
A case for process-driven models for e-governance architectures

T B Dinesh
Janastu Bangalore, India
dinesh@janastu.org

Venkatesh Choppella
IIIT Hyderabad, India

venkatesh.choppella@iiit.ac.in

Abstract—Because of their potentially wide impact, e-
governance systems beg the question of validation. How do we
know an e-governance implementation does what it is supposed
to do? How do we even know what it is supposed to do? Such
questions are routine in the field of software engineering and
are referred to, respectively as verification and specification.
Verification and specification are tied together via a model.
Software engineers call this model-driven design. The models
most suitable for e-governance are a combination of data and
processes. We introduce such a process-driven meta-model and
show how it could usefully describe systems with e-governance
behaviour.

Keywords-E-governance, specification, validation, model-
driven design, process, meta-model

I. INTRODUCTION AND MOTIVATION

Critical and wide-scale impact of e-gov systems: E-
governance software is defined as software implemented for
governance. What distinguishes e-governance software from
other software? It is its potential for critical impact on a large
number of people. An incorrect or unpredictable behaviour
in the functioning of this software therefore could have
large, negative impact not only on citizens directly using
this system, but other systems connected to it.

E-governance service-oriented and process-driven: Three
aspects of E-governance applications are worth attention:
First, their service-oriented nature. This naturally implies
that the recipients of the services often include ordinary
citizens, who are not passive, but are active agents of
interaction with the governance via the application. This
leads to the second and more technical feature of salience
in E-governance applications. These applications should be
understood as processes (in the computer science sense of
the term). Third, e-governance processes manage data, which
is often interfaced as documents and forms accessible via the
web.

Impact of interfaces on data: Earlier forms of E-
governance applications moved from documents on paper to
documents in a database. These databases were accessible
by database administrators. On the one hand, the web (and
potentially mobile) has opened the opportunity for the public
access of these documents, and is often the most used
interface to the application. On the other hand, internal
access and management, including mutations to these doc-
uments is also through the same web interface. Therefore,

the footprints of mutation of records are also accessible via
the web.

Impact of process-view on data: One important issue
about documents and records is ”who modifies what when?”
Database-driven architectures handle this issue using access
rights, granting permissions, etc. Databases are designed
for documents, not processes. For example, users and their
states evolve over time, which affects their access rights to
the database. Unfortunately, traditional data models do not
capture the dynamic nature of users, their states with respect
to the workflow state of the processes that together define
an application.

Objective of paper: The goal of this paper is to argue
for a model-based approach to the design of e-governance
systems to address the related problems of specification and
verification of e-governance software. The paper begins with
making the case for why the specification and verification
assume importance in the realm of e-governance. We then
present a meta-model of e-governance systems. Systems are
modeled as processes, in the computer science sense. One
advantage of this model is that it lets us think of families of
systems with e-governance behaviour.

Approach of paper: The approach we adopt in this paper
emphasises models of e-governance based on processes. The
important issue of data security comes in as an issue con-
cerning information components and individualized access
rights to them, which evolve with the state of the process.
Then, drawing on principles of software engineering, we
introduce a meta-model for implementation of e-governance
software. The meta-model defines the vocabulary and com-
ponents needed for building e-governance models. Models
are specified as abstract state machines. Interactions are
modeled as transitions. The systems’s data model is built
as a collection of documents, fields and views.

Non-objectives of the paper: The goal of this paper
is to argue for a model-based approach for e-governance
applications and present a simple meta-modeling framework
for specifying e-governance models. We do not discuss
how e-governance implementations are to be designed or
verified. Our focus is on the need for constructing models
that embed the semantics of the application against which
implementations may be verified. Furthermore, we do not



claim that the meta-model is complete in the sense that all
e-governance models may be specified in this framework.
Several other plausible alternatives for meta-models exist.
We compare our approach with these other meta-modeling
frameworks. But we make no attempt to relate our meta-
modeling framework with a software modeling environment
for constructing e-governance models and reasoning with
them, nor do we present a methodology or technology for
verifying the implementations of the models. These clearly
belong to future work.

Paper roadmap: The rest of the paper is divided into
the following sections: In Section II, we motivate the main
ideas of the paper with a small example of an e-governance
scenario in which an ombudsman attends to a citizen
complaint. In Section III we present a meta-model for e-
governance systems. In Section IV we specify an interacting
process model the citizen complaint example and discuss
the evolution of the citizen complaint workflow in terms
of its security properties. In Section V, we briefly survey
related efforts at model-driven approaches for e-governance.
In Section VI, we conclude by highlighting future work.

II. MOTIVATING EXAMPLE

Complaint reddressal by ombudsman: To help ground
some of the ideas in this paper, we consider a small
e-governance example: a citizen filing a complaint to a
government ombudsman who reddresses the complaint. The
citizen then provides feedback about the handling of the
complaint. The example consists of two agents: the citizen
and the ombudsmen interacting with each other and a doc-
ument which evolves with the addition of fields (complaint,
reddressal, feedback). The evolution of the interaction drives
the evolution of the document. A further concern is security:
once the citizen has submitted the complaint, is she allowed
to modify it? Is anyone else viewing the document (let’s
say the database administrator) allowed to modify the com-
plaint? Is someone else in the ombudsman’s office allowed
to make notes about the complaint? Thus an application
implementing this example needs to ensure that specific parts
of the document are altered in specific ways by specific
users at specific times (and not before or after). Clearly,
the constraints about who can access what when needs to
be specified explicitly so that we may then verify whether
the implementation is conforming to the specification. A
typical e-governance application may consist of hundreds
of such access constraints. The first step in designing an
e-governance system is therefore to build a model of the
system where such rules are made explicit.

III. A META-MODEL FOR E-GOVERNANCE SYSTEMS

The e-governance framework (technically, the meta-
model) we describe here provides a uniform vocabulary
and a set of reasoning principles for specifying domain-
specific models. The framework we describe is primitive, but

with enough richness to capture simple, non-trivial models
involving processes interacting through events and sharing
data. Our metamodel is based on the process calculus of
communicating concurrent systems (CCS) [1]. For example,
we do not employ the full generality of channels available
in the pi-calculus[2].

Processes and data: The framework model of e-governance
we present consists of two primary components: processes
and data. Each e-governance application is then modeled as
a choreography of processes working to maintain some data.

States and events: Processes have state and interact with
each other via events. Events could be external or internal
to a process, or be the interaction between two processes.
The occurrence of an event potentially changes the state of
one or more of the process participating in the event.

Documents and fields: The primary unit of data in the
metamodel is a field. A field has a name and a value.
A document is a collection of fields. Fields have content.
The content of the field may change, and this change may
be effected by any agent over the process lifecycle of the
agent. A single field may be modified by multiple agents
at different times. (We ignore concurrent updates, whose
handling is outside the scope and relevance of this paper).
Fields have their own identities and may be shared across
documents.

View evolution: To implement the notion of “who can see
what when”, we define the notion of permissions and views.
A permission is either invisible (–), read-only (r-), write-
only (-w), or read-write (rw). Each agent can view a subset
of the documents in the system. For each document, the
view consists of a set of fields. Furthermore, the view also
determines the permission of the field. The key aspect of
the meta-model is that the view is a function of the agent’s
state.

IV. MODEL FOR OMBUDSMAN REDDRESSAL

Citizen and ombudsman processes: In this section, we
build a model for the citizen-ombudsman interaction. The
model consists of two agents, citizen and ombudsman. The
diagram in Figure 1 shows the state evolution. The citizen
agent is in one of the four states cf (filing), cw (waiting), ce

(evaluating), or cd (done). The ombudsman agent is in one
of the four states or (ready), oh (handling), ow (waiting), or
od (done).

Interaction events: The two processes interact at event
boundaries. Each event is in a send/receive pair. The three
events in the system are complaint, response, evaluation.
The citizen starts the “filing” while the ombudsman is in
the ready state. The citizen then executes asynchronously a
“send complaint” event and transitions to the “waiting” state.
The ombudsman meanwhile, executes a “receive complaint”
event, which takes the ombudsman to the “handling” state.



Figure 1. State machine for citizen complaint reddressal by Ombudsman

The other transitions are similar and self-explanatory. Note
that we can view the system as one big process consisting
of the citizen and ombudsman subprocesses. The states of
the big process are a subset of the cross product of the
subprocess states

{(cf , or), (cw, oh), (ce, ow), (cd, od)}

A. Data model evolution

Components of the data model: The pair of state machines
specify the high-level control structure of the e-governance
application. The next component of the complaint reddressal
model is the specification of the data model. We assume that
both the citizen and the ombudsman access a common data
model, which evolves according to the combined states of the
processes. The data model consists of the set of documents,
a set of fields, and a view, which for a given system state,
an agent, and the document, shows the set of fields and their
permissions.

Initial state of the data model: The data model consists
of one document called the “reddressal form.” However,
the evolution of the citizen reddressal process results in the
addition of new fields to the data model. Initially, i.e, in the
system state (cf , or), there is one field complaint. In this
state, the citizen’s view of the reddressal form form consists
of the complaint field, which is readable and writable. The
ombudsman does not see the reddressal form or any fields
in it. Fields that are readable and writable are marked in
CAPITALS and colored olive green. Fields that are read-
only are marked brick red.

View after send/receive complaint interaction: Once the
citizen sends the complaint (eg., by submitting it via an

State Citizen-view Ombudsman-
view

(cf , or) COMPLAINT

(cw, oh) complaint complaint,
ANSWER

(ce, ow) complaint,
answer,
EVALUATION

complaint, answer

(cd, od) complaint,
answer,
evaluation

complaint,
answer,
evaluation

Figure 2. Data model evolution

online form, or by email, etc.), and the ombudsman receives
it, each can view the reddressal form as consisting of the
complaint field, which is now read-only. In addition, the
ombudsman is handling the complaint by writing into the
new, answer field. This field is invisible to the citizen and
therefore not part of her view.

View after send/receive answer interaction: Once the
ombudsman answers the complaint, and the citizen receives
it, each can continue to view the reddressal form’s complaint
and answer fields, but neither can edit them any longer.
The citizen now begins to fill out an evaluation field in the
reddressal form.

View after send/receive evaluation interaction: The cit-
izen completes the evaluation and sends it. The ombuds-
man receives it. Both parties are now done. The fields
complaint,answer and evaluation are now visible (but not
editable) to both the citizen and the ombudsman.

Model formalizes access: There are several things to note
about the above example. First, the model abstracts the
control flow of the complaint reddressal process. The views
formalize the constraint that access to the system’s data
(form and its fields) is governed by the state of the system, or
correspondingly, the state of its agents. Note that the access
is not governed just by who has access, but also when.
(Access in one state does not guarantee access in a later
state.)

Variants of model: It is easy to generalize the above model
for variants of the problem: the ombudsman handling mul-
tiple complaints simultaneously, the ombudsman delegating
the task of reddressal to others in the government office
who get to add annotations and notes to the complaing,
submitting multiple reddressal forms etc. The meta-model
is capable of handling each of these variants.



V. RELATED APPROACHES AND RESEARCH WORK

A vast number of e-governance systems today are data-
centric, reflecting the need for e-governance applications to
be front ends to data repositories. The main model for data-
repositories are relational and object-oriented data bases.
Relational databases have been standard technology for
over two decades now. Object and object-relational models
better capture the semantics of data in terms of operations
(methods) embedded in objects as opposed to data records,
which lack behaviour.

Two more recent approaches have been highly successful:
SOA [3], [4], and process-workflow [5]. SOA, or service
oriented architectures help define a system as a web service
which interacts with other services over standard web-
based (HTTP) protocols. The second approach, which is
closer in nature to the work in this paper, is the business
process-workflow approach. Business-process workflows are
popular in Enterprise Resource Planning (ERP) systems.
Standards like BPEL (Business process execution language)
and BPMN (Business process modeling notation) are used
to specify business processes and implement them on ex-
isting commercial enterprise servers. Semantic models for
process workflows has been an important research problem
in computer science. Petri-net models, a well-established
formalism for studying concurrent systems, have been used
to model e-governance systems [6]. Software Engineering
approaches include the use of state charts [7]. More recently,
approaches based on the pi-calculus [2] have been used to
specify workflows [8]. Specialized programming languages
like Orc provide a high-level language with block structure
to specify workflow orchestrations over web [9]. However,
all the workflow models cited here focus on control and
process-flow aspects of the application. Integration with
existing data models is not addressed. Such integration of
the data model and the process model is necessary to address
issues such as security and access rights.

E-governance systems in the small: The meta model
presented here grew out of an implementation of a generic
forms based, information management application for school
governance [10] built on the Pantoto software [11], [12].
Various other contexts that use Pantoto show e-governance
behaviour [13]. School information management is about
lifting the paper/books based management of admissions,
grades, parent-teacher meetings, library, et.al., while the ex-
isting processes and workflows are also lifted appropriately,
to electronic/computer/internet medium. While a number
of e-governance platforms are developed in the small and
in the large by ethusistic proponents of e-governance, it
begs to ask what is it about these software that make
them specifically e-goverance software other than the fact
that most of them deal with data of their citizens which
other wise would be in the books in their offices. Of
particular interest to us, is how secure and reliable these are

compared to the traditional approach and how the software
development process has been able to properly reflect and lift
the traditional processes. A specific instance of this issue is
indicated by the realistic concern of the principal of a school
who was afraid of potential mutations by a system admin
of student grades without her knowledge. Considering the
school grades process as a formal process workflow model
would help in two ways. First, the model could be treated as
a specification that prohibits such a possibility by precisely
outlining the states that are permitted to mutate the grades
in question. Second, any actual mutation by a “third party”
immediately manifests as a violation of the specification of
the grades process.

VI. FUTURE WORK AND CONCLUSIONS

Future work: The meta-model we have presented here
is simple but low-level. Higher-level abstractions and con-
structs are needed to make the meta model practical enough
for specifying full-fledged, large-scale e-governance sys-
tems. We are currently investigating extending the simple
meta-modeling language presented here to handle complex
workflows integrated with views.

Model-based approach for e-governance: We have argued
for a model-based approach to E-governance architectures in
this paper. We have presented a simple process-based meta-
model for modeling routine e-governance transactions. The
meta-model emphasizes the primacy of processes, which in
turn drive the view of the system’s data. This may be seen as
a contrasting alternative to the more data-centric approach
to e-governance. We have, through an example, shown how
models can be constructed to capture the control flow of
an e-governance system, and the evolution of the data view
according to that control flow. Admittedly, our model needs
further development to handle different workflow patterns,
needs to address interoperability, and needs to be integrated
into a verification environment. However, our goal in this
paper is to highlight the need for such a model-based
approach, and show how the initial steps of such an approach
might look.

Conclusion: Government organizations investing on e-
governance applications should view e-governance applica-
tions in terms of behaviour vis-à-vis their conformance to a
specification of the e-governance problem. Formal modeling
is a useful way to approach this and governments should
demand the models along with the implementations. (It’s like
demanding the blue prints along with the building.) Process-
based models are one alternative in the design and modeling
space that implementors should consider adopting. Modeling
is necessary for building robust implementations accountable
to the requirements of the e-governance problem.

REFERENCES

[1] R. Milner, A calculus of communicating systems. Springer,
1982, iSBN:0387102353.



[2] ——, Communicating and Mobile Systems: the π-calculus.
Cambridge University Press, 1999.

[3] B. Chakravarti and V. Varma, “An enterprise architecture
framework for building service oriented e-governance portal,”
nov. 2008, pp. 1 –6.

[4] U. Marjit, R. Roy, S. Santra, and U. Biswas, “A semantic web
service based approach to e-governance,” aug. 2009, pp. 232
–237.

[5] H. Smith and P. Fingar, “Workflow is just a pi process,”
2003. [Online]. Available: http://www.bpm3.com/picalculus

[6] W. Ge and R. Nan, “Modeling and research of the e-
government system based on petri net,” in International
Conference on Computer Science and Software Engineering
(CSSE 2008). IEEE, 2008, pp. 1086–1089.

[7] D. Harel, “Statecharts: A visual formalism for complex sys-
tems,” Science of computer programming, vol. 8, no. 3, pp.
231–274, 1987.

[8] F. Puhlmann, “On the suitability of the pi-calculus for
business process management,” in Technologies for Business
Information Systems, W. Abramowicz and H. Mayr, Eds.
Springer, 2007, pp. 51–62.

[9] W. R. Cook, S. Patwardhan, and J. Misra, “Workflow patterns
in Orc,” in Coordination Models and Languages, ser. Lecture
Notes in Computer Science, P. Ciancarini and H. Wiklicky,
Eds., vol. 4038. Springer, 2006, pp. 82–96.

[10] T. B. Dinesh and S. Uskudarli, “Community software ap-
plications,” in Home Informatics and Telematics: ICT for the
Next Billion, ser. IFIP International Federation for Information
Processing, T. M. A. B. K. Venkatesh, A.. Gonsalves, Ed.
Boston: Springer, 2007, vol. Volume 241, pp. 103–112.

[11] S. Uskudarli and T. Dinesh, “Pantoto: A participatory model
for community information,” in Proceedings DyD’02: Devel-
opment by Design 02, 2002.

[12] S. Uskudarli and T. Dinesh., “Pantoto: A model for managing
communities in the context of semantic web.” in ICSD: In-
ternational Conference on Semantic Web & Digital Libraries,
February 2007.

[13] T. B. Dinesh and A. Bala, “Towards an appropriate software:
Motivations and case studies,” in Governance of rural infor-
mation and communication technologies : opportunities and
challenges, H. Misra, Ed. New Delhi : Academic Foundation,
2009.


