
Generation of Quizzes and Solutions based on
Ontologies - a Case for a Music Problem Generator

Aditi Mavalankar
IIIT Hyderabad

India

Email: aditi.mavalankar@students.iiit.ac.in

Tejaswinee Kelkar
IIIT Hyderabad

India

Email: tejaswinee.k@research.iiit.ac.in

Venkatesh Choppella
IIIT Hyderabad

India

Email: venkatesh.choppella@iiit.ac.in

Abstract—Generation of problem sets and quizzes forms an
important part of education technologies. Although some systems
have been built for quiz generation, they mostly focus on abstract
logic and mathematical constructs. Knowledge in other domains
is relational rather than propositional, and many systems use
dedicated knowledge databases. We present a method to present
this knowledge in the form of objective question sets and drills.
We implement a four-fold approach - ontologies, propositional
logic, similarity finding, and hierarchies - as a way to generate
quizzes as well as to solve human generated problems of a similar
nature. The architecture of this system is such that any knowledge
base can be turned into a vast number of diverse, complex
questions. We build this system for an ontology of North Indian
Ragas, and also test it on a smaller ontology of animals. We
demonstrate an approach to solving human generated questions
from the Ontology, and provide a possible sample space of
questions that can be generated through this method.

I. INTRODUCTION

In this paper, we propose a four-fold approach towards
generation of diverse quizzes and solutions, to be formulated
from knowledge ontologies. The use of ontologies has become
more and more common in educational tools and resources,
where semantic links and methods of linked data representation
are making educational tools more and more dependent on
structured data.

Quiz generation seems a natural next step towards us-
ing structured knowledge databases into technologies for ed-
ucation. We propose the addition of hierarchies from the
knowledge system and other relational schema to enhance the
questions generated. This combination of features is to be used
with propositional logic inference schemas to generate a richer,
diverse repository of possible questions. Knowledge relations
prune the sample space of randomized questions and answers
that can be formed through logical relations alone. Knowledge
relations and similarity finding also generate cognitively salient
questions, resulting in a usable case scenario.

In this paper, we implement this system for an ontology
for North Indian Classical Music as a part of the Virtual
Music Labs project [11], but the methods could be applied to
ontologies of various subjects to diversify the scope of system-
generated practice questions. We apply the same system on
a zoo animals ontology. We implement a forward parsing
approach to solve human generated questions of a similar
nature and finally report the increment in the possible types of
questions upon the addition of each module of the system.

Fig. 1. Architecture

A. Related Work

Constraint-based-models (CBMs) have often been used for
problem set generation which create and solve problem sets
from databases [1] [2]. [2] uses a path analysis, predicate and
constraint generation model to arrive at a possible problem
set. [3] also describes in detail, a constraint satisfaction model
to generate test data, although this isn’t directly applicable to
students as users. [4] deals with solving word problems using
programs that understand the logic structures embedded in the
question. A similar approach is taken for other approaches to
solve natural language math questions [5] in mathematics. [6]
and [9] mention some systems for generating language learning
questions from ontologies using complex syntax and CBMs.

In most of the work related to the propositional logic
approach towards quiz solving and generation, it is not clear
how it can be applied to real world knowledge and data. The
systems are tested on proof graph ontologies in some cases,
which deal with abstract chains of proposition interpretation
and conclusion, which, although may be suitable for pro-
gramming concepts, are not suitable for real world knowledge
systems. For example, table I represents some examples taken
from the methods used in [4]. When we try to apply this
abstract logic method to relational databases, we come up with
impossible, and sometimes incorrect scenarios. We therefore
require a system that can more easily intuit the knowledge
hierarchies in the music database itself. We create this using
hierarchies embedded in the ontologies, and implementing
relational constraints.

2015 IEEE Seventh International Conference on Technology for Education

978-1-4673-9509-0/15 $31.00 © 2015 IEEE

DOI 10.1109/T4E.2015.16

73

TABLE I. PREMISES AND CONCLUSIONS

Premise 1 Premise 2 Premise 3 Conclusion

Abstraction x1 ≡x2 x3 →x2 (x4 →x5) →x3 x1 →(x4∧x5)
Application Raga Yaman if and only if M

is present
Thaath Kafi implies M is not
present

(Raag Kafi implies g) implies
Thaath Kafi

Raga Yaman implies
(Thaath Kafi and not g)

Abstraction x1 (x1∧x2)→(x3∧x4) x2, (x4∧x5) x5
Application Raga Yaman Raga Yaman and g implies

Raga Kafi and M
g, M implies Thaath Poorvi Thaath Poorvi

II. OUR APPROACH

We intend this system for creating more and more solvable
examples for students of various disciplines. Here, we use two
ontologies to demonstrate this application. The first one is a
musical ontology containing data for constituents of several
ragas in North Indian music. This ontology describes a dense
network of several ragas and their properties. Each constituent
note present in a raga is represented. Its presence in the
constituent classification of the raga (thaat) is also known to
the ontology. The second is a database and details of several
animals found in a zoo, with descriptions of taxonomy, habitat,
food etc. Using these two databases, we are able to create quiz
questions that involve several types of logical formation, and
solve them with a dependable accuracy. Algorithm 1 represents
the algorithm used for structuring the system.

1) Ontology: We start from the creation of a relational
ontology from a knowledge base. This involves turning any
knowledge database into a network of nodes and edges. We
separate lists of different entities and relationships. We then
represent all the relationships with different kinds of labels.
These labels have embedded hierarchies. This is done in the
following manner:

1) Extract a list of all unique elements from the table
2) Extract a list of all possible types of relationships
3) Bind each element in the primary ID column to each

other column using the label for relationships
4) Output the lists as Nodes - including element and its

type; and Edges - including source, target and label

a) Data for Raga Ontology: The music Ontology con-
tains of 163 primary elements, with 365 nodes and 7005 edges.
The data are from a primary source of music learning - a
seminal treatise titled ’Kramik Pustak Malika’ by Dr V N
Bhatkhande [10]. The data are represented as shown below.

Edges file:
Source Target Label
id1 id2 thaat

Nodes file:
ID Class Label
id1 raga Bahar
id2 thaat Kafi

Using these two nodes, we can generate a simple question
such as: ’Kafi is the thaat of Bahar.’, to give to a student to
answer as True or False. Kafi represents one out of ten (thaats)
categories of ragas.

b) Basic question generation: In order to generate a
basic true/false question, an edge is randomly selected from

the files containing the edges. One of the truth-values - true
or false, is randomly chosen. If the answer to the question
is True, neither the source or the target is changed. If the
answer is False, there is another random selection of which
of the source or the target is to be changed. If the source
is to be changed, a new node, having the same class as the
source node, is selected, and the source node is substituted
with the new node. The same procedure is followed when the
target is to be changed. Additionally, when the source node is
changed, a verification is required that the new source node
does not have the same target node and label. This is because
two source nodes may have the same target node and label.
For example, Bahar and Bageshri have the same thaat, Kafi.
Thus, it is necessary to check that the newly generated source
node does not have the same label and target as the source
node.

2) Logic Constraints: In addition to asking basic questions,
combinations of edges could be used to ask a wide range of
questions. These combinations could be of any type. These
rules can be found in Table II and III.

The scope of such a knowledge ontology is more in terms
of the relations and combinations that it can produce as
opposed to the universal or existential enumeration. It is for
this reason that we focus this paper on propositional logic as
opposed to FOPL, which is more suitable for solving problems
mapped to a knowledge ontology by enumerating relations, and
the valencies of individual categories.

In this algorithm, an edge is randomly selected. One of the
rules of propositional logic is also selected and a row from its
truth table is picked. All rules except the negation rule require
two starting elements. When the negation rule is selected, a
procedure similar to the basic question generation is followed.
If the input truth-value is True, no changes are to be made.
However, if the input truth-value is False, it has to be decided
which of the source or the target nodes is to be changed.

When a rule other than the negation rule is selected, all
other rules require two input truth-values and another edge has
to be picked. However, if another random edge is picked, the
question formed may not be completely intuitive. For instance,
if the information stored in the second edge is ’Shadav-
Sampoorna is the jati of Tilak Kamod.’, and the rule selected
is the conjunction rule, with both input truth-values True, the
question formed would be ’Kafi is the thaat of Bahar and
Shadav-Sampoorna is the jati of Tilak Kamod. True/False’. It
is apparent that this question is not very intuitive as both the
edges have unrelated information. Thus, it becomes necessary
to have a connection between the edges so that the questions
formed are meaningful.

In order to have related edges, the second edge has to be
picked in such a manner that it has the same source or the

74

Data: n← nodes, e← edges,
operators← propositional − logic− operators,
inference− rules← all − dependencies,
classes← empty − dictionary,
n− grams← empty − dictionary,

for operator in operators do
Use operator on all truth-values and create truth-table

end
for instance, type in n do

if type in classes then
Append instance to classes[type]

else
Add type to classes, append instance to
classes[type]

end
end
for element in n[array] do

Generate all n-gram sequences of attributes;
end
for sequence,raga in n− grams do

Add sequence to n− grams;
Add raga to n− grams[sequence]

end
while True do

Pick a random edge from e;
Select choice from { propositional logic, inference,
querying };
if choice == propositional logic then

Select a rule;
Select row from rule with common source / target);
if common source then

Select edge from e with different source / target ;
for each edge selected do

if truth-value == False then
Generate target from class without
common edge;

else
continue

end
end

else
Select edge from e having same target, label but
not source;
for each edge selected do

if truth-value == False then
Generate new source from same class;
Verify: source, target do not share edge

else
continue

end
end

end
else

if choice == inference then
Select an inference rule and other edge;
Generate new target belonging to the same class
for False questions;

else
end

end
Select an instance from n− grams, a rule, two
elements from n− grams[instance];
for each raga selected do

if truth-value == False then
Select a element not present in
n− grams[instance]

else
continue

end
end

end

TABLE II. CONJUNCTION AND DISJUNCTION

Conjunction Disjunction

A B A and B A B A or B

T T T T T T
T F F T F T
F T F F T T
F F F F F F

TABLE III. NEGATION, EXCLUSIVE OR AND IMPLICATION

Negation Ex-Or Implication

A Not A A B A XOR B A B A =>B

T F T T F T T T
F T T F T T F F

F T T F T T
F F F F F T

same target and label as the first edge. If any of the truth-
values in the selected row is False, a false answer needs to be
generated. In order to do this, an instance of the same class is
selected and substituted. If the target and label are common,
we check that the newly generated source node does not have
the same target and label as the original source node. If the
source node is the same for both edges, a verification is not
required as different labels refer to different properties of the
source node.

3) Knowledge Relations: Even though the ontology con-
tains a lot of the information, we need to understand some
more information in terms of knowledge relations. This means
asserting some rules that we know despite them not being
in the ontology and embedding them into inference relations.
Implications that are purely based on logical relations can
vary between ontologies. For getting rid of this problem, we
enumerate some knowledge relations that are present as a
matter of the categories used for the ontologies.

1) Raag R belongs to thaath T implies it has svar S
(Thaath enumerates Svars)

2) R belongs to jati J implies Aaroha (/Avaroha) is A
(Aaroha can have n of characters defined by the jati
name)

3) R has A, implies it has S (Inference being presence
of svar)

4) R has A, implies belongs to T (Thaath enumerates
constituent notes.)

5) R has only svars S1, S2, S3, S4. (Inference being too
few notes for a raga)

The relationships that are usable from these knowledge
relations are the following:

1) Child category takes on the attributes of parent cate-
gory

2) Attributes of child 1 can be present in some child 2
category

We enumerate the dependencies between parent and child
nodes in this step. All hierarchical relationships might not
lead to inference. Examples of Propositional relations that it
is possible to infer from enumeration of knowledge relations
in this way:

1) Modus Ponens Child category 1 has child category
2, parent category 1, therefore attributes of child
category 3 are applicable to Child 1.

75

2) Modus Tollens Child category 1 has child category
2, but not parent category 1. Thus attributes of child
category 3 are not applicable to Child 1.

3) Hypoethetical Syllogism: Child 1 has Parent 1, Parent
one has GrandChild 2, therefore Child 1 also has
(grand)Child 2 property

4) Destructive Dilemma
5) Constructive Dilemma

4) N-gram Strings: Cognitive dependence on finding cat-
egories similar based on superficial features such as spellings
and structural similarity is high. In the case of a raga ontology,
the enumeration of characteristics is in terms of long strings
of notes. In order to be able to provide questions that are
increasing in the scale of difficulty, we want to provide
questions about two categories that are structurally similar.
We do this by computing n-gram strings for constituents of
the available categories.

For example, if Raga R1 has the notes: S, R, G, P, D,
S; Raga R2 has the notes: S, r, G, P, D, S - these two
ragas have surface structural similarities in terms of the 4-
gram representation in G, P, D, S. In order to form questions
that are of a higher difficulty, we first compute all possible
unique n-grams. We then isolate all such n-grams which have
more than one source node in common. We calculate n-gram
similarity indices for all pairs of ragas. The higher the n-gram
similarity, the more is the structural similarity between the
source nodes, and the more likely that the question set is hard.
This is applicable to ragas as words resemble note order in
ragas.

III. SOLVING HUMAN GENERATED PROBLEMS

We parse human generated problems in the same manner.
We employ a forward parsing model that separates and extracts
entities from ontologies and then binds them using different
kinds of knowledge relations. We go about this in the following
stages:

• Eliminating superfluous tokens such as articles and
pronominal referents

• Finding Conjunctions in the questions and dividing
them into three categories:

1) 1 source, 1 label, 1 target
2) 2 sources, 1 label, 1 target
3) 1 source, 2 labels, 2 targets

• Find the category the current question belongs to and
store the details of the source/s, target/s and label/s in
a dictionary.

• Initialize a list of outputs

1) For each source
2) For each label, target
3) Check if the tuple [source, target, label] be-

longs to the set of edges
4) If it does, append True to the list of outputs
5) Else, append False to the list of outputs

• Evaluate the expression consisting of all outputs from
the list of outputs as the arguments and the operator
obtained above to operate on these arguments

• Output the result of the above evaluation as the answer
to the given question.

IV. SAMPLE SPACE

The first three modules in the operation increase number
of questions by matching with all possibilities. The number
of basic questions that can be generated per edge through this
method are n to the power 2 * n. Thereafter, the number of
computations grows exponentially. For our ontology contain-
ing 305(n) nodes and 7005 edges, (2(14010∧n))∧4 questions
containing Or and And, Not and false edges can be formed.
However, not all questions and answers are useful from the
knowledge point of view. Knowledge relations are used to
prune the search space on a case by case basis so that we can
have a vast but contained and useful repository of questions
as mentioned in section II. 3).

V. CONCLUSION

We thus describe a system that can be used to create
drills and quizzes to be used by students directly, that can
be generated from any database. We use different modules
presented in the domain of automatic problem generation, and
prune the randomness of these results by capturing knowledge
relationships efficiently. The potential for generating a vast
number of problems from a small number of categories is
exploited.

REFERENCES

[1] Martin, Brent, and Antonija Mitrovic. ”Automatic problem generation
in constraint-based tutors.” Intelligent Tutoring Systems. Springer Berlin
Heidelberg, 2002.

[2] DeMilli, R. A. ”Constraint-based automatic test data generation.” Soft-
ware Engineering, IEEE Transactions on 17.9 (1991): 900-910.

[3] Gotlieb, Arnaud, Bernard Botella, and Michel Rueher. ”Automatic test
data generation using constraint solving techniques.” ACM SIGSOFT
Software Engineering Notes. Vol. 23. No. 2. ACM, 1998.

[4] Singh, Rishabh, Sumit Gulwani, and Armando Solar-Lezama. ”Auto-
mated feedback generation for introductory programming assignments.”
ACM SIGPLAN Notices. Vol. 48. No. 6. ACM, 2013.

[5] Ahmed, Umair Z., Sumit Gulwani, and Amey Karkare. ”Automatically
generating problems and solutions for natural deduction.” Proceedings of
the Twenty-Third international joint conference on Artificial Intelligence.
AAAI Press, 2013.

[6] Sung, Li-Chun, Yi-Chien Lin, and Meng Chang Chen. ”An Automatic
Quiz Generation System for English Text.” Advanced Learning Tech-
nologies, 2007. ICALT 2007. Seventh IEEE International Conference
on. IEEE, 2007.

[7] Rey, Guillermo lvaro, et al. ”Semi-automatic generation of quizzes and
learning artifacts from linked data.” (2012).

[8] Heilman, Michael. Automatic factual question generation from text. Diss.
Carnegie Mellon University, 2011.

[9] Sung, Li-Chun, Yi-Chien Lin, and Meng Chang Chen. ”The Design of
Automatic Quiz Generation for Ubiquitous English E-Learning System.”
Technology Enhanced Learning Conference (TELearn 2007), Jhongli,
Taiwan. 2007.

[10] Bhatkhande, Vishnu Narayan. Kramik pustak malika. Sangeet
Karyalaya, 1993.

[11] Kelkar, T., Ray, A., & Choppella, V. (2015, June). SangeetKosh: An
Open Web Platform for Music Education. In Proceedings of the The 15th
IEEE International Conference on Advanced Learning Technologies,
June 2015, Hualien, Taiwan.

76

