
Towards a Domain-Specific Language for the
Renarration of Web Pages

Gollapudi VRJ Sai Prasad
International Institute of Information

Technology
Hyderabad, Telangana

saigollapudi1@gmail.com

Sridhar Chimalakonda
Indian Institute of Technology

Tirupati
Tirupati, Andhra Pradesh

ch@iittp.ac.in

Venkatesh Choppella
International Institute of Information

Technology
Hyderabad, Telangana

venkatesh.choppella@iiit.ac.in

ABSTRACT
We are interested in the problem of enabling transformation of ex-
isting, already published web pages. We call this Renarration of web
content. In our earlier work, we had already established the role and
importance of renarration for improving Web Accessibility. There
are nearly a billion websites on the web, making transformation of
pages a domain on its own. In this paper, we present the develop-
ment of a Domain-Specific Language (DSL) for the purpose of web
page transformation. We show how the design and implementation
of our DSL is driven by our problem domain, its terminology and its
unique requirements. We take up an existing online video-course
delivery system, which has accessibility challenges, as a specific
case to demonstrate our DSL. We end with insights and reflections
for future work in both DSL and web page transformations.

CCS CONCEPTS
• Software and its engineering→Domain specific languages;
• Information systems→ Document structure; Personalization;

KEYWORDS
Domain Specific Language (DSL), Web Page Transformation, Re-
narration
ACM Reference Format:
Gollapudi VRJ Sai Prasad, Sridhar Chimalakonda, and Venkatesh Choppella.
2018. Towards a Domain-Specific Language for the Renarration of Web
Pages. In ISEC ’18: Innovations in Software Engineering Conference, February
9–11, 2018, Hyderabad, India. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3172871.3172873

1 INTRODUCTION
World Wide Web has over a billion websites1. W3Techs, a web
statistics site2, reports that over 54.2% of those billion websites
are currently in English language. This is despite the fact that the
majority of the global population is non-English speaking. Of the 3.3
1http://www.internetlivestats.com/total-number-of-websites/
2http://w3techs.com/technologies/overview/content_language/all

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISEC ’18, February 9–11, 2018, Hyderabad, India
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6398-3/18/02. . . $15.00
https://doi.org/10.1145/3172871.3172873

billion Internet users, Internet World Stats3 reports that nearly 1.5
billion are from Asia, a region where English is a foreign language.
Europeans too constitute 18.1% of that 3.3 billion. These numbers
not only highlight a potential language gap between the presented
web content and the browsing user, it also highlights, the various
barriers thatmay arise due other socio-cultural issues aswell. In [21]
we suggested that these are legitimate web accessibility challenges
that are plaguing end-users.

In our earlier work [3, 19–21] we had suggested that existing,
published web content and web pages, can be made more accessible
by a concept we termed as Renarration. Renarration is essentially
the act of transforming the original source content into a new target
representation. Transforming a source into a new renarrated target
could involve simplifying some text, translating it, elaborating on
something, adding images, adding new links etc. Such transforma-
tions are renarrations. A source may be renarrated into many such
variants, which may all co-exist as alternative views of the original.

A source may be transformed into a new alternate representation
by a renarrator. A renarrator is an agent which can be automatic, or
manual. In human approaches, we see this to be the work of a third-
party-user volunteer who mediates the relationship between the
content author and the browsing end-user. Multiple renarrations
of a single source can thus be created either by having multiple re-
narrators or by having one renarrator producing different variants.

In this paper, we treat this renarration as a transformation of a
web page. There are several existing approaches to web page trans-
formation such as Transcoding, Web Augmentation and Presenta-
tion layer modifications, but most of these conventional approaches
tend to be too technical and programmer oriented. Transcoding is
typically related to power savings, color modifications or resizing
views for small screen devices. The location where the changes
are executed is typically within the network (as opposed to doing
it at the client side) [9]. This requires access to content which is
mostly not available for end-user renarration. Web Augmentation
techniques (e.g. GreaseMonkey) tends to be more like a platform,
providing users the ability to write their own JavaScript code for
client side modification [2]. Though powerful, it still requires pro-
gramming competency. Presentation layer modifications are typ-
ically facilitated by stylesheet paradigm. Here XSLT4 and CSS5
have gained in prominence. CSS predominantly tends to be style
and layout oriented [18]. XSLT, on the other hand, does facilitate
transformation, but it is often perceived to be rigid, cumbersome
and complex [1] for end users.

3http://www.internetworldstats.com/stats.htm
4(eXtensible Stylesheet Language) XSL Transformations
5Cascading Style Sheets

https://doi.org/10.1145/3172871.3172873
https://doi.org/10.1145/3172871.3172873
https://doi.org/10.1145/3172871.3172873

ISEC ’18, February 9–11, 2018, Hyderabad, India Gollapudi et al.

Figure 1: Components of a web page include Content, Pre-
sentation and Behavior. The web page perceived by an end-
user can be a temporal artifact produced by browser by mix-
ing the components, as specified by the publisher of the
page.

1.1 Goal of this Paper
We are interested in the design of a Domain-Specific Language
(DSL) [5] that allows transformation of web pages to facilitate
renarration. Having a DSL to renarrate web pages could then help
in overcoming some of the Web Accessibility challenges that are
now plaguing a majority of the billion websites that are on the web.

The exploration of the design for a DSL is done through the
development of a concrete system, aimed at renarrating online
video courses. We have chosen to renarrate video-courses from
NPTEL6 for four main reasons (i) videos and course content are
one of the most commonly used form of web content (ii) it has
substantial amount of video content and user base within India
(iii) millions of students who rely on NPTEL come from diverse
cultures and backgrounds within India (iv) it is relatively easy for
end users to renarrate video course content as it involves the simple
operations of adding or removing or positioning video content for
different purposes. While the NPTEL video course rennarations,
that is used to illustrate the ideas in this paper seems simplistic,
we see that it is a strong case for transformation of web pages
to provide better accessibility through renarration, owing to the
reason that there thousands of videos available and not accessible,
which could be overcome by our DSL.

1.2 Layout of Paper
We begin by providing a working definition of a web page. We fol-
low it up with a literature survey. Our survey explores the current
approaches used in conducting web page transformation. After a
brief explanation of NPTEL and the context of video-course renar-
ration, we focus on this case and instance of web page transfor-
mation. Subsections on analysis, design and implementation on
NPTEL case study are followed up by insights drawn from this ex-
ample to further extend our DSL for an extensive general web page
transformation. We end the paper with a section on conclusions.

1.3 Context: What is a Web Page?
Aweb page can be interpreted as having three components: Content,
Presentation and Behavior. See Figure 1.
6A large repository of online video courses funded by Indian government. See
http://nptel.ac.in/

Figure 2:Web page transformation can be done either on the
network side, or the client side.

Content can be HTML tagged text, images or video. It can also
be XML or other web accessible variant. It is essentially rich media
tagged for the current web. Presentation is about aesthetics, style,
layout, delivery-layer [18]. Typically this is handled by CSS or
some pre-processed version of CSS. Behavior is something that is
experienced by users. This is generally achieved through JavaScipt
code associated with the web page. Even ActionScipts7, HTML
animations etc. can also create a behavior of a specific page.

What is experienced as a specific web page by the user is no
longer some static content written up inHTML.While suchmaterial
still exists on the web, the current web is becoming more and more
of a confluence of the content, presentation and behavior being
manifest by the rendering engine and the language interpreter
present in a browser.While browsing, the end-user thus experiences
the temporal artifact of such a process as a web page.

When we propose renarration through web page transforma-
tions, we are essentially talking about tampering with either the
content, presentation or behavior of some earmarked source, to
ultimately influence the view experienced by the end-user. Our in-
tent in this paper is to create a minimalistic DSL that would enable
such a web page transformation.

2 LITERATURE SURVEY
Currently there are multiple points at which published web content
can be intercepted and transformed: It can either be done on the
network side, or on the client (browser) side. See Figure 2. Network
side modifications can be handled at three different locations: 1)
at the application level, 2) on the cloud, by some other application
which does back-end calls, and 3) on a proxy, as the content is in
transit to the destination.

2.1 Network Based Approaches
At the application level, content can be modified before publishing.
This may be termed as editing work. An author would be responsi-
ble for such changes. Influencing a change at editing time is routine
and easily understood. However, this approach requires access to
content authoring, which our users lack, as we work with existing
and already published work. Therefore, we do not consider this
editing scenario.

7Scripts for Adobe Flash animation

DSL for Web Renarration Camera Ready ISEC ’18, February 9–11, 2018, Hyderabad, India

Changes to content after publication are typically called annota-
tion. Hypothes.is recommendation by W3C8 promotes this annota-
tion work. However, annotations are seen as extra information on
top of a web page. They are not considered fundamental changes
to the original source page.

The other scenario at the application level is when application
itself modifies what is presented. This is the case with Adaptive
Systems. Personalization, Customization solutions are also focused
on modifying content at the application level.

Cloud based approaches tend to interact with the original source
at the back end, negotiate a change before sending it out to the
end-user. Transcoding systems tend to take this route [9].

Proxy based solutions are usually at the edge of the network.
They intercept user-server interactions and interject in between.
Again, some transcoding solutions [9], some personalization solu-
tions tend to take this approach.

In all of the above modification methods, programming and
system development expertise is required. In our effort, we are
looking for ways and means to create web page transformation
by end users on already published and publicly accessible content.
Adopting above discussed approaches to enable such changes will
be too cumbersome and complex for our earmarked renarrators.

2.2 Browser Based Solutions
As an alternative, browser based (client side) solutions to web page
transformation tend to be relatively less complex.

A web page is structured as a Document Object Model (DOM)
inside the browser. Accessing the DOM for the purpose of trans-
forming a web page would mean that control is executed within
the browser. Conventional solutions for such browser level DOM
modification work would require knowledge of browser add-on
or browser plug-in development work. This would mean that pro-
gramming skill in JavaScript and knowledge of browser specific
development would be required.

Existing web page code could also be modified by injecting
JavaScript code either through a bookmarklet function, or through
a external tool like Selenium. These injected scripts could then lever-
age existing code libraries (e.g. jQuery) to modify the page. Again,
this would require programming and tool level expertise.

Taking the view that a renarrator need not be a programmer or
a system developer, such a JavaScript and browser level develop-
ment work would be too complex for them. Our goal thus becomes
developing a simpler language and mechanism for enabling our
web page transformation.

2.3 Stylesheet Based Modification
Stylesheets separate data from control, and content from presenta-
tion. They enable relatively novice end-users to modify web page
presentation by way of stylesheet commands. In this regard, [5]
calls stylesheets (as well as other web markup languages) as DSL
as well. We are interested in this type of stylesheet based approach.
However, the currently popular web stylesheet language (CSS) lacks
explicit and simple techniques for semantic manipulation. CSS is
largely a style, presentation or visual oriented control. From a re-
narration point of view, our intent is to initially propose a simple
8https://web.hypothes.is/blog/annotation-is-now-a-web-standard/

Figure 3: A Ladder of Abstraction for the design of DSL.

DSL which subsequently has the caliber to grow to handle semantic
manipulation of content as well. It is in this regard that we find CSS,
though immensely useful and popular is insufficient for renarration.

XSLT is an XML oriented stylesheet for tree transformation.
While versatile, the stylesheet does require well-formed documents
and lacks in popularity. Criticism against XSLT has often been
with respect to its rigidity and complexity [1]. It is less likely to be
perceived as a end user’s tool.

2.4 Existing DSL Based Approaches
The intent of a DSL is to focus on some specific domain, use the
terminology and semantic models from that space, while hiding
from the user, the design and implementation complexity in per-
forming the operations. Many domains have enjoyed the benefits
of DSL. Specifically in the web space, there is a DSL for validating
data inputs to web applications [8], a DSL for dealing with web
APIs and their service mashups [15], a DSL for creating dynamic
web applications [7], a DSL for type-safe server-side scripting [27],
a DSL for form based services, a DSL based on CSS for Hypertext
adaptation [17] etc. Even markup languages like HTML and XML
are also considered DSLs [5].

But, despite this abundance of DSLs in the domain of the web,
there do not seem to be a DSL for specifically transforming web
pages. While stylesheets like CSS and XMLT are also considered
as DSLs[5], they have been criticized as being style oriented and
complex. Thus this motivates our development effort of a DSL
applicable to end users who could create web page transformations.

The work involved in creation of DSLs is detailed in [12, 13, 16].
[26] focuses on delivering an implementation from a design. And,
in general, an annotated bibliography for DSL is presented in [28].
We rely on some of these earlier efforts to build our web page
transforming DSL.

3 PROBLEM DOMAIN: WEB PAGE
TRANSFORMATION

Research in Web Accessibility has compelled us to consider renar-
ration as an approach for addressing the accessibility problem [19].
From a Computer Science and Web point of view, renarration trans-
lates into a problem in web page transformations. A transformation
of a web page, in the context of a browser, may be discussed as a

ISEC ’18, February 9–11, 2018, Hyderabad, India Gollapudi et al.

DOM level transformation: which converts a source DOM into a
target DOM (Figure 3).

To transform a webpage would mean to modify the content,
presentation or its behavior, or some combination of them. Content
of a page may be kept same, modified or deleted. This can apply
to all types of MIME content found on the web. Modification to
presentation of a webpage can come from changes made to the
layout, color, style, flow etc. Similarly behavior level modifications
can be from changes made to the JavaScript that is in the page. Also,
new JavaScript could be included. So, again, CRUD9 operations can
be made to text and scripts as well.

It has already been stated that 1) renarrators need not be pro-
grammers or system developers, and that 2) there could be one or
more renarrators out there producing potentially multiple variants
(or renarrated views) for a given page.

Taking all these into consideration, our goals for a DSL that
would transform web pages, would be:

(1) The DSL should allow end user renarrators to specify web
page transformations.

(2) The DSL should allow renarrators to create a target DOM
for rendering. This may be built from the source web page.
To effect content level and behavioral changes, CRUD op-
erations should be allowed on content or script. To effect
presentation level changes, the aesthetics, layout, order of
the source may be changed.

(3) The DSL should allow renarrators to additionally incorporate
some meta-data and selection criteria (which could be in the
form of rules, conditions), for subsequent use by the system
or the end-user in selecting one renarrated variant over the
others.

The intent of this paper is to design a preliminary DSL as an op-
tion to meet the above requirements. Our goal is not to exhaustively
propose a formal language, but to initiate the idea of using DSLs
for web page transformations. We explore the idea by developing
a simple DSL to renarrate some already published online video
courses.

4 NPTEL VIDEO-COURSE RENARRATIONS
To further explore the notion of DSL, to anchor some of our ideas,
and to create a concrete starting point for our web page transfor-
mation task, we focused on a specific case-and-point activity: We
focused on developing a simple DSL system for renarrating online
NTPEL video-courses.

4.1 What is NPTEL?
NPTEL is a Indian government sponsored repository of over 355
video courses [14]. It has more than 1.5 million enrolled students
and thousands of hours of recorded content. Indian government’s
intent is to freely make available the course content of their top
colleges to various students all over India. A typical course like
"Data Structures" within Computer Science tends to be a collection
of several videos, each consisting of hour long classroom recordings.
Typically, these videos feature "talking heads" of professors running
through topic focused power-point slides. See Figure 4
9A term inherited from the Database domain. It stands for typical Create (C), Read (R),
Update (U) replace, and Delete (D) operations

Figure 4: A sample of NPTEL video lecture page from the
NPTEL repository.

In an earlier unpublished simple ethnographic study of few stu-
dents, we discovered that most of the recordings were deemed use-
ful [22] but were considered ’boring’ to watch. Students reported
speeding up the videos, jumping to different sections, turning on
subtitling etc. to increase their derived value from the videos.

4.2 Goal for NPTEL Renarration
Our goal for this exercise was to take one such video course – for
example, "Data Structures and Algorithms" – and renarrate it for
our otherwise bored end-users.

The target (or end-product view) of our renarration is to produce
a new narrative for the Data Structures video-course. One idea
for the new renarration is to replace the hour long video source,
with a string of media items like video segments, PPTs, and PDF
documents, presented in some predefined order. That is, the one
hour long message of the source video can now be re-presented as
a collection of PDF material, few slides, some portions of video etc.

The previously bored end-user can now experience the same
content in a novel way: Perhaps an introduction slides are presented
first. Then, a key portion of the NPTEL video is shown. After the
allocated time, a PDF is rendered. The videos, PPTs and PDFs for the
new rendering can come from some URI located on the web. That
is, pre-existing material are now being stitched into a multimedia
presentation, and being rendered for the end-user. In such situations,
the video content and the slides need not be shown in their entirety.
They can be shown from some start to some pre-set end point.

4.3 End-user Experience
From a end-user’s point of view, navigation buttons may be used to
move linearly from one event to the next in the series. The expec-
tation is that by breaking the video into chunks, and then stringing
the content with other online resources (which may simplify or
elaborate themessages present in the video) may positively enhance
the user-experience.

In this context, a professor could be the renarrator. Her students
for a particular class may be the target end-users for whom the
renarration is being captured. The new narrativemay be the original
video source, chunked, pruned and augmented with other online
PPTs, PDFs, videos etc.

For our example course on Data Structures, the one hour long
video could now be replaced with a single intro PPT slide, followed

DSL for Web Renarration Camera Ready ISEC ’18, February 9–11, 2018, Hyderabad, India

by 3 minute video, then followed by few more slides, a PDF and yet
another 20 minute video etc.

4.4 Why this Exercise?
We use this video-course renarration as a case of web page trans-
formation towards creating different elements of our DSL.

We now present our analysis of this NPTEL video-course re-
narration problem. Despite the concrete problem, often we have
considered the broader challenge of web page transformations and
not video renarration. We follow up our analysis, design and im-
plementation discussion with lessons learnt and insights derived.
We conclude by providing inputs to the design of our DSL for web
page transformations.

5 EXPLORING DSL FOR VIDEO-COURSE
RENARRATION

Our DSL development is influenced by the work presented in [12,
16].

5.1 Decision
Our decision to develop a purpose built DSL is motivated by the
following two drivers:

(1) Web Accessibility is a end-user challenge. While our end-
users have browsing skills, they may not necessarily be pro-
grammers. In keeping with this, we wanted an interface
which was not programming intensive, but would still en-
able simple renarrations.

(2) We wanted the interface model to match the mental model
of the renarrator and not burden them with constraints and
requirements that a general purpose language would impose.

5.2 Analysis
According to [16], in this analysis phase, one must gather knowl-
edge about the domain, extract relevant terminology, study the
back-end models that animate it and look for patterns. The pro-
posed formats for doing domain analysis include: Domain Analysis
and Reuse Environment (DARE), [6], Domain Specific Software
Architectures (DSSA) [25], Family-Oriented Abstractions, Speci-
fication, and Translation (FAST) [29], Feature Oriented Domain
Analysis (FODA) [11], Ontology-based Domain Engineering (ODE)
[4], and Organization Domain Modeling (ODM) [24]. We follow a
simplified version of DARE during our analysis phase owing to the
goal of a simplified DSL.

For the consideration of domain oriented terminology, we ob-
served that for the scenario of web page transformation, on client
(browser) side, the terms related to ’DOM;, and the term ’nodes
within a DOM are common. For video renarration context, terms
related to media (its type, its source and target URI, its attribute) are
common. In web terminology source and target URIs; in stylesheet
terminology, selectors with attributes are also commonly used.

For the video, we related the semantic of rendering a page from
a target DOM to the semantic of a media player executing a playlist.
Similarly, we related the selection algorithm for picking one renar-
ration variant from a potential choice of many to affirming a rule
in a rule-engine metaphor.

5.3 Considerations for Design
Our DSL is proposed as a special purpose language, intended to
only meet very specific domain related goals, and use only problem-
domain relevant vocabulary. Ultimately, the DSL has to enable a
user to express a set of nodes, sourced from various web locations
for rendering them in a given sequence (like a playlist). Here are
some of our considerations in the design of our DSL:

• domain terminology vs programming terminology:Con-
cepts of renarration of some source to some target, or no-
tions of web page transformation of DOM flow do not just
directly map to any language abstractions. While languages
like JavaScript (using jQuery library) can support DOM ma-
nipulation, the implementation would be awkward and not
too intuitive to the domain. So, we choose to focus on domain
terminology.
• descriptive Vs functional: A playlist consists of 1) what to
play and 2) the order in which to play. We wanted to port the
same concept into our DSL. Here we wanted to only describe
what we wanted to render and not how the rendering has to
happen. Therefore, we opted for descriptive language.
• data vs algorithm: Again, using a playlist metaphor, we
wanted to have the video order to be separated from the
media player that displayed them. Similarly, for a web page
transformation, we want to separate out our node data from
the algorithm that executed and rendered them. So, Separa-
tion of Concern (SoC) technique is chosen.
• simple domain specifics vs powerful generic control
Wherever possible, if there was a choice in design, wewanted
to opt for a simple domain specific implementation over
powerful generic but nimble solutions. Maintaining a domain
focus may at times restrict us, but it could also give us the
benefit of allowing a end user to create and also analyze,
verify a web page transformation code. Here our choice is
for domain oriented terminology.
• input vs programming As our end users are programming
illiterate, we seek a declarative DSL over an executable lan-
guage. Declarative language can not only map easily to the
node or DOM type constructs in the problem-domain, but
they can also be turned into an input to some user interface
during the web page transformation. Here we opted for input
driven design.

In general, we want a DSL only for meeting the needs of our
niche application. In this limited domain, however, we are still
looking for more expressiveness and improved ease-of-use for end
users. The benefits we are seeking are: 1) ease in description of task
and detailing it, 2) a non-programming work environment 3) more
domain-specific terminology so that learning curve is small and
end user (but domain literate persons) are immediately productive.

5.4 Models used for Design
The operations that need support in our DSL can be inferred from
the requirements themselves. Requirement 1) indicates that DSL
has to be for end users. This implies that our DSL will be more
declarative and data structure oriented. This data-structure would
map to a intuitive playlist metaphor. Thus allowing easy navigation

ISEC ’18, February 9–11, 2018, Hyderabad, India Gollapudi et al.

Figure 5: A renarration script, essentially a DSL program, contains 3 segments. Segment 1 is about meta data, 2 is about the
actual playlist, and 3 is about conditions & rules which dictate selection of this variant.

Figure 6: Segment 2 or Node List part of the renarration script.

Figure 7: Abstract State Machine for our DSL.

for renarrators. Requirement 2) indicates that nodes must be ren-
dered in a sequence to form a target DOM. And these nodes could
be new injections or deletes or replacement. Again, we use the
playlist metaphor for this. Requirement 3) suggests that one renar-
rated variant must be selectable over a set of potentially multiple
alternative renarrations. For this we use the rule-engine metaphor.

5.4.1 Playlist metaphor. While playlist is related to songs and
videos, we felt that the same notions would apply to DOM nodes
and to their order of rendering. Moreover, even novice web users
are now-a-days familiar with the playlist metaphor - therefore, we
adopted this notion for our renarration work. The semantic model
for our playlist is given in Figure 7.

Our semantic model for the playlist is simplistic. The assumption
is that there are several nodes in a list that one needs to trickle
through (one by one) till the last for rendering a target DOM. This
has been depicted as start state (as the first node) and then going
through a sequence of Next states and finally reaching the last
node (depicted as Stop state). This model simply emphasizes the
importance of sequencing. One reason for having a simplistic model
is that, as we develop our DSL, we will have a start point for our
semantic model that we can progressively improve.

5.4.2 Rules & Rule-Engine metaphor. This metaphor emphasizes
the need to separate data from algorithm. We propose to use this

DSL for Web Renarration Camera Ready ISEC ’18, February 9–11, 2018, Hyderabad, India

Figure 8: Stylesheet selection algorithm.

notion for the selection of one variant from a set of several possible
alternatives (which may be present for a given web page). The
algorithm that we use for this is depicted in Figure 8.

The rule or condition needed for selection of an variant is to be
defined at the time of its creation by the renarrator. This condition
can be based on either user parameters or environmental conditions.
For instance, some rules may be set up to be affirmed only when a
particular user is logged on. Another rule can be setup to trigger
only when it is a weekend or after certain date. The former is a user
parameter, the latter is an environmental parameter.

The user parameters can be used to select an individual, a com-
munity of users or a institute. More user profile parameters can be
used to increase the control at the user level.

Environmental related information are things that system can
automatically infer (or system should know) during the course of
its operations. Time of day, type of browser used, IP address are all
examples upon which a selection condition (or rule) can be based.

A rule can also involve a combination of both user information
and environmental information.

As shown in Figure 8, the rule gets checked against some known
facts. The facts for a particular session are known by the rule en-
gine. The known facts are user’s name, IP address (location), host
institute etc. These maybe known through some sort of registra-
tion process. Similarly, environmental facts can be derived through
simple queries to the operational environment.

Given the facts and the selection condition, the rule engine can
simple run a test and declare a pass or fail in operation. A pass

could imply selecting that variant and a fail could imply fetching a
new variant from the available set. This process can be repeated
till the first renarration variant is selected.

5.5 Design Details
A script containing the DSL for the video renarration needs to
handle three components: The first component is the meta data of
the renarration script. Here is where the description of the variant,
the creator information are detailed. We call it the Segment 1 of the
script. See Figure 5 for a depiction of the overall script.

The second component is the node-list (or the playlist). Here
the nodes are presented in some sequence of a Target DOM for
rendering. We call this Segment 2 as shown in 6 The information
here is a series of nodes, where each node is a renderable entity
within a DOM of a page. Here is where the new or replacement
DOM for the target is inject, or the old one modified.

The third and the last component in this renarration script, called
Segment 3, has to do with selection criteria. Here is where the
renarrator can embed the rules or conditions for selection.

5.5.1 Grammar. We articulate our design for the Segment 2 or
node-list portion using a simple grammar. We use the following
EBNF notation (as defined in [23]):

”=” for definition,
”,” for concatenation,
”;” for termination,
”|” for alternation,
”[...]” for optional,
”{...}” for repetition, and
”e” for null

We present an indicative grammar as our focus is on a simplistic
DSL aimed at facilitating renarration of web pages from end users
perspective. Our notaion, see Listing 1, uses a top-down approach.
We start with a start symbol âĂĲtarget DOMâĂİ and reduce it
down to terminals by using intermediate productions.

target_DOM = e | node_list
node_list = {sequence_number, node_info}
node_info = node_description, node_action
node_description = media_type, source_URI,
media_type = âĂpptâĂİ | âĂvideoâĂİ | âĂpdfâĂİ | âĂhtmlâĂİ
node_action = (ppt, (start slide, end slide)) | (video,

(start time, end time)) | (pdf, ()) | (html, ())

Listing 1: Indicative grammar for a simple DSL

6 IMPLEMENTATION
With a playlist like representation our DSL may now be used as a
front-end device which provides input to our renarration oriented
applications. In this sense, the DSL is very much declarative. Since
it is not intended as a functional executable, our DSL code, now,
need not compile to any byte level code.

The DSL for a DOM structure can be built either textually or
graphically. That is, graphic icons could be used as an input lan-
guage to define our DSL. As we are initially focusing on creating a
core DSL for this first iteration, we kept our DSL implementation
simple and text based. Design phase has already indicated that the

ISEC ’18, February 9–11, 2018, Hyderabad, India Gollapudi et al.

terminology for the text of the DSL must be domain oriented. For
notation, we have relied on JSON format for this version of DSL.
Thus, a program in our DSL would be text based, small, declarative,
use domain-oriented language, resemble a playlist, and would be
formated in JSON notation. See Listing 2.

[{ // --------------------
// segment 1: meta-data
// --------------------
"seg1": {
"username": "naveen garg",
"user-id": "naveen",
"ren-url": "http://...",
"sss-desc": "This renarration is about...",
"sss-name": "data structures renarration" },

// --------------------
// segment 2: Node-list
// --------------------
"seg2": [{

"media-type": "video",
"media-url": "https://...",
"start": "1020",
"end": "2020" },

{
"media-type": "pdf",
"media-url": "https://..." },

{
"media-type": "ppt",
"media-url": "https://...",
"start-slide": "2" },

{
"end": "1020",
"media-type": "video",
"media-url": "https://...",
"start": "500" }],

// -----------------------------
// segment 3: Selection Criteria
// -----------------------------
"seg3": {
"env-info": {
"browser": "firefox",
"time-of-day": "" },

"user-info": {
"degree-program": "cse",
"user-college": "iiith",
"user-name": "sadhana virupaksha",
"year": "03" } } }]

Listing 2: A sample script file representing a DSL program.

6.1 Elements Descriptions
In this section we describe the elements that we have used for our
JSON structure. The types can be associated with LinkedData [10].
In such a case our DSL structure could become JSON-LD. We see
that as a natural next step progression from this fledgling effort.

6.1.1 Segment 1: Meta-data. This section captures meta data
of the variant as well as SSS creator’s (user’s) information. The
elements that are present here include

"username": (string) name of creator
"user-id": (string) user ID
"ren-url": (URI) points to source page being transformed
"sss-desc": (string) contains description of the variant
"sss-name": (string) name given to the variant

6.1.2 Segment 2: Node-list. This section captures the list of
nodes that the renarrated page must render as Target DOM.

"media-type": (one of "video", "ppt", "pdf", "html")
"media-url": (URI) an expath to the location of the resource
"start": (number) start time or start slide
"end": (number) start time or start slide

6.1.3 Segment 3: Selection Criteria. This section captures the
conditions (rules) needed for selection of this particular variant.
We focus on two categories of information that we use in the selec-
tion test: first category is environmental information. The second
category is user information.

In our implementation we could have used a rule engine directly.
However, for our first effort, we kept it simple and only utilized a
simple algorithm (ie. string match) to enable our selection. However,
in the future, we can enhance this to include a more powerful
selection engine.

"env-info": (set) environmental info
"browser": (browser type)
"time-of-day": (time)
"user-info": (set) user information
"degree-program": (string) degree abbreviation
"user-college": (string) institute name
"user-name": (string) user name
"year": (number)

7 PROTOTYPE
To validate our idea, we built a simple web page transformation
(renarration) application. The aim of the application is to renarrate
an existing online video course into a new narrative. The use case
we assumed was that a college lecturer wishes to take an existing
online video course (which is presumably quite long) and wishes to
renarrate that into a collection of events, which are now played on
the screen instead. The series of events forms the playlist (or node
list). Each event is a rendering of PDF, or a PPT, or a Video. In our
DSL vocabulary, these are media_types, sourced from a media_url.
For some media types (e.g. Video and PPT) we have some attributes
like start and stop times or slide numbers. This event-list forms the
segment 2 node-list of our renarration script.

For segment 1, we captured the renarrator’s name, id, institute
name etc. as user information; and, description, id, name as meta-
data for the script.

For segment 3, we specified a user name and a time of day item
for selection criteria.

With such a renarration script, our video online course "Data
Structures" was turned into a short playlist of video, ppt and pdf
events. The renarrationwas specified through the script. The render-
ing was integrated with processing logic of the DSL. The rendering

DSL for Web Renarration Camera Ready ISEC ’18, February 9–11, 2018, Hyderabad, India

Figure 9: A prototype application that renarrates a online video course.

was a simple display of the content on a iFrame of a web application.
Listing 3 showcases a pseudo code sample of our rendering logic.

function renderMedia(){
var new_src;
if(index >= 0 & index < event_list.length) {
var cur_event = event_list[index],
media_type = cur_event["media-type"],
media_url = cur_event["media-url"];
switch (media_type) {

case "video":
render(video_player, media_url + '&start=' +

cur_event["start"] + '&end=' +
cur_event["end"];

break;
case "pdf":

render(pdf_viewer, media_url);
break;

case "ppt":
render(ppt_viewer, media_url, start_slide);
break;

default:

alert("ERROR: Unkown Event was asked to be
rendered");

} } } }

Listing 3: Pseudo code representing the rendering logic.

Figure 9 shows the renarration application that we had built for
validating our DSL. Part (a) shows the welcome page where the URL
of the source page is entered. Renarrations for this URL are sought.
(b) shows the rendered view. What is depicted is the first event in
the node-list. In this case it is a video. The video has start and stop
times. Also, along with the player buttons, there are also previous,
next, last buttons available for user. These buttons navigate the user
from current to next to previous events respectively. (c) shows ppt
being rendered. (d) shows PDF event being rendered. The collection
of all (b)-(d) constitutes the node-list given by the renarration script.

8 DISCUSSION & INSIGHTS
Through the development of a core DSL for web page transforma-
tion that was instantiated for NPTEL online video course renarra-
tion, we learnt the following lessons:

ISEC ’18, February 9–11, 2018, Hyderabad, India Gollapudi et al.

(1) A domain oriented non-programming user interface is pos-
sible, but we need some common terminology for handling
of content, presentation and behavior. Focused studies and
further analysis may reveal more conventional but sticky
terms used in this area.

(2) Currently we used locally declared types for the definition
of our elements. Name, for instance, has been defined as a
String. Going forward, for a more robust and higher level
implementation, we need to work with more structured data
[10] Schemas10. For example, FOAF11.

(3) A playlist is a good metaphor for sequencing nodes. How-
ever, when it comes to web page renarration, we need to
deal with node hierarchies. A playlist metaphor may not be
able to handle this. Going forward, a tree model for a DOM
structure also may not suffice. A graph or an ontology type
structure should also be considered. This would require a
more sophisticated semantic model that is robust enough to
handle non-linear DOMs.

(4) In current implementation, we had integrated rendering logic
with DSL element processing. Going forward, we may need
to separate the logic into a DSL layer which is different from
execution of the DSL code.

9 CONCLUSIONS
Our aim was to explore the design of a DSL to facilitate renarration
by way of web page transformation. We presented the notion of a
web page as a set of components emphasizing the semantic view of
web content that emerged from unique our goals of rennaration.
We elaborated the domain of web page transformation, its elements
and presented the design of our DSL through a simple grammar.
We then presented an instance of the DSL for video-course renar-
ration from NPTEL video repository. The application of our DSL
for NPTEL video courses resulted in multiple renarrations of the
same course eventually leading to better accessibility. Finally, we
see our DSL as a core work leading to several extensions in web
page transformations including a suite of frameworks and tools.

ACKNOWLEDGEMENTS
We thank V. Sadhana Reddy, M. Raghav and MS Soumya for their
help in the implementation of this DSL work.

REFERENCES
[1] Eric Bae and James Bailey. 2003. CodeX: an approach for debugging XSLT trans-

formations. InWeb Information Systems Engineering, 2003. WISE 2003. Proceedings
of the Fourth International Conference on. IEEE, 309–312.

[2] Oscar Díaz. 2012. Understanding web augmentation. In International Conference
on Web Engineering. Springer, 79–80.

[3] TB Dinesh, S Uskudarli, Subramanya Sastry, Deepti Aggarwal, and Venkatesh
Choppella. 2012. Alipi: A framework for re-narrating web pages. In Proceedings
of the International Cross-Disciplinary Conference on Web Accessibility. ACM, 22.

[4] Ricardo De Almeida Falbo, Ana Candida Cruz Natali, Paula GomesMian, Gleidson
Bertollo, and Fabiano Borges Ruy. 2003. ODE: Ontology-based software develop-
ment environment. In IX Congreso Argentino de Ciencias de la Computación.

[5] Martin Fowler. 2010. Domain-specific languages. Pearson Education.

10http://schema.org/ and http://dublincore.org/ are couple of good structured data
initiatives
11Friend Of A Friend initiative structures human related data for use in social networks.
See http://www.foaf-project.org/

[6] William Frakes, Ruben Prieto, Christopher Fox, et al. 1998. DARE: Domain
analysis and reuse environment. Annals of software engineering 5, 1 (1998),
125–141.

[7] Danny M Groenewegen, Zef Hemel, Lennart CL Kats, and Eelco Visser. 2008.
Webdsl: a domain-specific language for dynamic web applications. In Companion
to the 23rd ACM SIGPLAN conference on Object-oriented programming systems
languages and applications. ACM, 779–780.

[8] Danny M Groenewegen and Eelco Visser. 2013. Integration of data validation
and user interface concerns in a DSL for web applications. Software & Systems
Modeling 12, 1 (2013), 35–52.

[9] Richard Han and John R Smith. 2000. Transcoding of the Internet’s multimedia
content for universal access. Communications, Networking, And Multimedia,
Multimedia communications: directions and innovations (2000), 261–296.

[10] Tom Heath and Christian Bizer. 2011. Linked data: Evolving the web into a global
data space. Synthesis lectures on the semantic web: theory and technology 1, 1
(2011), 1–136.

[11] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Pe-
terson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Technical
Report. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.

[12] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler,
and Steven Völkel. 2014. Design guidelines for domain specific languages. arXiv
preprint arXiv:1409.2378 (2014).

[13] Anneke Kleppe. 2008. Software language engineering: creating domain-specific
languages using metamodels. Pearson Education.

[14] Mangala Sunder Krishnan. 2009. NPTEL: A programme for free online and open
engineering and science education. In Technology for Education, 2009. T4E’09.
International Workshop on. IEEE, 1–5.

[15] E Maximilien, Hernan Wilkinson, Nirmit Desai, and Stefan Tai. 2007. A domain-
specific language for web apis and services mashups. Service-oriented computing–
ICSOC 2007 (2007), 13–26.

[16] Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and how to
develop domain-specific languages. ACM computing surveys (CSUR) 37, 4 (2005),
316–344.

[17] Alejandro Montes García, Paul De Bra, George HL Fletcher, and Mykola Pech-
enizkiy. 2014. A DSL based on CSS for hypertext adaptation. In Proceedings of
the 25th ACM conference on Hypertext and social media. ACM, 313–315.

[18] Lee Naylor. 2016. Restyling the Web Site: An Introduction. In ASP. NET MVC
with Entity Framework and CSS. Springer, 467–484.

[19] Gollapudi VRJ Prasad. 2017. Renarrating Web Content to Increase Web Accessi-
bility. In Proceedings of the 10th International Conference on Theory and Practice
of Electronic Governance. ACM, 598–601.

[20] Gollapudi V. R. J. Sai Prasad, Sridhar Chimalakonda, Venkatesh Choppella, and
Y. Raghu Reddy. 2017. An Aspect Oriented Approach for Renarrating Web
Content. In Proceedings of the 10th Innovations in Software Engineering Conference,
ISEC 2017, Jaipur, India, February 5-7, 2017. 56–65. http://dl.acm.org/citation.cfm?
id=3021466

[21] Gollapudi Vrj Sai Prasad, TB Dinesh, and Venkatesh Choppella. 2014. Overcoming
the new accessibility challenges using the sweet framework. In Proceedings of
the 11th Web for All Conference. ACM, 22.

[22] Jayanti Ravi and Haresh Jayantilal Jani. 2011. A critical study of nptel. In Tech-
nology for Education (T4E), 2011 IEEE International Conference on. IEEE, 35–42.

[23] R.S. Scowen. 1998. Extended BNF - a Generic Base Standard. Technical report
14977.

[24] Mark Simos and Jon Anthony. 1998. Weaving the model web: A multi-modeling
approach to concepts and features in domain engineering. In Software Reuse,
1998. Proceedings. Fifth International Conference on. IEEE, 94–102.

[25] Richard N Taylor, Will Tracz, and Lou Coglianese. 1995. Software development us-
ing domain-specific software architectures: CDRl A011âĂŤa curriculum module
in the SEI style. ACM SIGSOFT Software Engineering Notes 20, 5 (1995), 27–38.

[26] Scott A Thibault, Renaud Marlet, and Charles Consel. 1999. Domain-specific
languages: From design to implementation application to video device drivers
generation. IEEE Transactions on software Engineering 25, 3 (1999), 363–377.

[27] Peter Thiemann. 2005. An embedded domain-specific language for type-safe
server-side web scripting. ACM Transactions on Internet Technology (TOIT) 5, 1
(2005), 1–46.

[28] Arie Van Deursen, Paul Klint, Joost Visser, et al. 2000. Domain-specific languages:
An annotated bibliography. Sigplan Notices 35, 6 (2000), 26–36.

[29] David M Weiss et al. 1999. Software product-line engineering: a family-based
software development process. Addison-Wesley Professional; Har/Cdr edition.

http://dl.acm.org/citation.cfm?id=3021466
http://dl.acm.org/citation.cfm?id=3021466

	Abstract
	1 Introduction
	1.1 Goal of this Paper
	1.2 Layout of Paper
	1.3 Context: What is a Web Page?

	2 Literature Survey
	2.1 Network Based Approaches
	2.2 Browser Based Solutions
	2.3 Stylesheet Based Modification
	2.4 Existing DSL Based Approaches

	3 Problem Domain: Web Page Transformation
	4 NPTEL Video-Course Renarrations
	4.1 What is NPTEL?
	4.2 Goal for NPTEL Renarration
	4.3 End-user Experience
	4.4 Why this Exercise?

	5 Exploring DSL for Video-Course Renarration
	5.1 Decision
	5.2 Analysis
	5.3 Considerations for Design
	5.4 Models used for Design
	5.5 Design Details

	6 Implementation
	6.1 Elements Descriptions

	7 Prototype
	8 Discussion & Insights
	9 Conclusions
	References

