
Viewing algorithms as iterative systems and plotting their dynamic behaviour

Venkatesh Choppella∗, K. Viswanath† and P. Manjula‡

Software Engineering Research Centre
International Institute of Information Technology - Hyderabad, Hyderabad, India

Email:∗venkatesh.choppella@iiit.ac.in;†viswanath.iiithyd@gmail.com; ‡manjula.p@research.iiit.ac.in

Abstract—We revive an old but little explored idea about
how to think about algorithms and problem solving. Algorithms
are discrete dynamical systems, also called iterative systems.
Pursuing this point of view pays rich dividends. Important
concepts like state space, next-state function, termination,
fixed points, invariants, traces etc., can be mapped from
dynamical systems to elements of algorithm design. Many of
these concepts can be visualised through plots that trace the
dynamic behaviour of the algorithm.

Keywords-Algorithms, Programming, Dynamics, Computer
Science Education, Engineering Education

I. INTRODUCTION

Students have a brush with algorithms informally in their

first programming course. Then, they learn how to design

and analyse them in their data structures and algorithms

course. As is evident from the curricula recommendations by

ACM and IEEE[1] and the All India Council for Technical

Education (AICTE) [2], introductory programming courses

focus on the use of algorithms and algorithmic patterns

(recursion, iteration, etc.) while courses on algorithm and

data structures present problem solving and time and space

complexity. The formal notion of an algorithm and its

precise connection with problem solving is rarely presented.

Even well respected textbooks begin by describing algo-

rithms informally as a “sequence of computational steps that

transform input to output”[3], or as procedures that are “pre-

cise, unambiguous, mechanical, efficient and correct.”[4].

This description is unsatisfactory to the beginning computer

science student, because it does not give the student a clear,

general structure on how to construct an algorithm to solve

a problem and verify that the construction is sound.

This paper starts with the premise that algorithms are

iterative systems, also called discrete dynamical systems.

The subject of dynamics is age-old in physics. Dynamical

systems form the basis of studying various natural and

artificial phenomena (atmosphere, biology, economics, fi-

nance, etc.). The idea of dynamics is pervasive and it is

natural to ask the question of how dynamical systems relate

to computing. This question is an old one. As early as

1968, Knuth introduced a formal notion of a “computational

method” in his celebrated Art of Computer Programming

([5], Section 2.2). Although he did not use the term discrete

dynamical systems, his computational method is essentially

identical to it. Surprisingly, the connection was not explored

further in his book or elsewhere. Only much later, in

2008, discrete dynamical systems and the Mapcode method

were suggested as a unifying approach to study algorithmic

problem solving[6]. As far as we know, few professional

or academic bodies suggest approaching the subject of

algorithms and problem solving through dynamical systems

in their curriculum recommendations1.

II. ITERATIVE SYSTEMS

An iterative system is a set along with a next state

function on it. Many systems in science and engineering

are modeled as iterative systems. Iteration is a universal

concept in nature. Evolution is an iterative process with the

purpose of survival and adaption to environment. Nature’s

fractal geometry (clouds, coastlines, mountains, ferns) re-

veals itself best when understood as an iterative system.

Continuous dynamical systems in science and engineering

can be approximated by iterative systems. Students begin

the study of simple dynamical systems in their high school

and continue studying them through undergraduate courses

in mathematics, physics and mechanics.

Iteration is also pervasive in programming and computer

science. Iteration is a core concept in computing and is

classified as one of the threshold concepts in Computer

Science[7]. Students first see iteration through while loops

in their programming class. Yet iteration does not come

naturally to them[8]. Wing[9] has underscored that com-

putational thinking — of which iteration is an important

pillar — should involve conceptualising, not just coding and

learning the syntax of a language. Students of functional

programming are taught that iteration is a special form of

recursion called tail recursion. Many important algorithms

(searching, sorting, numerical) are specified via iteration. In

computer engineering, compilers and architectures are opti-

mised to make iteration run as fast as possible. Engineering

students write converging iterative loops to simulate and

solve differential equations. How can algorithmic problem

solving be viewed as constructing iterative systems and

visualising their dynamic behaviour? In the rest of this paper

we explore this question.

The idea of an iterative system is simple and easily

accessible to someone with equipped with high school level

1Dynamical systems should not to be confused with dynamic program-
ming, a popular topic in algorithms.

2013 IEEE Fifth International Conference on Technology for Education

978-0-7695-5141-8/13 $31.00 © 2013 IEEE

DOI 10.1109/T4E.2013.56

206

mathematical background in basic set theory and algebra.

An iterative system is a pair 〈X ,F〉 that consists of a

state space X and a next-state function F over X . Every

element x of X defines a trace, which is the infinite sequence

〈x,F(x),F2(x), . . .〉.
A fixed point a is an element of the state space for which

F(a) = a, i.e., it is left unchanged by F . The subset fix(F)
of X denotes the set of all fixed points of F . An element

x is said to terminate (at a) if there is a fixed point a of

F such that a = Fm(x) for some iteration m. The subset

term(F) of X denotes the set of elements of X that terminate.

F∞ : term(F)→ fix(F) is called the limit map of F .

A property P is any predicate over the state space. P is

invariant for an iterative system 〈X ,F〉 if for each x ∈ X ,

P is true at x implies P is true at F(x). The invariant plays

a key role in the correctness of an algorithm designed for

problem solving.

The key concepts of iterative systems have nice pictorial

representations that can be easily plotted. Some simple

pictures can be found in [6]. Evocative animations can

make the concepts even more accessible. In this paper, we

limit ourselves to presenting simple plots that, nonetheless,

convey important information about the iterative system.

There are several examples one can use to introduce

iterative systems to the student before showing how they

help in formulating algorithms for problem solving. Simple

examples from physics and mechanics can illustrate how

iterative systems can model physical processes. We consider

one such simple example: a ball moving along a horizontal

plane at a constant velocity (Figure 1).

A systematic modelling of this simple phenomenon re-

quires the student to first identify the main quantity of

interest: the horizontal position of the ball with respect to a

fixed origin. The next step would be to model the position as

a non-negative real number. Thus the state space X is the set

of non-negative real numbers. The next important decision

in the model is to assume that the position of the ball is

captured in a series of snapshots, rather than continuously.

This clearly positions the problem of modelling the phe-

nomenon as an iterative system. Since the ball is assumed

to move at a constant velocity, the ball at position x would

move one unit to the position x+ 1 at the next snapshot.

This gives rise to the next state function as F(x) = x+ 1.

Assuming that the initial position of the ball is x = 0, the

phenomenon of the rolling ball may be represented by the

trace 〈0,1,2, . . .〉 that goes off to infinity. An important task

in the model is to construct a plot, in this case a displacement

plot as shown in Figure 1. The graph plots the position of

the ball as a function of the iteration (zeroeth, first, second,

or third snapshot, etc.). This simple example illustrates the

notion of state space, the next state function and iteration.

A different scenario considers the problem of a ball rolling

on a billiards table. At the end of the table is a pocket. A

ball rolling on such a table eventually reaches the pocket,

Figure 1. Displacement plot for a ball moving on an infinitely long plane.

Figure 2. Displacement plot of a moving ball on a billiards table 5 units
long.

falls into it and stays there. This example nicely illustrates

the notion of a fixed point. Suppose the pocket is five units

from the origin of the table. The state space X now is the

closed interval [0,5] and the next state function F is

F(x) = 5 if 4≤ x≤ 5

= x+1 if 0≤ x < 4

Figure 2 is a plot that traces the position of the ball at

each iteration. When the ball enters the pocket, its position

remains fixed, i.e., it reaches a fixed point. It is clear that

x = 5 is the fixed point. An animation is useful to “see”

the phenomenon, but the plot shows the position with each

iteration. After the ball reaches the fixed point, the trace from

there on is a horizontal line. This is a universal property of

the trace fixed points and it is easy for the student to see this.

Many of the key ideas of iterative systems used in modelling

physical phenomena carry over to algorithm design, which

we explore next.

207

III. ITERATIVE SYSTEMS AND ALGORITHM DESIGN

Beginning computer science students are taught algo-

rithms as part of their problem solving course. The iterative

systems approach leads to a systematic framework for de-

signing an algorithm to solve a problem. This framework

is called the Mapcode framework in [6]. The Mapcode

approach consists of four parts : the specification of the

problem as a function, the specification of the resources

on the computational platform, the specification of the

algorithm as an iterative system, and finally, verification

that the iterative system terminates, and, upon termination,

implements the function that represents the problem. We

illustrate the iterative systems (Mapcode) approach by con-

sidering the problem of designing an algorithm to compute

factorial.

Problem specification:
The problem specification consists of identifying an input

space, an output space and a function from input to output.

1) Identify the input space A: For the factorial problem,

the input space is the set N of natural numbers.

2) Identify the output space B: For factorial, this is N.

3) Identify the problem as a specification map f from A
to B: This is simply the factorial function ! from N to

N.

A systematic formulation of the problem specification is

important not only during constructing algorithms, but also

during programming. The input and output space are part of

the signature of the program implementing the specification

map. The signature of program is an important part of its

documentation.

Platform resource constraints:
4) Identify platform resource constraints : Algorithms are

realised on computational platforms that support only

specific primitive data types and operators. We assume

that our algorithmic implementation of factorial has

recourse to natural numbers and the primitive opera-

tions of decrementing a positive natural number and

multiplication of two natural numbers.

Algorithm design needs insight into the structure of the

problem, ingenuity and creativity. The iterative system spec-

ification does not obviate this need, but guides the design

exercise by identifying specific milestones in the design. In

the factorial example, the insight comes from exploiting the

observation that n! can be broken down into two factors

n(n− 1) . . . j + 1 and j!. Thus a partial computation of n!

can be stored in a pair of natural numbers (j,a). The first,

j, starts at n and goes down to 0. The second, a, keeps

track of the partial answer so far n(n−1) . . . j+1. The final

answer is obtained when j becomes 0, and at that point, a
is equal to n!. Notice that at each stage the product a times

j! is equal to n!.

The insight of how factorial may be computed can now

be systematically presented as an iterative system.

Iterative system specification:
5) Identify the state space X : In this example, the state

space is N×N. An element of the state space is the

tuple (j,a).
6) Construct the next state function F : X → X : The state

(j,a) moves to (j−1,a∗ j) when j > 0. When j is 0,

F(0,a) = (0,a).
7) Construct the input map init : A → X : The input

map injects the input into a state space element. The

iterative system starts from (n,1), so init is the map

n �→ (n,1).
8) Construct the output map answer : X → B: The output

map projects the answer from a state space element.

For the factorial example, this is the function (j,a) �→
a.

The iterative system suggests the following general algo-

rithm:

function(a: A) returns B {
var x:X := init(a);
while (x != F(x)) {x := F(x);};
return answer(x);}

To obtain the algorithm for factorial, we substitute N×N
for X , (i, j) for x and use the functions init, answer and F
defined above.

Verification:
9) Verify termination: This step verifies that that for every

y ∈ A, init(y) terminates, i.e., init(y) is a member

of term(F). The proof proceeds by demonstrating

a measure function on term(F) that is positive but

decreases with each iteration, i.e., for all x in term(F),
M(x) > 0 and M(x) > M(F(x)) unless x is a fixed

point.

10) Verify correctness: This step shows that the iterative

system indeed computes the correct answer upon ter-

mination. More precisely, in this step, one is required

to show that the problem specification commutes with

its algorithmic implementation: f = answer◦F∞ ◦ init.
In long hand, this means that for each input n, init(n)
terminates at s such that answer(s) is f (n).

In the factorial case, the measure function is simply

M(j,a) = j. Correctness reduces to showing that for every

n the trace starting from (n,1) terminates at (0,n!). Con-

sider the predicate Pn = {(j,a)|a∗ j! = n!} and the trace

〈(n,1),F(n,1),F2(n,1), . . . ,Pk(n,1), . . .〉. It is easy to see

that Pn is an invariant. By induction on the iteration variable

k, all elements of the trace of (n,1) satisfy Pn. F∞(n,1), the

fixed point of the trace is (0,a), therefore a is equal to n!.

IV. ITERATION PLOTS AND PHASE PLOTS

The iterative systems approach just described lays down

the rules for designing an a correct algorithm to solve a

problem. Additionally, much insight could be gained by

208

Figure 3. Plot showing the state variables j and a as functions of number
of iterations in the iterative system solving factorial.

Figure 4. Phase Plot of the iterative system implementing factorial

simple experimentation and observation of how a system’s

state variables vary across iterations and also with respect

to each other.
While computing students are encouraged to trace their

programs, and often end up doing it any way as part of de-

bugging code, one rarely sees them plotting values. Figure 3

plots the evolution of j and a against the iteration index.

The plot of the factorial algorithm opens up many avenues

for experimentation, for example, one can now measure and

plot the number of iterations needed to reach the fixed point,

and this gives an empirical understanding of the efficiency

of the algorithm. The plot in Figure 3 also shows how j and

a reach a fixed point and stay there, much like the plot of the

motion of the moving ball in Figure 2. This illustrates the

similarity between physical phenomena and computational

phenomena. Such connections are invaluable to the student.
Scientists and engineers employ phase plots, which illus-

trate the trajectories in the state space. Such phase plots are

useful for locating which are the fixed points in the state

space, and also the sets of points that terminate at a given

fixed point. Figure 4 shows the phase plot for the factorial

iterative system. The state variable a is plotted against j.
Again, such a phase plot is very useful to the student: the

fixed points are seen to all align along the y-axis. Every

point in the state space can be seen to terminate. Such

visual understanding about the dynamics of the computation

complements, in an important way, the formal reasoning that

is part of algorithm design.

Sometimes it is more natural to express an algorithm using

recursion. E.g., 0! = 1 and n! = n∗ (n−1)! can be directly

translated into a recursive algorithm. The state space ap-

proach seems heavy-handed for such a simple example when

an elegant recursive solution exists. But the execution of the

recursive algorithm depends on a hidden data structure, the

stack. A translation of the recursive version to an iterative

system exposes the stack as a state variable whose dynamics

(growing and shrinking) can then be observed explicitly.

V. CONCLUSION

Algorithm design and problem solving can profit from

the theory of iterative systems. Further, much insight can

be gained in the algorithm design process by plotting the

state space’s variables. In the coming years, with the advent

of areas like cyber-physical systems, students of computer

science will need to depend more on such systematic ap-

proaches because physical systems are invariably described

by dynamical systems.

VI. ACKNOWLEDGEMENTS

We thank Jayashree Prasad and Santosh Adimoolam for

their helpful comments about the paper.

REFERENCES

[1] ACM and IEEE, “Computer Science Curriculum 2008: An
interim revision of CS 2001. Report from the interim
review task force,” http://www.acm.org//education/curricula/
ComputerScience2008.pdf, 2008, last visited 28 September
2013.

[2] AICTE, “Model curriculum for undergraduate
programme in computer science and engineering,”
http://www.aicte-india.org/downloads/MODEL SYLLABI
FOR UG Computer Sci Engg.pdf, 2000, last visited, 28
September 2013.

[3] C. E. Leiserson, T. H. Cormen, C. Stein, and R. Rivest,
Introduction to Algorithms. MIT Press, 1990.

[4] Dasgupta, Papadimitrou, and Vazirani, Algorithms. McGraw
Hill Higher Education, 2008.

[5] D. Knuth, The Art of Computer Programming. Addison-
Wesley, New York, 1968.

[6] K. Viswanath, An Introduction to Mathematical Computer
Science. The Universities Press, 2008.

[7] J. Boustedt, A. Eckerdal, R. McCartney, J. E. Mostrom, M. Rat-
cliffe, K. Sanders, and C. Zander, “Threshold concepts in
computer science: Do they exist and are they useful?” SIGCSE,
2007.

[8] S. Grover, “Learning to Code Isn’t
Enough,” https://www.edsurge.com/n/
2013-05-28-opinion-learning-to-code-isn-t-enough, 2013,
last visited 28 September 2013.

[9] J. M. Wing, “Computational thinking,” Communications of the
ACM, vol. 49, no. 3, March 2006.

209

