures and algorithm courses on 4

MOOCs. Table 1 summarizes the courses we reviewed for

each of these MOOC. We picked distinct courses, some of

them had similar courses - for ex, given 2 courses, ’data

structures in python’ and data structures in C’, we picked only

one. When searching, we used keywords ’Data structures’, and

’Algorithms’.

All the courses had similar structure - lectures and quizzes.

There was no interactive content used in any of the courses.

One course had java applet which didn’t work on our browser,

NPTEL had a few simulations but they required Windows 32-

bit, so again couldn’t be run. Clearly, the focus of these courses

has not been on virtual experiments and interactive content.
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Fig. 1: Elements of LEAD model

TABLE I: MOOCs evaluated

MOOC Courses

edX

Algorithms and Data Structures
Data Structures Fundamentals
Data Structures: An Active Learning Approach
Data Structures and Software Design:Getting Started
Python Data Structures

Udemy

Python for Data Structures,Algorithms..
Practical Data Structures and Algorithms..
The Coding Interview Bootcamp: Algorithms + ..
Data Structures and Algorithms Through C ..

Coursera
Data Structures and Algorithms Specialization
Algorithms Specialization

NPTEL

Computer Algorithms 2
Data structures and algorithms
Design and analysis of algorithms
Programming, Data structures and Algorithms

III. EXPERIMENT MODEL AND STRUCTURE

In LEAD model, an experiment consists of one or more

Learning Units and each learning unit consists of tasks that

help to achieve a learning objective and use one or more

instructional design principles to achieve these objectives.

A typical experiment structure for a LEAD model looks like

this:

• Learning objectives

• Prerequisites

• Pretest

• Learning Unit(s)

– Task 1 (Introduction): Read the concept

– Task 2 (Demo): See the demonstration of the concept

– Task 3 (Practice): Practice using interactive elements

– Task 4 (Exercise): Check understanding of the con-

cept

• Post-test

• References

To ensure accessibility to a wider audience, each learning

unit also includes a video presentation of the entire unit so

that learners who prefer lecture-like setup can also benefit.

An experiment consists of a set of modules. A learning

unit is a module, so is a pretest or post-test. Next section

provides more details of each of the module of the structure.

In a forthcoming paper, we will describe the formal structure

and ontology of a virtual experiment that aligns to this model.

To ensure that these learning principles are adhered to

as the experiment is designed, constructed and released, the

model defines three mappings that an experiment creator must

produce:

1) Learning objective mapped to Learning Levels

2) Tasks mapped to Instructional Design principles

3) Tasks mapped to Learning Objectives

These mappings are made available as part of the exper-

iment and are available to validate any of the intermediate

steps an experiment goes through. The details of the mapping

and its usage during construction process will be reported in a

forthcoming paper. The focus of this paper is to describe the

model and illustrate it with an experiment implementation.

A good design (of a learning content) focuses on four

aspects:

1) Learning Theory

2) Learning Taxonomy

3) Instructional Design

4) Pedagogy

A. Learning Theory

A model should implement a learning theory that has strong

alignment to the learning needs of the target segment. Given

the unique applicability of constructivist theory to laboratory

224



learning and its widespread use in science education [26], this

is the theory LEAD model has adopted. Constructivist theory

suggests that all knowledge is constructed, and all learning

is a process of construction [27]. This is closely aligned to

the objectives of virtual labs - allow students to learn on their

own pace, let them actively engage with the content and allow

hands-on experiences. LEAD model defines a Learning Unit

to be composed of four predefined task types (Introduction,

Demonstration, Practice, Exercise), thereby aligning with the

laboratory process and constructivist approach.

B. Learning Taxonomy

Pedagogical philosophy for the LEAD model is influenced

by Bloom’s taxonomy. The model maps the learning objectives

of the experiments to learning levels in Bloom’s taxonomy to

ensure that all objectives are aligned to the learning levels

required by the experiment and the creator. The learning

objectives section of the experiment structure will list course

level and topic level learning objectives, using a specific way

to write the objectives (Fig. 2) that is based on Gagne’s

recommendation on writing objectives. Each objective will

also specify which learning level of Bloom’s taxonomy does

this map to. Experiments are expected to have objectives

for ’remembering’, ’understanding’ and ’applying’ (first 3)

levels at least. Using the mapping between task and learning

objective, it is possible to identify whether there are tasks to

achieve any given learning objective.

Fig. 2: Writing objectives (Gagne’s style)

C. Instructional Design

A well-designed content must use instructional design

methodologies that are aligned to the learning theory they

are based on. Merrill’s first principles and Gagne’s 9 events

of instructions are primary instructional design strategies in

LEAD model. We use Merrill’s first principles because it

is more foundational in nature and well-connected to con-

structivism learning theory. We also use Gagne’s nine events

of instruction as it serves as the elaboration of Merrill’s

first principles and makes the motivation of instruction more

explicit. Using the mapping that each experiment provides

between task and instructional design principles; it is possible

to identify whether a task is following right principles or not.

D. Pedagogy

Our pedagogy for teaching these data structures and algo-

rithm experiments focuses on providing a conceptual under-

standing of the topics. We apply a pedagogy that focuses on

visual representations and focuses more on building concepts

rather than teaching programming of these data structures and

algorithms. We place strong emphasis on visualization and

interactivity. We also avoid using simulations and interactive

environment alone and instead focus on using interactive

artifacts in specific context only (Practice and Exercise tasks,

sometimes in Demo tasks that can use light interactivity).

IV. EXPERIMENT IMPLEMENTATION

This section describes the elements of an experiment that

we built using this model, Stacks and Queues. However, it

is important to note that what we show in these subsections

are really experiment user’s view of the model - experiment

creator will provide different (mostly more) content which gets

transformed through construction process into user’s view of

the experiment.

Each element of the structure was implemented keeping in

mind the principles of LEAD model. Our key focus was to

ensure we are applying good instructional design principles.

We achieved this by mapping our tasks to Gagne’s 9 events

of instructions:

1) Gain attention

2) Inform learners of the objective

3) Stimulate recall of prior learning

4) Present the stimulus

5) Provide learning guidance

6) Elicit performance

7) Provide feedback

8) Assess performance

9) Enhance retention and transfer

We also used the usability checklist provided in Kumar [3]

to do usability review of the content. Some aspects of the

checklists were already implemented in the framework that

we used to build these experiments.

A. Learning Objectives

Before starting, the learner is presented with a set of

statements that informs them of the skills they would expect to

gain by completing the experiment. In the stacks and queues

experiment, the objectives were listed out as follows:

• Gain a basic understanding of stacks as an abstract data

type.

• Understand stacks operations and associated time com-

plexities through interactive animations

• Understand applications of stacks

Taxonomy Mapping - First two objectives map to second

level of Bloom’s Taxonomy: ’Understanding’, while last one

maps to third level, ’Applying’.

The LEAD model recommends a structure for constructing
learning objectives, however that was not used when present-
ing it to the user to make it easier for users to comprehend

Instructional Design Mapping - Gagne’s second event of

instruction: ’Inform learners of the objective’
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B. Prerequisites

The learner is presented with the prerequisites for learning

the content of that experiment so that he or she does not face

any difficulty later. In our experiment, the prerequisites were

listed out as follows:

• Basic knowledge of arrays and linked lists

• Basic understanding of time complexity notations

Resources were provided for readers who wanted to brush

up their knowledge.

Instructional Design Mapping - Gagne’s third event of

instruction: ’Stimulate recall of prior learning’. This is a

weak mapping because there is no stimulation, only recall via

reference to resources for these prerequisites.

C. Pretest

The pretest section consists of multiple-choice questions

based on the topics listed out in the prerequisites module of

the experiment to establish a subject knowledge baseline. After

the student completes the pretest, their score along with the

correct answers are displayed on the screen. In addition to the

score, the student is also provided links to sources to learn the

prerequisite topics.

Instructional Design Mapping - Gagne’s third event of

instruction: ’Stimulate recall of prior learning’. The questions

are picked to be stimulating and not only answered by rote

learning. This module also falls under the Activation Phase

described by Merrill.

Next few sections are repeated for each learning unit that

the experiment contains.

D. Introduction

The student is given a gentle introduction to the topic by

drawing an analogy with a real-life object or situation. The

topic is then formally introduced by giving a simple definition

or a concise explanation. While designing the experiment,

more focus was given on visualization than on text in order

to enhance knowledge transfer and help the student retain

information longer [28].

In the stacks and queues experiment, the topic was intro-

duced by drawing an analogy to a stack of books and giving

a short description of push and pop operations. Images of the

operations were also given. A few applications of stacks were

given as well, for example, undoing changes in a text editor

and reversing a word.

Instructional Design Mapping - Gagne’s fourth event

of instruction: ’Present the stimulus’. The introduction used

engaging material, including visual elements, to stimulate the

interest of the student.

E. Demonstration

After the introduction, the user is given interactive demos to

help them understand and visualize basic concepts better. This

individual practice activity builds comfort with the topic [29].

Students remember better when teaching of a topic involves

demonstrations [22]. In the stacks experiment, the user was

presented with an empty representation of a stack with an

option for the user to enter a value and push the value with

the press of a button and pop the value with the push of another

button (Fig. 3). There were also separate interactive demos for

stacks represented using an array and stacks represented using

a linked list.

Instructional Design Mapping - Gagne’s fifth event of

instruction: ’Provide learning guidance’. The demonstration

is designed such that user can understand the steps involved

in an operation which helps the learning process.

F. Practice

The student is provided with interactivities that allow the

student to engage with it and practice what they have learned

through introduction and demonstration. This is where they

put their learning into use. Practice provides rich feedback to

the user so that they can understand and validate their learning.

In this experiment, we merged Practice with Exercise.

Instructional Design Mapping - Gagne’s seventh event

of instruction: ’Provide feedback’. The practice provides rich

feedback for every interaction (if appropriate) and helps the

students understand the gaps in their understanding and bridge

them.

G. Exercise

The students’ conceptual understanding is tested using in-

teractive exercises. The student is presented with an interactive

problem and allowed to interact with it to solve the problem.

This proceeds similar to Practice, but provides very little

feedback during the interaction, and provides the feedback

only at the end of the activity.

In one artefact of this experiment, we designed an activity,

asking the user to sort an array of numbers using two interac-

tive stacks, given primitive operations of push and pop.

This experiment did not include Practice (one of the rec-

ommended tasks) explicitly, it was merged with Exercise.

Instructional Design Mapping - Gagne’s fifth event of

instruction: ’Provide learning guidance’, as well as sixth event

of instruction: ’Elicit performance’. The exercise helps in

better learning, and at the same time evaluates the learner and

make them perform.

H. Post-test

The post-test is the final test of the concepts learned by

students from the experiment. Like the pretest, the students

receive feedback on their performance, along with the correct

answers of the quiz.

The experiment on stacks asked, as an example, ’What is

the time complexity of finding the minimum element of the

stack?’. The questions had multiple-choice answers and were

designed to check the understanding of each learning unit.

Instructional Design Mapping - Gagne’s eighth event of

instruction: ’Assess performance’. The post-test is designed to

evaluate student’s learning and assess the performance.
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Fig. 3: Stack Push Demonstration

I. References

This module consists of links and references that discuss

the topic further and provides more detail. This is useful for

students who want to learn more, and it also serves the purpose

of connecting other real-life problems with what the student

has learned.

Instructional Design Mapping - Gagne’s ninth event of

instruction: ’Enhance retention and transfer’. This is a weak

mapping. References are selected to extend the knowledge

gained by referring to additional material as well as advanced

applications of the subject.

V. USER FEEDBACK

41 students were instructed to try an experiment and fill

in an online questionnaire. The group primarily consisted of

first-year Computer Science students who had some basic

knowledge of computer science and were familiar with the

prerequisites of the experiment. We looked at the descriptive

statistics for the data, given it was a small sample size.

A. Data Analysis

Gathering data from students (and analyzing them) is one

of the key ways to validate this model. This section presents

results of analyzing user feedback to this experiment. We will

continue the work on surveying a larger sample and with more

experiments as they get built.

Our focus was to primarily get feedback on whether the

experiment helped the students understand the concept better.

We checked for understanding by asking 3 questions:

• Understanding - How much did the experiment help you

understand the topic?

• Engagement - How engaging was the experiment?

• Interactive elements - How helpful were interactive ele-

ments in understanding content?

To understand the prior knowledge of students about the

topic, we included the question ”How much of the topic you

knew before?”

Fig. 4 presents the mean (M) and coefficient of variation

(CV) for each of the questions. All student responses lie

between 0 and 10.

We also wanted to ensure that the 3 questions we asked

measure the same basic point we wanted to address: does

the experiement help them understand better? So we also

ran a Principal Component Analysis (PCA) to understand the

underlying factors. See Fig. 5 for details. We notice that only

2 components (PC1 and PC2) can explain almost 90% of the

data. PC1 is primarily composed of understanding questions,

and PC2 almost completely explains prior knowledge.

From Fig. 4, we notice there is high mean for the

understanding-related questions (7.7-8.2) and low CV (0.20-

0.23). We conclude that the students found the experiment

helpful in understanding the topic better.

We noticed quite some variation in prior understanding of

the topic for students (Mean: 6.2, Median: 7.5, CV: 0.53).

High median suggests many students had excellent prior

knowledge, while low mean suggests some students had very

little knowledge. This is interesting because this suggests that

even a diverse background of the sample found the experiment

aids their understanding.

Normally, we would want students to have good prior expo-

sure to the topic (since assumption is students have done the

topic in classroom setting). However, given the characteristics

of the target segment (lack of teachers and resources), we

need to test the efficacy of the experiments under varied prior
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Fig. 4: Questions - Mean and Coefficient of Variation

Fig. 5: Questions- PCA

knowledge and ensure they remain effective even with low

prior knowledge. This will be a topic for further research.

VI. CONCLUSION AND FUTURE WORK

This paper presented the LEAD model for creating experi-

ment structure. This model is aligned to constructivist learning

theory, learning levels of Bloom’s taxonomy, and Instruction

Design principles of Merrill’s and Gagne’s. The LEAD model

seeks to address the problem of engineering students in Tier 2

and Tier 3 cities (lack of good faculty and resources). We used

the details of an experiment we built, to illustrate the LEAD

model structure. We also analyzed the user feedback for this

experiment. The data suggests that the experiment aided the

understanding of the topic for the students.

We had posed 2 research questions:

RQ1 Does an experiment created using LEAD model help

students understand the topic better?

RQ2 Is it easy to create an experiment using LEAD model?

We conclude that the experiment created using LEAD model

does help the students understand the topic better. We also

conclude that it is easy to create an experiment using LEAD

model even with average skill set (given the use of 2nd year

undergraduate students for creating the experiement).

There is a need to expand the user testing cycle and

do it with large sample size of students and many more

experiments so that generic inferences about the model can be

drawn. Future work should also be done in provide additional

theoretical basis for why such a model will work to produce
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learning by design, including comparison with similar other

models for designing experiments.
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