
Preliminary Explorations in Specifying and Validating
Entity-Relationship Models in PVS

Venkatesh Choppella
Indian Institute of Information
Technology and Management

– Kerala
Thiruvananthapuram, India

Arijit Sengupta
Wright State University

Dayton, OH, USA

Edward L. Robertson
Indiana University

Bloomington, IN, USA

Steven D. Johnson
Indiana University

Bloomington, IN, USA

ABSTRACT

Entity-Relationship (ER) diagrams are an established way
of doing data modeling. In this paper, we report our experi-
ence with exploring the use of PVS to formally specify and
reason with ER data models. Working with a text-book ex-
ample, we rely on PVS’s theory interpretation mechanism to
verify the correctness of the mapping across various levels of
abstraction. Entities and relationships are specified as user
defined types, while constraints are expressed as axioms. We
demonstrate how the correctness of the mapping from the
abstract to a conceptual ER model and from the conceptual
ER model to a schema model is formally established by us-
ing typechecking. The verification involves proving the type
correctness conditions automatically generated by the PVS
type checker. The proofs of most of the type correctness
conditions are fairly small (four steps or less). This holds
out promise for complete automatic formal verification of
data models.

Keywords

Data modeling, entity-relationship diagrams, mapping, for-
mal methods, PVS, type checking, data refinement.

1. INTRODUCTION
Data modeling is a fundamental prerequisite for the phys-

ical design and implementation of a database system. Data
modelers analyze the user’s requirements and build data
models, which are conceptual representations of real world
enterprises.

A data model consists of a set of type, function, rela-
tion and constraint definitions. This model is validated for
consistency and then used as a reference for further design
refinements and implementation. The model serves as a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AFM’07, November 6, Atlanta, GA, USA.
c©2007 ACM ISBN 978-1-59593-879-4/07/11...$5.00

specification to which the database design, usually speci-
fied in the form of a set of schemata, must conform. The
most popular conceptual modeling framework is the entity-
relationship (ER) model [11]. An ER model consists of a col-
lection of entities, and attributes of and relationships among
those entities. In addition, the model specifies constraints
between its various entity and relationship sets.

A good modeling framework should allow a designer to
(a) express and reason about data models at a high level
of abstraction in a semantically precise manner, (b) validate
the correctness of models across various levels of abstrac-
tion, and (c) explore design alternatives within correctness
boundaries. In this paper, we explore the first and second
problems: how to specify models at varying levels of ab-
straction using a specification language and then validate
mappings between abstraction levels. We plan to address
the third issue in a future paper.

1.1 Expressivity and correctness of mapping
in ER modeling

ER models have an underlying formal semantics based
on the elementary theory of sets and relations. Data mod-
elers, however, prefer to employ ER diagrams, which are
annotated, undirected graphs. The vertices in these graphs
are the objects of the model: attributes, entities, and re-
lationships. These objects are connected by edges which
related these objects. In addition, an ER model consists
of constraints. A limited set of decorations on vertices and
edges encode key attributes, and participation and cardi-
nality constraints. The diagrammatic approach allows for
easy construction and intuitive understanding of models.
But such notation does not easily extend to encoding ar-
bitrary constraints arising from complex business logic. As
a consequence, it becomes difficult for designers to express,
much less prove, the correctness of their conceptual design
and its mapping to a relational implementation. Design-
ers therefore employ natural language to informally express
nontrivial constraints. Natural language complements dia-
grammatic notation, but it is often the source of inaccuracies
and ambiguities in specifications.

1.2 Specifying data models in PVS
How well can we apply the principles and techniques from

formal specification languages to the ER data modeling prob-

23 October 2007

1

lem? We address this question by exploring the use of the
Prototype Verification and Specification (PVS) language [2]
for doing ER modeling. We look at two specific subprob-
lems: (a) how to specify and reason with a data model at
the abstract, ER and schema level, and, (b) how to prove
that the mapping from abstract to ER and ER to schema is
correct. Our preliminary experience indicates that the gen-
erality of PVS’s specification language, its rich type system
and libraries allow us to reason with our models in ways not
easily possible with ER diagrams. Furthermore, this reason-
ing forms the basis of verifying the correctness of mapping
between an ER model and the relational schemata that rep-
resent its implementation.

The mapping across different layers of abstraction of the
ER model is an instance of the more general problem of data
refinement: abstract, uninterpreted types and objects over
those types at higher levels of abstractions are provided in-
terpretations at the lower level of abstractions. To be sure,
the problem of specification and the step-wise refinement to
implementation has a long history in formal methods, soft-
ware engineering and data models as well. This includes for-
mally specifying the “Norman’s database” example in VDM,
RAISE and COLD-K [16, 18, 20, 37, 39]. Additionally, lan-
guages like Z, B and Alloy also come with various levels of
automated support for data refinement and formal valida-
tion [1, 4, 22].

PVS is a modern, general purpose specification language
with support for higher-order logic, dependent types, and
interactive theorem proving environment for verification and
typechecking. It is therefore natural to explore how well ER
modeling can be done in PVS.

All specifications, including requirements, conceptual data
models and logical models are expressed as theories in PVS.
A theory is a basic PVS module and consists of declarations
that define types, functions, axioms and theorems. Model-
specific data constraints are encoded as axioms. Hard-to-
anticipate constraints governing interactions between the
various elements of the model are generated automatically
type correctness conditions (TCCs). The modeler interac-
tively verifies these TCCs to ensure that the model is con-
sistent. The specification’s correctness depends on verifying
the type correctness conditions. For the example discussed
in this paper, the majority of TCCs have proofs that are
quite small and elementary. In general, however, the TCCs
can be hard or even impossible to prove. In the latter case,
this means that the specification is erroneous. PVS type-
checking is undecidable, and the modeler needs to interac-
tively prove theorems to typecheck a specification. Reason-
ing also proceeds by the modeler declaring, and then inter-
actively proving lemmas about the specification. The result
is a more powerful notation that allows arbitrary constraints
to be expressed precisely and unambiguously using a high
degree of abstraction.

For specifying ER models, we rely on the use of modeling
constructs like functions and their various kinds (injections,
partial functions, etc.). For example, it seems more nat-
ural to model certain weak entities using functions rather
than relationships. In going from abstract to ER to schema,
we apply data refinement to map uninterpreted types first
to nested record types and then to flat record types. PVS
implements data refinement via the principle of theory inter-
pretations, an idea from universal algebra and logic in which
the axioms of one theory are interpreted as theorems by an-

Figure 1: ER diagram slice of Ullman and Widom
example [35, Chapter 2].

other [31]. We specify the example model as three separate
theories, each capturing on level of abstraction: the first
is an abstract model in which entity, attribute and relation
types are parameters. The second is an ER model defined by
instantiating the abstract theory with concrete record types
for entities and relations. The third is a schema model in
which entities and relations are implemented as flat records.
We then verify the correctness for the two mappings: from
abstract to ER, and ER to schema. This allows one to for-
mally state and prove that a data model at one level of
abstraction implements another, more abstract model.
Outline of rest of the paper:

The rest of the paper consists of the following sections:
Section 2 introduces an example model using an ER dia-
gram and points to specific limitations of the diagram ap-
proach. Section 3 defines an abstract data model for the
mini-example. Section 4 defines a record-based ER model
for the mini-example. Section 5 presents a schema-based
model of the mini-example. The next section, Section 6 ad-
dresses the issue of correctness of the mapping from the ER
to the schema level. Section 7 discusses the results of the
implementation: the sizes of the theories, and effort involved
in proving type correctness conditions and user defined lem-
mas. Section 8 compares our work with existing approaches
to data modeling in the literature. Section 9 discusses future
work and Section 10 concludes the paper.

2. EXAMPLE ER MODEL
We pick the movies example data model from Ullman and

Widom’s introductory college text on databases to explore
the approach of formally specifying and verifying a data
model [35, Chapter 2]. Due to limited space, we focus on a
self-contained slice of the example. The ER diagram of the
slice is shown in Figure 1. The PVS specification of the com-
plete example is discussed in an earlier technical report [12].
PVS source code for the complete example is available on-
line [3].

The model consists of studio and crew entities. A crew
is a unit of a studio. A studio has a name and address,
whereas a crew has a number.

An ER model defines the types of attributes, entities and
relationships. It also defines specific sets of entities and re-
lationships over these types. The diagram does not distin-

23 October 2007

2

guish between the types and the sets. When formalizing the
model, however, we need to make the distinction explicit.
Therefore, we use Studio, Crew, and Unit Of for entity
and relationship types, and studios set, crews set, and
unit of set for entity and relationship sets, respectively.

2.1 Constraints
In addition to the entity and relationship types and sets,

in the model shown in Figure 1, the following four con-
straints (of a total of twelve for the entire example) govern
the model’s semantics: key constraints (1) and (2), cardinal-
ity constraint (3), and referential integrity constraint (4).

1. The Name attribute is a key for studios set.

2. The Num (number) attribute and studios set, via
the unit of set, together form a key for crews set.
(See cardinality constraint 3.)

3. unit of set is many-to-one from crews set to studios set.

4. For every element in unit of set, the constituent
components belong to studios set and crews set.

In ER diagrams, key constraints are expressed by under-
lining key attribute names. crews set is weak; its key is
defined in terms of attributes from supporting relationships
in which it participates. In ER diagrams, double borders
identify weak entities and their supporting relationships. A
many-to-one relationship has a round arrow on the edge at
the “one” end the relation. Referential integrity means that
the entity components of each element of a relationship set
belong to their respective entity sets.

In the following sections, we build PVS theories for the
example model, one for each level of abstraction: a param-
eterized abstract level, ER level, and the schema level. The
type structure, entity set structure and the axioms used to
specify the constraints vary for each level of abstraction.

3. ABSTRACT DATA MODEL
An abstract specification of a data model consists of the

following kinds of objects:

• Attributes, entities, and relationship types, which are
all uninterpreted. We call these abstract entity types.

• Maps, which connect abstract entity types. Some maps
– those in correspondence with edges in the ER dia-
gram, but oriented – are called projectors.

• Abstract entity sets, which are sets over the corre-
sponding entity types.

• Constraints, which are specified as axioms over ab-
stract entity sets, abstract entity types, and maps, and
other functions.

The abstract specification is parameterized on the ab-
stract entity types, maps, and the abstract entity sets.

Continuing the example, movie param abstract (List-
ings 3.1-3.7) is a specification of the abstract model of the ex-
ample parameterized by abstract entity types (Listings 3.1),
projectors (Listing 3.2), and abstract entity sets (Listing 3.3).
The keyword TYPE+ posits that the types are non-trivial
(i.e., nonempty). The abstract entity types and projectors
together match the structure of the ER diagram in Figure 1.

Listing 3.1 (Abstract entity types).

movie_param_abstract[Name, Address, Num: TYPE+, 13

Studio, Crew: TYPE+, UnitOf: TYPE+, 14

Listing 3.2 (Projectors).

studio_name: [Studio -> Name], 15

studio_address: [Studio -> Address], 16

crew_num: [Crew -> Num], 17

unit_of_crew: [UnitOf -> Crew], 18

unit_of_studio: [UnitOf -> Studio], 19

Listing 3.3 (Abstract entity sets).

studios_set: set[Studio], 21

crews_set: set[Crew], 22

unit_of_set: set[UnitOf]]: THEORY 23

3.1 A theory for keys
In ER modeling, a key is an attribute or set of attributes

that uniquely determine an element of an entity set. In our
formalization of the abstract model, a key is identified not
by an attribute name, but by a key function, which is often
built using projectors that are injective. This is the natural
way to model keys, since attributes of an entity are accessible
using projector functions emanating from the entity.

Listing 3.4 (A theory for keys).

key[D:TYPE, S:set[D], R:TYPE, f:[D -> R]]: THEORY 25

BEGIN 26

ASSUMING 27

restriction_is_injective: AXIOM 28

injective?[(S), R] 29

(restrict[D,(S),R](f)) 30

ENDASSUMING 31

32

image_f_S: set[R] = image[D, R](f,S) 33

I: TYPE = (image_f_S) 34

h(s:(S)): I = f(s) 35

36

h_is_bijective: LEMMA bijective?(h) 37

getForKey: [I -> (S)] = inverse_alt(h) 38

forKey(r: R): lift[(S)] = 39

IF (member(r,image_f_S)) 40

THEN up(getForKey(r)) ELSE bottom ENDIF 41

END key 42

The theory for keys in Listing 3.4 defines the condition
under which an abstract attribute entity type R is a key
for uniquely identifying entities in a set S of elements of
type D. The goal is to identify a key function that maps
a key to a value in the entity set, if it exists. The function
f : D → R is often a projector, retrieving an attribute
in R from an entity in D. The elements of R qualify as
keys provided the restriction of f to S is injective. The
axiom in the theory captures this assumption. To see why
this formulation implies the existence of a key function, let
I ⊆ R be the image of f on S. Since f restricted to S

is injective, h : S → I defined as equal to f over S is a
bijection. Therefore the function g from R to the lifted
domain S⊥ is a key function. g extends the bijective function
h−1 : I → S to the domain R and range S⊥. For an element
k ∈ R, g maps k to h−1(k), if k is I, and to ⊥ otherwise.

We now instantiate the key theory with different entity
types and sets to obtain specific key constraints. The axiom
in Listing 3.5, line 33 posits the injectivity of the restriction

23 October 2007

3

Listing 3.5 (Key constraint on studios set).

studio_name_injective_on_studios_set: 33

AXIOM 34

injective?[(studios_set), Name](35

restrict[Studio, (studios_set),Name] 36

(studio_name)) 37

38

IMPORTING key[Studio, (studios_set), 39

Name, studio_name] AS studio_key 40

41

studio_for_name: [Name -> 42

lift[(studios_set)]] = studio_key.forKey 43

Listing 3.6 (Referential integrity of unit of set).

unit_of_ref_integrity: AXIOM 49

FORALL (u: (unit_of_set)): 50

member(unit_of_studio(u),studios_set) 51

AND member(unit_of_crew(u),crews_set) 52

of the projection studio name to studios set. The axiom
justifies the existence of a key function studio for name

mapping names to the lifted domain of studios (line 42).

3.2 Referential integrity constraints
Referential integrity is specified in terms of projector func-

tions and abstract entity sets. If f : A −→ B is a projector
from abstract entity type A to B, and a and b are, respec-
tively, the entity sets of type A and B, then, referential
integrity on the projector f emanating from the abstract
entity type A of a is the property that ∀x ∈ a.f(a) ∈ b.
Coming back to our example, the axiom on line 49 of List-
ing 3.6 is the referential integrity constraint on the projec-
tors of unit of set.

3.3 Cardinality constraints
We consider the specification of the cardinality constraint

on unit of set as an example.
In Listing 3.7, the image of the derived projector func-

tion unit of crew studio on unit of set is used to de-
fine the binary relation unit of (line 62). The cardinal-
ity constraint on unit of set boils down to declaring that
the binary relation is a total function from crews set to
studios set. This yields two projectors crew studio and
crew studio num.

3.4 Weak entities and foreign keys
Listing 3.8 shows how weak entities and foreign keys are

specified at the abstract level. The injectivity of the de-
rived projector crew studio num is used to axiomatize the
key constraint on crews set and yield the key function

Listing 3.7 (Cardinality constraint on unit of set).

unit_of_crew_studio(u:UnitOf): 58

[Crew, Studio] = 59

(unit_of_crew(u), unit_of_studio(u)) 60

61

unit_of: set[[Crew,Studio]] = 62

image(unit_of_crew_studio,unit_of_set) 63

64

function_unit_of: AXIOM 65

FORALL (cr: (crews_set)): 66

exists1(LAMBDA(s: (studios_set)): 67

unit_of(cr,s)) 68

Listing 3.8 (Key constraint on crews set).

crew_studio(cr: (crews_set)): (studios_set) 74

= the(s:(studios_set) | unit_of(cr,s)) 75

76

crew_studio_num(c:(crews_set)): 77

[Studio, Num] = 78

(crew_studio(c), crew_num(c)) 79

80

crew_studio_num_injective_on_crews_set: 81

AXIOM 82

injective?[(crews_set), [Studio, Num]] 83

(crew_studio_num) 84

85

% crew_for_studio_num % key 86

Listing 4.1 (Attr. and Entity Types).

movie_rec: THEORY 13

BEGIN 14

% Attribute Types 15

% --------------- 16

NameEntity: TYPE+ 17

AddressEntity: TYPE+ 18

NumEntity: TYPE+ 19

20

% Entity and Relationship Types 21

% ----------------------------- 22

StudioEntity: TYPE = [# name: NameEntity, 23

address: AddressEntity #] 24

studio_entity_name(s:StudioEntity) 25

: NameEntity = s‘name 26

studio_entity_address(s:StudioEntity) 27

: AddressEntity = s‘address 28

29

CrewEntity: TYPE = 30

[# num: NumEntity, studio: StudioEntity #] 31

crew_entity_num(c: CrewEntity) 32

: NumEntity = c‘num 33

crew_entity_studio(c: CrewEntity) 34

: StudioEntity = c‘studio 35

36

UnitOfEntity: TYPE = 37

[# crew: CrewEntity, studio: StudioEntity #] 38

unit_of_entity_crew(unit_of: UnitOfEntity) 39

: CrewEntity = unit_of‘crew 40

unit_of_entity_studio(unit_of: UnitOfEntity) 41

: StudioEntity = unit_of‘studio 42

END movie_rec 43

crew for studio num. The entity set crews set is weak;
the projection function crew studio num involves unit of set,
which is an abstract entity “foreign” to crews set.

4. RECORD-BASED ER MODEL
At the abstract level discussed in the previous section,

we do not distinguish between attribute, entities and rela-
tionship types. Nor is the internal structure of these types
revealed. At the ER level, entity and relationship types are
records. Attribute types, are, however, left uninterpreted
because their structure has no role to play at this level. The
record types may be nested, as in the case of relationship
types. The record types for the example are defined in the
theory movie rec (Listing 4.1). Projectors now correspond
to record selectors. The infix back quote operator in the
PVS code indicates record selection.

4.1 Instantiating abstract to ER
The ER model is obtained from the parameterized ab-

stract model by instantiating the abstract theory with suit-
able types, both concrete and abstract (uninterpreted). The
theory movie er (Listings 4.2–4.3) specifies the ER model

23 October 2007

4

Listing 4.2 (Entity and Relationship sets).

movie_er: THEORY 14

BEGIN 15

IMPORTING props 16

IMPORTING movie_rec 17

18

studios_entity_set: set[StudioEntity] 19

crews_entity_set: set[CrewEntity] 20

unit_of_entity_set: set[UnitOfEntity] 21

Listing 4.3 (Instantiating movie param abstract).

IMPORTING movie_param_abstract[23

NameEntity, AddressEntity, NumEntity, 24

StudioEntity, CrewEntity, UnitOfEntity, 25

26

studio_entity_name, studio_entity_address, 27

crew_entity_num, 28

unit_of_entity_crew, unit_of_entity_studio, 29

30

studios_entity_set, crews_entity_set, 31

unit_of_entity_set] 32

END movie_er 33

for the example. First, the theory movie rec containing
record type defintions and another helper theory is included
(Listing 4.2, line 17). Next, (Listing 4.2, lines 19–21), con-
stants for entity and relationship sets are defined but their
value is left unspecified, that is, they remain uninterpreted.

Finally (Listing 4.3), the theory movie param abstract

is instantiated. As a result, the abstract types, projectors,
abstract entity sets and constraints between them are all
instantiated to use the record types and projectors of of
movie rec This completes the definition of the ER model.
Note that the only things left unspecified are the uninter-
preted attribute types (Listing 4.1) and the uninterpreted
entity set constants (Listing 4.2). The correctness of the
mapping of the abstract model to the record-based ER model
is discussed in Section 6.1.

5. SCHEMA-LEVEL IMPLEMENTATION
The schema level types are flat (non-nested) record types.

Sets over schema types are called tables in database par-
lance. All types at this level are concrete primitive types.
The choice of what concrete types to use (primitive types
such as varchars, integers, etc.) is a design decision that is
specific to each schema implementation. In our example, we
choose to implement the name and address attribute types
as strings. The schema level specification of our example
is given in the movie schema theory (Listing 5.1, lines 20–
22), which starts by grounding the attribute types. These
types define an interpretation (lines 24-27) for the unspeci-
fied types in movie rec. The choice of primitive types, how-
ever, does not affect the specification at this level. Schema
types are defined as flat records (Listing 5.2). Note that
some of the schema types, like StudioSchema, rely on al-
ready flat record types. Type refinement across the three
levels is summarized in Table 1.

As a design decision, we choose to identify the schema
types UnitOfSchema and CrewSchema. This optimization
effectively eliminates the need for a separate unit of table

(Listing 5.3).

Theory Abstract ER Schema

Attributes - - Primitive

Entities - Nested Flat

Relationships - Nested Flat

Table 1: Data type refinement in theories across
levels of abstraction. Types are either uninterpreted
(denoted by ‘-’), primitive, flat records, or nested
records.

Listing 5.1 (Interpreting Attribute Types).

movie_schema: THEORY 15

BEGIN 16

IMPORTING props 17

IMPORTING function_results 18

19

NameP: TYPE = string 20

AddressP: TYPE = string 21

NumP: TYPE = nat 22

23

IMPORTING movie_rec{{ 24

NameEntity:= NameP, 25

AddressEntity:= AddressP, 26

NumEntity:= NumP}} 27

Listing 5.2 (Schema Types).

StudioSchema: TYPE = StudioEntity 29

30

studio_schema_name(31

s:StudioSchema): NameP = s‘name 32

33

CrewSchema: TYPE = 34

[# num: NumP, studio_name: NameP #] 35

36

crew_schema_studio_name_num(37

c: CrewSchema): [NameP,NumP] = 38

(c‘studio_name, c‘num) 39

40

UnitOfSchema: TYPE = CrewSchema 41

Listing 5.3 (Table Definitions).

studios_table: set[StudioSchema] 45

crews_table: set[CrewSchema] 46

unit_of_table: set[UnitOfSchema] = crews_table 47

48

% Derived Tables 49

% -------------- 50

studio_names_table: set[NameP] = 51

image(studio_schema_name,(studios_table)) 52

studio_name_crew_nums_table: set[[NameP,NumP]] = 53

23 October 2007

5

Listing 5.4 (Key Constraint on studios table).

studio_schema_name_injective: AXIOM 62

injective?[(studios_table), NameP] 63

(restrict[StudioSchema, (studios_table), 64

NameP](studio_schema_name)) 65

66

%studios_entry_for_name: % key 67

Listing 5.5 (Ref. Integrity of unit of table).

unit_of_table_ref_integrity: AXIOM 87

FORALL (u: (unit_of_table)): 88

member(u‘studio_name, studio_names_table) 89

Listing 5.6 (Cardinality on unit of table).

studio_for_crew(cr: (crews_table)) 91

: (studios_table) = 92

studios_entry_for_name(cr‘studio_name) 93

94

unit_of: set[[(crews_table), 95

(studios_table)]] = graph(studio_for_crew) 96

97

function_unit_of: LEMMA 98

function?[(crews_table), 99

(studios_table)](unit_of) 100

Listing 5.7 (Key Constraint on crews table).

crew_schema_studio_name_num_injective: 106

LEMMA 107

injective?[(crews_table), [NameP, NumP]] 108

(crew_schema_studio_name_num) 109

110

% crew_entry_for_studio_num: % key 111

5.1 Constraints
While the constraints on the conceptual ER model are

predicates over entity sets, at the schema level, they are
encoded as predicates over tables.

The key constraint on studios table (Listing 5.4) ax-
iomatizes the injectivity of studio schema name projector
on studios table. studios entry for name, the resulting
key function, is obtained like studio for name is in List-
ing 3.5.
Referential Integrity of unit of table: Because crews table

and unit of table are synonymous (Listing 5.3), the refer-
ential integrity for unit of table (Listing 5.5, lines 87–89)
needs to specify the constraint only on the studio compo-
nent of the unit of table. It is instructive to compare the
definition of this constraint at the table level with the con-
straint unit of ref integrity on unit of set (line 49 of
Listing 3.6).
Cardinality constraint on unit of table: The function
studio for crew (Listing 5.6, lines 91–93) is a composition
of the key function studios entry for name with the pro-
jector derived from the studio name field. The cardinality
constraint of unit of table is thus automatically satisfied
(Listing 5.6, lines 98–100).
Key Constraints of crews table: the projection function
crew schema studio name num (Listing 5.2) is injective on
crew table because CrewSchema is defined in terms of a
studio name and a number attribute.

Constraint PVS Specification

1

studio name injective on studios set:
AXIOM (Listing 3.5)
studio schema name injective:
AXIOM (Listing 5.4)

2

crew studio num injective on crews set:
AXIOM (Listing 3.8)
crew schema studio name num injective:
LEMMA (Listing 5.7)

3
function unit of: AXIOM (Listing 3.7)
function unit of: LEMMA (Listing 5.5)

4

unit of ref integrity: AXIOM (List-
ing 3.6)
unit of table ref integrity: AXIOM
(Listing 5.5)

Table 2: Specification of constraints across movie

theories. For each row, the entry in the left cell
refers to the constraint in English in Section 2.1. For
the right cell, the upper entry is the constraint in
the abstract model (Section 3) and the lower entry
is the constraint in the schema model (Section 5).

.
Table 2 summarizes the different constraints of the mini-

example. The constraints are specified at three levels: nat-
ural language (Section 2), and PVS specification in the ab-
stract model and the schema-level model. Because of repre-
sentation decisions made at the schema level (namely, iden-
tifying the implementation of unit of table with that of the
crews table, some constraints expressed as axioms at the
abstract level are lemmas at the schema level. In addition,
the axiom unit of table ref integrity, combined with
the equivalence of representation between unit of table

and crews table is strong enough to implement the ax-
iom unit of ref integrity, the integrity constraint for the
unit of abstract entity set.

6. THEORY INTERPRETATIONS AND THE

CORRECTNESS OF MAPPING
We have seen how to specify a data model at three levels

of abstraction. How are these models related, and in what
sense is a data model valid with respect to another? We rely
on PVS’s notion of implementation between theories [31]. A
data model A is valid with respect to a model B if the the-
ory specifying model B provides an implementation of the
theory specifying A. When A is valid with respect to B, we
say there is a valid mapping from A to B. PVS has two
separate, but related notions of implementation: instantia-
tion and interpretation. Both of these are specified using the
IMPORT keyword and used in the example specification.

6.1 Theory instantiation and abstract to ER
In PVS, a parametric theory A may be instantiated by

a theory B using an ‘IMPORT A’ statement in B. This
supplies actual arguments to the parametric types and con-
stants of A. All of A’s parameterized definitions and theo-

23 October 2007

6

rems are available as instances in B, with the actual argu-
ments to the parameters supplied in IMPORT statement in
B. For B to correctly implement A, however, all the type
correctness conditions, if any, generated by the IMPORT
must be proved.

When movie param abstract is instantiated in the the-
ory movie er (Listing 4.3), no TCCs are generated. This
is not entirely unexpected, since the record types and en-
tity sets at the ER model level are obtained by a direct in-
stantiation of the corresponding parameters at the abstract
level. This establishes the correctness of the mapping from
movie param abstract to movie er.

6.2 Theory interpretation and ER to schema
In PVS, a theory A containing types, constant definitions,

axioms and theorems may be interpreted by theory B if B

provides an interpretation for the uninterpreted types and
constants of A in such a way that the axioms of A may be in-
terpreted as theorems in B. B thus becomes an “implemen-
tation” of A, demonstrating A’s consistency with respect to
B, provided the TCCs generated by the IMPORT in B of
theory A are all proved.

To show that the schema model correctly interprets the
ER model, we need to construct an interpretation for the
uninterpreted types, constants (entity sets) and also prove
as theorems the axioms in the ER model. This requires some
effort since the schema model and the ER model operate
at different but non-abstract type levels: ER models with
nested records, and schema models with flat records.

Finally, the only uninterpreted objects in movie er are
the attribute types by virtue of importing movie rec, and
the entity sets (Listing 4.1). The schema model provides an
interpretation for the attribute types (IMPORT statement
in Listing 5.1). The parameter list to the import is a map-
ping uninterpreted-constant := interpreted-value. Next, we
see how the interpretation of entity sets is constructed.

6.3 Entity construction
To build an interpretation for entity sets, we start by con-

structing an interpretation of the entity elements of the ER
model using entries, which are elements of the tables in the
schema model. Entity construction is done by defining a
set of functions that construct an entity from a table entry
(Listing 6.1). These functions are then used to interpret the
entity sets (Listing 6.2) of the ER model. Recall that these
entity sets were defined as uninterpreted constants in the
ER model. Finally, the IMPORT statement of PVS is used
to create an interpretation of the ER model’s entity sets
in terms of the tables in the schema model (Listing 6.3).
Figure 2 illustrates the different notions of implementation
(importing) used amongst the PVS theories in our example
models.

6.4 Verifying type correctness conditions
The typechecking of the specifications and import state-

ments in PVS automatically generates type correctness con-
ditions. The theories movie param abstract and movie schema

generate one and five TCCs respectively. The theories movie rec

and movie er generate no TCCs. The library theories (not
shown) together generate three TCCs. None of these proofs
are difficult to do. The completion of the proofs of the TCCs
implies that the mapping between the ER model and the
schema level is sound. Proof statistics for the PVS specifi-

Listing 6.1 (Entity Construction).

studio_instance_for_entry 129

(s:(studios_table)): StudioEntity = s 130

131

crew_instance_for_entry 132

(c: (crews_table)): CrewEntity = 133

LET n = c‘num, sn = c‘studio_name IN 134

LET se = 135

studios_entry_for_name(sn) 136

IN LET st = 137

studio_instance_for_entry(se) 138

IN (# num:= n, studio:= st #) 139

140

unit_of_instance_for_entry 141

(u: (unit_of_table)): UnitOfEntity = 142

LET cr = crew_instance_for_entry(u) 143

IN LET st = crew_entity_studio(cr) 144

IN (# crew:= cr, studio:= st #) 145

146

Listing 6.2 (Entity Sets from Tables).

studio_instances_set: set[StudioEntity] = 150

studios_table 151

152

crew_instances_set: set[CrewEntity] = 153

image(crew_instance_for_entry, 154

crews_table) 155

156

unit_of_instances_set: set[UnitOfEntity] = 157

image(unit_of_instance_for_entry, 158

unit_of_table) 159

Listing 6.3 (Interpreting movie er).

IMPORTING movie_er{{ 161

studios_entity_set := studio_instances_set, 162

crews_entity_set := crew_instances_set, 163

unit_of_entity_set := 164

unit_of_instances_set}} 165

END movie_schema 166

Schema Theory

Record Defs

 ER Theory
Parameterized

Abstract

Theory

Instantiate

Interpret

Interpret

Import

Figure 2: A high level view of the import relation-
ships between different theories implementing the
movie example. (Not all theories used are shown.)

23 October 2007

7

Theory Lines TCCs Lemmas

props 7 0 1

function results 21 0 4

key 18 3 1

movie rec 45 0 0

movie er 32 0 0

movie param abstract 133 4 3

movie schema 308 15 2

Total 564 22 11

Table 3: TCCs and user formulas in the different
theories used to implement the complete movie ex-
ample [3].

cation of the complete Ullman and Widom example [3, 12]
are shown in Section 7.

7. RESULTS
The number of lines of code, the number of TCCs gener-

ated, and the number of user formulas in each of the seven
theories constituting the specification of the complete movie
example [3, 12] are shown in Table 3. The abstract and
schema specifications make up the bulk of the source code
(441 lines out a total of 564). A total of 22 TCCs are gen-
erated. These are divided amongst the abstract and schema
specifications, and the key library theory. The rest of the
theories do not generate any TCCs, including movie er.
There is, on an average, about one tcc generated for every
30 lines of code. The specification also consists of 11 user-
defined lemmas. Together with the TCCs, the total number
formulas that need to be proved is 33. Not surprisingly, the
bulk of the TCCs generated are for the theory movie schema

(15 of 22).
The distribution of the sizes of proofs of these 33 formulas

is shown in Figure 3. All but two of them are of four or less
steps in length and almost three-fourths are of length two or
less. Fortunately, the two lemmas with much longer proofs
(25 and 47 steps) are independent of the example model;
they belong to library theories.

The results of Figure 3 encourage us to speculate that
even as the number of model-specific constraints increase,
the number of TCCs will increase, but not the sizes of their
proofs. We expect that the number of generated TCCs to be
proportional to the number of constraints in the model. We
assume that the arity of relationships and the number of at-
tributes on an entity is bounded. This implies that number
of constraints varies linearly as the size of the ER diagram.
This leads us to conjecture that the number of TCCs gen-
erated is at most linear in the size of the ER diagram of the
model.

1 step

36.4%

 12

2 steps

36.4%

 12

3 steps

9.1%

 3
4 steps

12.1%

 4

>= 25 steps

6.1%

 2

Figure 3: Distribution of the 33 proofs for the im-
plementation of the full movie data model of Sec-
tion 2 according to size (in number of user proof
steps). All but two of the proofs are four steps or
less.

The proofs in our implementation all use only elementary
proof steps and PVS’s built-in strategies like GRIND. User-
defined PVS proof strategies have not been used. Their use
could further reduce the size of some of the longer proofs.

8. RELATED RESEARCH
Formalizing conceptual models for database applications

was the original motivation for Codd’s relational model and
the conceptual ER model of Chen, which are both based on
the theory of sets and relations [11, 13]. The relatively more
recent object-oriented models [9] and object-relational mod-
els [32] also employ formal notations for their presentation.

Languages like Datalog are popular with the logic pro-
gramming and deductive database community [10, 19]. Neu-
mann and others use Datalog for building a framework for
reasoning with data models [23, 30]. This approach relies
on encoding instances, models and metamodels as Datalog
programs. Integrity constraints are encoded as predicates
and verification is done by querying these predicates for vi-
olations. However, Datalog is a highly restricted variant of
Prolog and as such is only slightly more powerful than rela-
tional algebra and relational calculus, which form the core of
the dominant databse query language, SQL. This restriction
is because databases are often so large that even quadratic
evaluation times are unreasonable. Datalog evaluations are
thus explicitly decidable while PVS type-checking is not.

There are many papers recognizing the need for a for-
mal approach to data modeling [6, 8, 33, 34]. This is also
the case with modeling in related areas like object oriented
software engineering and UML[7, 38]. There has also been
work on the importance of conceptual models in the con-
text of development [25], in business processes and business

23 October 2007

8

intelligence [29], and in decision support systems [24].
Extensions to the ER model have been proposed with rea-

soning, semantics and constraint specification features [15].
Constraint specification has also been considered in the con-
text of object-oriented databases and UML [21]. A generic
specification process of diagram languages such as the ER
model has also been reserached [28]. Specification languages
are common in knowledge-based systems [17] and seman-
tic databases [5]. Conceptual model-based verification and
validation have also been researched in the context of spe-
cific applications such as diagnosis [36]. UML and OCL
have been modeled formally using PVS [26]. In the ontol-
ogy space, PVS has been used to formalize OWL and ORL
specifications [14]. More recently, Mandelbaum et al. have
proposed a data domain language PADS/ML for building
a uniform automatic compilation framework of data models
for data in ad hoc formats [27]. Their approach is promis-
ing, but is focused towards data analysis, and not modeling
per se.

9. FUTURE WORK
This work is an initial step in the building of (semi) au-

tomated frameworks based on formal specification of data
models. There are several directions for future work:
Automation: It should be relatively straightforward to au-
tomatically generate the PVS specification from an ER di-
agram. The second aspect of the automation involves gen-
erating automatic proofs of type correctness conditions and
the correctness lemmas. Since most of the proofs involved a
few steps, we expect that it should be possible to automate
most, if not all of the proofs. This is a positive indication
for building future tools based on this methodology.
Scaling: We have explored the approach with a small, text
book example with about 12 constraints. Industry scale data
modeling includes hundreds of constraints between dozens of
entities and relationship types. We plan to use data models
from industry case studies to investigate how our approach
scales. The success of this scaling will be heavily dependent
on the level of automation that can be achieved in generating
the proofs of correctness and TCCs.
Trigger generation: Triggers are the practical implication
of constraints. It should be possible to automatically trans-
late constraints into triggers, which are tests that ensure the
invariants are maintained at the end of every update to the
database. However, while constraints are typically stated in
terms of global properties, an efficient trigger should involve
computation proportional to the size of the update to the
database, not the size of the database itself.
Impact on design exploration: Model verification has
an important role in allowing the designer to explore various
design options during the modeling phase. in each case, the
verification framework ensures that the design is explored
within the boundaries of correctness. We plan to investigate
how our framework supports such a correct-by-construction
design methodology.
Working with other models: We have applied the speci-
fication language approach to traditional entity-relationship
models of data. It should be interesting to consider formal
specification of data models, like object models and their
mapping to relations.

10. CONCLUSIONS
We have shown how data models may be specified and rea-

soned within PVS at different levels of abstraction. In par-
ticular, we have demonstrated how the support for higher-
order functions, type checking, and interactive theorem prov-
ing in PVS allows the data modeler to reason about the in-
teractions between the various data constraints. These are
usually harder to do when using ER diagrams alone.

While design verification plays an important role in other
disciplines (hardware and program verification), it has gen-
erally received less attention in ER data modeling. We be-
lieve this is due to the limited use of standard, formal no-
tations and languages with verification support to express
reasoning about data models. The work presented in this
paper is a demonstration that general purpose specification
languages like PVS with their powerful typechecking sup-
port can fill this gap.

Acknowledgements: We thank Sam Owre of SRI for
patiently answering many of our queries on PVS.

11. REFERENCES
[1] The B-method. http://vl.fmnet.info/b/. Visited

October 2007.

[2] PVS: Prototype Verification System.
http://www.csl.sri.com/pvs. Visited October 2007.

[3] PVS source code accompanying [12] and this paper.
http://www.iiitmk.ac.in/∼choppell/research/

code/movie-data-model/index.html Visited October
2007.

[4] The Z notation. http://vl.zuser.org/. Visited
October 2007.

[5] S. Abiteboul and R. Hull. IFO: A formal semantic
database model. ACM Transactions on Database
Systems, 12:525–565, 1987.

[6] G. D. Battista and M. Lenzerini. Deductive
entity-relationship modeling. IEEE Trans. Knowl.
Data Eng., 5(3):439–450, 1993.

[7] R. Breu, U. Hinkel, C. Hofmann, C. K. B. Paech,
B. Rumpe, and V. Thurner. Towards a formalization
of the unified modeling language. In M. Aksit and
S. Matsuoka, editors, Proceedings of ECOOP’97 –
Object Oriented Programming. 11th European
Conference, volume 1241 of LNCS, pages 344–366.
Springer, 1997.

[8] D. Calvanese, M. Lenzirini, and D. Nardi. Logics for
Databases and Information Systems, chapter
Description Logics for Conceptual Data Modeling.
Kluwer Academic, 1998.

[9] R. Cattell, D. Barry, D. Bartels, M. Berler,
J. Eastman, S. Gamerman, D. Jordan, A. Springer,
H. Strickland, and D. Wade. The Object Database
Standard: ODMG 2.0. Morgan Kaufmann, 1997.

[10] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming
and Databases (Surveys in Computer Science).
Springer, 1990.

[11] P. P. Chen. The entity-relationship model: Toward a
unified view of data. ACM Transactions on Database
Systems, 1(1):9–37, March 1976.

[12] V. Choppella, A. Sengupta, E. Robertson, and S. D.
Johnson. Constructing and Validating
Entity-Relationship models in the PVS Specification
Language: A case study using a text-book example.

23 October 2007

9

http://vl.fmnet.info/b/
http://www.csl.sri.com/pvs
http://www.iiitmk.ac.in/~choppell/research/code/movie-data-model/index.html
http://www.iiitmk.ac.in/~choppell/research/code/movie-data-model/index.html
http://vl.zuser.org/

Technical Report 632, Indiana University Computer
Science, April 2006.

[13] E. Codd. A relational model for large shared data
banks. Communications of the ACM, 6(13):377–387,
June 1970.

[14] J. S. Dong, Y. Feng, and Y. F. Li. Verifying OWL and
ORL ontologies in PVS. In Z. Liu and K. Araki,
editors, 1st International Colloquium on Theoretical
Aspects of Computing (ICTAC) 2004, volume 3407 of
LNCS, pages 265–279. Springer, 2005.

[15] G. Engels, M. Gogolla, U. Hohenstein, K. Hulsmann,
P. Lohr-Richter, G. Saake, and H.-D. Ehrich.
Conceptual modeling of database applications using
extended ER model. Data Knowledge Engineering,
9:157–204, 1992.

[16] L. M. G. Feijs. Norman’s database modularized in
COLD-K. In J. A. Bergstra and L. M. G. Feijs,
editors, Algebraic Methods II - theory, tools and
applications, volume 490 of LNCS, pages 205–229.
Springer, 1991.

[17] D. Fensel. Formal specification languages in knowledge
and software engineering. The Knowledge Engineering
Review, 10(4), 1995.

[18] J. Fitzgerald and C. Jones. Modularizing the formal
description of a database system. In C. H. D. Bjorner
and H. Langmaack, editors, VDM ’90: VDM and Z -
Formal Methods in Software Development, volume 428
of LNCS, pages 189–210, 1990.

[19] H. Gallaire, J. Minker, and J.-M. Nicolas. Logic and
databases: A deductive approach. ACM Comput.
Surv., 16(2):153–185, 1984.

[20] C. George. The NDB database specified in the RAISE
specification language. Formal Aspects of Computing,
4(1):48–75, 1992.

[21] M. Gogolla and M. Richters. On constraints and
queries in UML. In M. Schader and A. Korthaus,
editors, The Unified Modeling Language – Technical
Aspects and Applications, pages 109–121.
Physica-Verlag, Heidelberg, 1998.

[22] D. Jackson. Software Abstractions: Logic, Language
and Analysis. MIT Press, 2006.

[23] N. Kehrer and G. Neumann. An EER prototyping
environment and its implemetation in a datalog
language. In G. Pernul and A. M. Tjoa, editors,
Entity-Relationship Approach - ER’92, 11th
International Conference on the Entity-Relationship
Approach, Karlsruhe, Germany, October 7-9, 1992,
Proceedings, volume 645 of Lecture Notes in Computer
Science, pages 243–261. Springer, 1992.

[24] R. Kimball. Is ER modeling hazardous to DSS?
DBMS Magazine, October 1995.

[25] C. H. Kung. Conceptual modeling in the context of
development. IEEE Transactions on Software
Engineering, 15(10):1176–1187, 1989.

[26] M. Kyas, H. Fecher, F. S. de Boer, J. Jacob,
J. Hooman, M. van der Zwaag, T. Arons, and
H. Kugler. Formalizing UML models and OCL
constraints in PVS. In Proceedings of the Semantic
Foundations of Engineering Design Languages
(SFEDL ’04), pages 39–47, 2005.

[27] Y. Mandelbaum, K. Fisher, D. Walker, M. Fernandez,
and A. Gleyzer. PADS/ML: A Functional Data

Description Language. In Proceedings of the ACM
Symposium on Principles of Programming Languages,
pages 77–83. ACM Press, January 2007.

[28] M. Minas. Specifying diagram languages by means of
hypergraph grammars. In Proc. Thinking with
Diagrams (TwD’98), pages 151–157, Aberystwyth,
UK, 1998.

[29] L. Moss and S. Hoberman. The importance of data
modeling as a foundation for business insight.
Technical Report EB4331, NCR, November 2004.

[30] G. Neumann. Reasoning about ER models in a
deductive environment. Data and Knowledge
Engineering, 19:241–266, June 1996.

[31] S. Owre and N. Shankar. Theory interpretations in
PVS. Technical Report SRI-CSL-01-01, SRI
International, April 2001.

[32] M. Stonebraker and D. Moore. Object Relational
DBMSs: The Next Wave. Morgan Kaufmann, 1995.

[33] A. ter Hofstede and H. Proper. How to formalize it?
formalization principles for information systems
development methods. Information and Software
Technology, 40(10):519–540, 1998.

[34] B. Thalheim. Entity-Relationship Modeling:
Foundations of Database Technology. Springer-Verlag,
2000.

[35] J. D. Ullman and J. Widom. A First Course in
Database Systems. Prentice Hall, 2 edition, 2002.

[36] F. van Harmelen and A. ten Teije. Validation and
verification of conceptual models of diagnosis. In
Proceedings of the Fourth European Symposium on the
Validation and Verification of Knowledge Based
Systems (EUROVAV97), pages 117–128, Leuven,
Belgium, 1997.

[37] A. Walshe. Case Studies in Systematic Software
Development, chapter NDB: The Formal Specification
and Rigorous Design of a Single-User Database
System. Prentice Hall, 1990.

[38] J. Warmer and A. Kleppe. The Object Constraint
Language: Precise modeling with UML. Object
Technology Series. Addison Wesley, 1998.

[39] N. Winterbottom and G. Sharman. NDB: A
non-programmer database facility. Technical Report
TR.12.179, IBM Hursley Laboratory, England,
September 1979.

23 October 2007

10

