
Algebraic modelling of educational workflows

Ankur Goel
Software Engineering Research Lab

International Institute of Information Technology
Hyderabad, INDIA

Email: ankur.goel@research.iiit.ac.in

Venkatesh Choppella
Software Engineering Research Lab

International Institute of Information Technology
Hyderabad, INDIA

Email: venkatesh.choppella@iiit.ac.in

Abstract—Workflows are ubiquitous in educational ERP
and process management. The question we address in this
paper is how to specify and design verifiable workflows
for educational processes. To specify workflows, we borrow
a simple algebraic notation from computer science. We
illustrate the use of this notation through a series of typical
workflow examples. We show how an algebraic specification
is more expressive than a graphical specification. We then
show how these algebraic specifications may be represented
in the Scribble specification language, which has in built tools
for verification.

Keywords- Education, processes, Scribble, algebraic specifi-
cations, workflows

I. INTRODUCTION

Most educational institutions today are growing at a

rate like never before with many evolving into large scale

virtual organizations. This impacts the requirements of

educational software in terms of the scale and complexity.

One component of this complexity is the type of complex

workflows that capture educational processes.

Any implementation of enterprise resource planning

(ERP) for educational systems will need to model such

complex workflows. By workflows, we mean a collection

of coordinated tasks designed to carry out a well-defined

process typically involving multiple identities like teach-

ers, students, administrators, etc. [1]. Conducting an exam

is a workflow, even taking attendance can be expressed

as a workflow. In simple words, it is the “flow of work”,

which we try to formally specify in this paper. For the

purpose of this paper, we focus on the specification aspect

of workflows and leave out the implementation aspect.

We do not consider specific implementations of systems

that use the modelling methodology we specify. Interested

readers may refer to Pantoto [2], a software focused on

building such systems based on workflows that uses some

ideas based on the models described in this paper. Time

constraints are also an important factor while designing

workflows [3], but we leave that in the paper for the sake

of simplicity.

Graphical notation, e.g, Petri nets are a common way

of specifying workflows. However, we prefer to use an

algebraic notation, which is more general in that it can ex-

press more complex workflows. To this end, we use the π-

calculus to model and specify educational workflows [4].

π-calculus is an idealized concurrent programming lan-

guage which was originally designed to express inter-

process communication between computers. Workflows

also involve communication between entities (processes),

hence the π-calculus notation seems to be most suitable

for expressing workflows. Also, educational workflows are

mostly parallel and dynamic in nature, π-calculus being

designed for concurrent systems enables us to express

almost all workflows algebraically.

Workflows are expressed as a sequence of π-calculus

process definitions [5], followed by a π-calculus process

expression, usually a parallel composition, which denotes

the initial state of the workflow. Each user participates in

zero or more workflows as a π-calculus process in one

of a set of states. The interface of the state of each user

with respect to a workflow is given by a defining equation

specifying how that process evolves upon actions. We omit

the details of π-calculus for lack of space. See Milner’s

book [5] for details about the π-calculus.

We then express our example in a standard specification

language called Scribble [6]. Scribble is a formal yet

intuitive language to model workflows, with tools for

specifying and reasoning about communication protocols.

It is used to express π-calculus expressions, and provides

tools to verify protocols. These verification tools help us

with static as well as dynamic verification of workflows,

which is a very important reason for specification in the

first place.

Throughout the paper we work on the most common

example that everyone in education know about, the exam

workflow. The student and the teacher are the two roles

that make this workflow. The teacher sets the paper,

gives it to the student, who submits the solution to the

teacher, who then gives the grade back to the student. For

simplicity, we assume without loss of generality that the

exam consists of just one question and one corresponding

answer. We first model and specify this worfklow and

show the importance of specification, and then express

this process in Scribble, and show that verification, both

static and dynamic can be easily done using Scribble.

II. MODELLING AN EXAM WORKFLOW

Figure 1 specifies the workflow for the one student, one

teacher exam scenario. It consists of the π-calculus process

definitions, followed by a π-calculus process expression.

A single process definition is of the form:

A def= b. C

2012 IEEE Fourth International Conference on Technology for Education

978-0-7695-4759-6/12 $26.00 © 2012 IEEE

DOI 10.1109/T4E.2012.60

153

s-ready def= paper. s-writing

s-writing def= submit. s-waiting

s-waiting def= grade. s-done

t-ready def= paper. t-waiting

t-waiting def= submit. t-grading

t-grading def= grade. t-done

Initial Process Expression:
s-ready | t-ready

Figure 1. Exam workflow: one Student & one Teacher

where A and C are states and b is the channel of

transmission. A is the initial which on receiving/sending

some data on the channel b, transitions to the state C.

b implies that data is sent on the channel, otherwise

the data is received on the channel. It is important to

observe that we are only modelling the control flow on

the channels, not the actual data transferred.

In this section we discuss the example of the exam

workflow mentioned in the above section. We take two

use cases:

A. Simple use case: one Student & one Teacher

In this case, shown in Figure 1 at any given time, the

student is in one of the following possible states: ready to

take the exam s-ready, writing the exam s-writing, waiting

for the grade s-waiting, and done, s-done. The teacher is in

one of the following states: ready with the exam, t-ready,

grade

paper paper

submitsubmit

grade

t.ready

t.done

t.waitings.writing

s.waiting

s.done

s.ready

t.grading

Figure 2. Graph for a Student & a Teacher participating in a one-student,
one-teacher exam workflow

distributing the exam paper and waiting for the student to

submit the exam, t-waiting, grading the exam, t-grading,

and done, t-done.

Figure 2 demonstrates the workflow for a student (left)

and a teacher (right). The nodes of the graph are the

states, and the arrows are the transition between states.

The labels on the arrows are events, τ denotes a silent

transition caused autonomously. Each process proceeds

to the next state on a send/receive action only when

there is an interaction with another process executing a

complementary receive/send action respectively.

Let us consider the case of a student, who starts at

state, s-ready, receives the paper on the channel, and

transitions to state s-writing. On sending the submission

on the channel, he/she moves to the next state, s-waiting,

and on getting the grade (signal) on the channel, finishes at

the state s-done. The teacher has a very similar graph, refer

to Figure 2 for it. The specification of this interaction is

expressed by the defining process equations and an initial

process expression.

Now we show how this specification occurs alge-

braically.

s-ready | t-ready
=

paper. s-writing | paper. t-waiting
⇒

s-writing | t-waiting
⇒
...

B. Use case : N students & one teacher

Now consider the more common use case involving n
students taking an exam. The teacher distributes n exam

papers to the n students, waits for all of them to complete

and submit their answers, and then returns them to each

student with a grade.

si-ready def= paperi. si-writing

si-writing def= submiti. si-waiting

si-waiting def= gradei. si-done

t-ready def= τ. t-dist({})
t-dist(A) def=

∑
i paperi. t-dist(A ∪ {i})

t-dist(N) def= τ. t-waiting({})
t-waiting(A) def=

∑
i submiti. t-waiting(A ∪ {i})

t-waiting(N) def= τ. t-grading({})
t-grading(A) def=

∑
i gradei. t-grading(A ∪ {i})

t-grading(N) def= τ. t-done

Initial Process Expression:
s1-ready | . . . | sn-ready | t-ready

Figure 3. Exam workflow: n Students & one Teacher

154

t.ready

t.dist({}) t.dist({1})
paper_1

t.dist({1,2})
paper_2

t.dist({1,2...n})

t.waiting({})

t.waiting({1})

submit_1

t.waiting({1,2})
submit_2

t.waiting({1,2...n})

t.grading({})
t.grading({1})

grade_1

t.grading({1,2})
grade_2

t.grading({1,2...n})t.done

Figure 4. An attempt at constructing a Graph for a teacher participating in a n-student, one-teacher exam workflow

Figure 3 specifies the workflow for the n-student, one

teacher exam scenario. At any given time, the ith student is

in one of the following possible states: ready to take the

exam si-ready, writing the exam si-writing, waiting for

the grade si-waiting, and done, si-done. The teacher is in

one of the following states: ready with the exam, t-ready,

distributing the exam to the students, t-dist, waiting for

all the students to submit the exam, t-waiting, grading,

t-grading, and t-done. The state t-dist is parametrized by

the parameter ’A’ that denotes the set of students who have

already received the question paper, t-waiting by the set

of papers already submitted, and t-grading by the set of

papers already graded.

The teacher starts in the state, t-ready, transitions to the

state t-dist with an empty parameter list, sends the paper

to each student (in any order) on the channel, and reaches

the state t-dist parametrized with a subset A of the set

{1,2...n} abbreviated N. On the distribution of the papers,

the teacher transitions into the t-waiting state again with an

empty parameter list. On receiving the submissions from

all students on the channel (again in any order), it moves

to the t-waiting parametrized by the set {1,2...n}. Next,

on receiving all the grades it transitions to the t-grading
state again with no parameters. All the grades are then

sent out to the students (in any order), and on reaching

the t-grading state with the parameter as the set {1,2...n},

the teacher finally transitions into the t-done state and

exits. We can see that because of any number of random

orderings possible, it is very difficult to represent the flow

of states in a single graph.

In Figure 4, we make an attempt to show the graph for

the workflow of a teacher in this case, where there are n
students taking the exam. The graph for a student in this

case isn’t shown, as it is similar to the one in Figure 2. The

nodes of the graph shown refer to the parametrized states.

This graph assumes that the ordering in which the exam is

distributed,collected & graded is {1,2...n}. However this

is only one case, we can calculate that there will be O(n!)

such cases.

C. Discussion on the exam workflow example

With this example, we can see how one can model

and algebraically specify workflows which in this case

was an exam workflow. This was a simple example, but

such a method of formalization can be extended to large

educational process as well. Intuitively, from this example

it seems that all possible educational processes can be

expressed by these ideas of ”flow of work“.

We also observe that graphical notation of modelling

can’t handle complex workflows, in turn proving the power

of an algebraic notation such as π-calculus.

We see that any system built on this algebraic speci-

fication will essentially be just an implementation which

follows this algebraically specified workflow, taking ac-

tion based on the current state and the information on

the communication channel. This is a big advantage of

expressing workflows in an algebraic way. It also allows

such specifications to be used to statically and dynamically

validate the protocol the system is following. This is

shown in the next section.

III. SCRIBBLE: SPECIFICATION LANGUAGE BASED ON

π-CALCULUS

In the previous section, we defined the workflow as-

sociated with conducting an exam. In this section, we

show how we can specify the exam workflow in Scribble

[6]. Scribble is a specification language that provides

its own protocol validator to do runtime monitoring of

implementations, as well as a static protocol type checker.

155

Listing 1 shows us the simple example workflow of one

student and one teacher.

The code is self-explanatory, we define a protocol

PaperChecker which takes as in input, two roles, a student

and a teacher. The paper is sent on the channel from the

teacher to the student. Then the submission is sent back to

the teacher, and finally the grade is sent from the teacher

to the student.

The power of Scribble comes because any implementa-

tion of the workflow (in java) we write can be verified

statically as well as dynamically via the protocol type

checker and protocol validator respectively.

import Paper ;
import Grade ;
import Submit ;

p r o t o c o l Pape rChecke r (r o l e Teacher , r o l e
S t u d e n t) {

Paper from Teache r to S t u d e n t ;
Submit from S t u d e n t to Teache r ;
Grade from Teache r to S t u d e n t ;
}

}
Listing 1. Scribble Protocol Specification for exam workflow

IV. RELATED WORK

Business Process Execution Language (BPEL) [7] is

a language which allows interactions with web services

by using interfaces. Web services are modular functions

that operate independently to accomplish business tasks.

BPEL is used to model business processes by composing

a workflow through an orchestration of web services.

A business process modeled via BPEL has its initial

actions described in it. Once an orchestration is defined

and the business process is deployed, it is not possible to

add user behaviour to the business process.

One of the many issues related to workflow specification

is the reachability of a state. Lyng et al. have designed a

monitoring system [8] to find out whether the execution

can reach an invalid state in clinical workflows. In addition

to the satisfiability and reachability checks with a model

checker like Spin [9], they developed a flow monitor to

notify if the system reaches an invalid state during a run.

Petri nets are widely allocated for modelling work-

flows [10], as they feature a state-based approach towards

modelling. They have good analysis techniques available.

However, they are cases in which Petri nets are not suitable

for modelling reactive systems, which most educational

process are.

Orc is an orchestration language for achieving dis-

tributed and concurrent operations by providing uniform

access to computational services through sites [11]. Sites

in orc are analogous to channels or names in pi-calculus.

Orc is developed to address communication of distributed

sites, where as a formal model written in pi-calculus does

not limit or assume the location of the processes running.

V. CONCLUSION

We have proposed a way to model and specify edu-

cational workflows.We have used a well known notation,

the π-calculus that allows workflows to be expressed alge-

braically, and should have good verification tools available.

We have shown why specification of workflows is such a

powerful tool for the design of technology for educational

processes.
As future work, we are in the process of building a

system, as an extension of the Pantoto system [2], which

takes this workflow specification as the input, and gives

us a system which “interprets” the workflow, and runs the

system as per the workflow.

REFERENCES

[1] S. Mukherjee, H. Davulcu, M. Kifer, P. Senkul,
and G. Yang, “Logic based approaches to workflow
modeling and verification,” 2003. [Online]. Available:
http://www.scientificcommons.org/42916013

[2] S. Uskudarli and T. Dinesh., “Pantoto: A model for manag-
ing communities in the context of semantic web.” in ICSD:
International Conference on Semantic Web & Digital Li-
braries, February 2007.

[3] J. Eder, E. Panagos, and M. Rabinovich, “Time constraints
in workflow systems,” in Proceedings of the 11th In-
ternational Conference on Advanced Information Systems
Engineering, ser. CAiSE ’99. London, UK, UK: Springer-
Verlag, 1999, pp. 286–300.

[4] F. Puhlmann and M. Weske, “Using the pi-calculus for
formalizing workflow patterns,” in In Proceedings 3rd
International Conference on Business Process Management
(BPM 2005). Springer Verlag, 2005, pp. 153–168.

[5] R. Milner, A of Mobile Processes. Cambridge University
Press, 1992.

[6] K. Honda, A. Mukhamedov, G. Brown, T.-C. Chen, and
N. Yoshida, “Scribbling interactions with a formal founda-
tion,” in In ICDCIT, LNCS. Springer, 2011.

[7] F. Curbera, “Composed services and WS-BPEL,” in Ency-
clopedia of Database Systems, L. LIU and M. T. ZSU, Eds.
Springer US, 2009, pp. 413–418.

[8] K. M. Lyng, T. Hildebrandt, and R. R. Mukkamala, “From
paper based clinical practice guidelines to declarative
workflow management,” in Business Process Management
Workshops, ser. Lecture Notes in Business Information
Processing, W. Aalst, J. Mylopoulos, N. M. Sadeh, M. J.
Shaw, C. Szyperski, D. Ardagna, M. Mecella, and J. Yang,
Eds. Springer Berlin Heidelberg, 2009, vol. 17, pp. 336–
347.

[9] G. Holzmann, “The model checker spin,” Software Engi-
neering, IEEE Transactions on, vol. 23, no. 5, pp. 279 –295,
may 1997.

[10] R. Eshuis and J. Dehnert, “Reactive petri nets for workflow
modeling,” in Application and Theory of Petri Nets 2003.
Springer, 2003, pp. 296–315.

[11] D. Kitchin, A. Quark, W. Cook, and J. Misra, “The orc pro-
gramming language,” in Formal Techniques for Distributed
Systems, ser. Lecture Notes in Computer Science, D. Lee,
A. Lopes, and A. Poetzsch-Heffter, Eds. Springer Berlin
/ Heidelberg, 2009, vol. 5522, pp. 1–25.

156

