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Abstract

Data Modeling frameworks like the Entity-Relationship (ER) approach
are usually specified using graphical and natural language representations.
This limits the ability to formally express and verify the consistency of con-
straints on data models. The use of mathematical notation makes the spec-
ification precise, but also complex and tedious to write, and, in the absence
of automated support for validation, error prone.

We use the PVS specification language and its theorem proving envi-
ronment to formally construct, reason with, and mechanically validate an
example data model at various levels of abstraction. The methodology pro-
posed here makes modeling resemble programming in a strongly typed
language. Models are implemented as PVS theories consisting of type dec-
larations, function definitions, axioms and theorems. Entities and relation-
ships are expressed as types. Constraints on the data model are expressed
as axioms relating entity and relationship sets. Additional correctness con-
ditions are generated by PVS’s type checker. Using the theory interpreta-
tion mechanism of PVS, we prove the correctness of the example’s logical
model with respect to its ER model.

The example model we consider has about fifteen attributes, entities
and relationships, and twelve constraints. The complete hand-coded spec-
ification of the model is about 600 lines of PVS (including libraries). Ver-
ification of the correctness of the model reduces to interactively proving
about thirty correctness conditions. The proofs of almost all of these are
quite small (4 steps or less). With modest additional effort, it should be
possible to automatically generate the specification and proofs, paving the
way for automatic verification of data models. We see our work as the
initial step towards this goal.
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1 Introduction

The modeling of data at a conceptual level and its subsequent modeling at
the logical level are essential prerequisites to the design of any database, ir-
respective of the technology used to implement it. In the design of relational
database systems, conceptual models of data typically employ a graphical no-
tation based on ER diagrams. While diagrams are easier to understand, their
vocabulary and expressive power are limited by the difficulty in extending
the graphical notation in a reasonably standard manner. Designers therefore
employ natural language to express nontrivial constraints, like referential in-
tegrity, for example. Natural language complements diagrammatic notation,
but it is often the source of inaccuracies and ambiguities in specifications. This
makes it difficult to use natural language to formally reason about the model
and explore the design space within the boundaries of correctness.

This paper presents a design methodology which uses a formal specifica-
tion language to support conceptual and logical data modeling. The result
is a more powerful notation that allows arbitrary constraints to be expressed,
a high degree of abstraction in the specification, and the advantage accrued
by using typechecking to guarantee correctness of construction of the model.
Using this approach, we show how the correctness of the logical model with
respect to the conceptual model may be formally verified. To the best of our
knowledge, this is the first successful attempt at representing a data model
formally in a specification language and using typechecking to mechanically
verify the correctness of its logical part with respect to its conceptual part.

1.1 Problem: constructing, validating and reasoning with database
models

A data model is a conceptual representation of a real world enterprise built from
analyzing the user’s requirements. Data modeling is a fundamental prerequi-
site for the physical design and implementation of a database. It has three
phases: conceptual, logical and physical. The conceptual modeling phase con-
structs a high level abstract representation of the structure of data. The log-
ical phase builds a specification consisting of tables in a relational database,
or classes and object structures in an object-oriented database suitable for im-
plementation. The physical phase is concerned with the design of the storage
structures and access methods needed for efficiently accessing and storing the
data elements in the database. The first two phases – conceptual and logical
– are more abstract; they can be done independent of the underlying software
environments or hardware platforms.

A data model consists of a set of type, function, relation and constraint def-
initions. This model is validated for consistency and then used as a reference
for further design refinements and implementation. The model serves as a spec-
ification to which the database design, usually in the form of schema, must
conform. The most commonly used conceptual model is the entity-relationship
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(ER) model [12] developed by Chen and discussed extensively in [4, 30]. Con-
ceptual design in the ER model consists of a collection of entities, attributes of
and relationships among those entities. The other part of the conceptual model
specifies constraints between instances of entities and relationships.

A conceptual model lends itself to use in basic understanding and presen-
tation of the underlying structure of the data. The importance of a conceptual
model, however, goes beyond just the ability of presentation and use by man-
agers and inexperienced developers. It is also a crucial means for assistance
in the subsequent phases of development. Models, for example affect user be-
havior in writing queries in databases [14]. Several research studies show that
user-database interaction at the conceptual level is less error-prone than at the
logical or physical levels [10, 11, 27].

A good data modeling methodology should address the following three
important design concerns: First, the methodology should allow the designer
to express models at various levels of abstraction and support a framework to
show how each level correctly implements the previous level. In particular, the
modeling methodology should ensure the correctness of the logical model with
respect to the conceptual model. Second, the modeling methodology should
enable the designer to reason about the correctness of the model. Third, the
methodology to allow the designer to explore design alternatives within the
boundaries of correctness. The work of this paper shows how a specification
language supported by a powerful typechecker can be used to address the first
two of the above mentioned challenges. The problem of exploring design al-
ternatives will be discussed in a future paper.

1.2 Motivation: The need for formal data modeling

How a data model is represented determines its usefulness. Traditional method-
ologies have employed diagrams to represent data models, which are built us-
ing a fixed set of graphical components connected by edges of different kinds.
Simplicity in construction and understanding is the primary advantage of dia-
grams. This simplicity, however, comes at the cost of expressivity and integrity.
The graphical notation allows only a simple set of constraints to be expressed
between the model’s various components. Examples include participation and
cardinality constraints. Since the graphical notation is not extensible, more
complex constraints need to expressed in natural language. For example, prop-
erties like referential integrity of a relation can not be expressed in the standard
vocabulary of traditional ER diagrams. It should be noted, however, that the
lack of precision is due to the chosen representation (graphical components)
and not the modeling methodolgy itself.

Conceptual models can be represented in a precise manner using a more
formal approach based on types, expressions, relations and constraints. There
is an abundance of literature recognizing the need for such an approach to
data modeling [5, 7, 29, 30] and modeling in related areas like object oriented
software engineering and UML[6, 33] as well. There has also been work on
the importance of conceptual models in the context of development [20], in
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the context of business processes and business intelligence [22] and in the con-
text of decision support [19]. Formal modeling methodologies, however, are
characterized by reasonably moderate mathematical notation. In the absence
of automated support for validation and maintenance, the notation is prone
to errors. This in turn limits the use of mathematical notation for conceptual
designs in practice.

Like program development, the process of data modeling and design is
incremental and iterative. At each stage, the design is extended, reasoned with,
validated, and then further extended. Program developers typically use type
checkers to reason with and validate their programs. Data modelers, however,
have little support to validate their designs. Thus an environment that allows
the construction, reasoning and validation of data models is needed.

1.3 Approach: Data modeling using a Specification Language

We use the specification language PVS and its theorem proving environment
to formally construct, reason with, and interactively validate an example data
model at various levels of abstraction. PVS, or Prototype Verification System is
a general purpose specification language combined with a type checker closely
integrated with a theorem proving environment [1, 24]. PVS’s specification lan-
guage is based on set theory and higher-order logic. Its type system is based
on parametric and dependent types. Types, predicates and sets are treated
uniformly in PVS. As a result, theorem-proving and typechecking are synony-
mous in PVS. Type checking in PVS is undecidable. As a consequence, the
type correctness of a PVS specification is proved interactively by the user and
the system. The flexible type system of PVS makes it convenient to state and
prove constraints. PVS is widely used for specifying, reasoning with, and veri-
fying a variety of systems: hardware and computer architectures, safety-critical
computer systems, and requirements analysis.

Modeling with a specification language is like programming in a strongly
typed environment. All specifications, including requirements, conceptual data
models and logical models are expressed as theories in PVS. A theory is a basic
PVS module and consists of a set of declarations that define types, functions,
axioms and theorems. Data constraints are either explicitly expressed as ax-
ioms or implicitly using dependent types. The correctness of the specification
often depends on the generation and validation of type correctness conditions
(tcc’s) that are automatically generated and interactively verified as theorems.
The majority of the tcc’s for the model discussed in this paper have proofs that
are quite small and elementary, but in general they can be hard or even impos-
sible to prove. In the latter case, this is usually taken to mean that there is a type
error in the specification and the specification must be repaired. Reasoning also
proceeds by the user declaring, and then interactively proving properties about
the specification. Finally, the theory interpretation feature of PVS [25] allows
one to formally state and prove that a data model at one level of abstraction
implements another, more abstract model.

Although PVS was chosen for the purpose of specification, it should be



1 INTRODUCTION 8

noted that PVS is really a vehicle for formally specifying the model in what
is essentially a “standard” notation of logic. The logical notation could be ex-
pressed in syntax other than PVS’s, like the Object Constraint Language[33], or
even plain mathematical notation, for example. The PVS theory implementing
the model may therefore be considered as one of the several possible formal
representations of the specification of the model. On the other hand, formal
specifications written in PVS are machine checkable for correctness. Thus the PVS
notation affords the designer the ability to automatically or semi-automatically
verify the correctness of the model and its implementation. Other applications
of such formal specifications include better presentation of the model seman-
tics, as well as proving properties related to the data model.

1.4 Summary of work and outline of paper

The methodology proposed here should be seen as an initial step towards ad-
dressing the problem of automatically constructing, formally reasoning with,
and verifying the correctness of data models. Our approach emphasizes the
use of a specification language backed by powerful theorem proving technol-
ogy to achieve this goal.

Using the specification language approach, we model an example data base
enterprise at three distinct levels of abstraction, each specified as a PVS theory:

1. The first theory is a parametric “abstract” data model that captures the
types and constraints specified in a traditional ER model without com-
miting to the concrete types of the attributes, entities or relationships.
From a modeling point of view, these are abstractly specified parameters
to the PVS theory.

2. The second level theory corresponds to a traditional ER model and is
obtained by instantiating the abstract theory with concrete entity and re-
lationship types.

3. The third theory corresponds to the logical model of the enterprise, con-
sisting of tables.

Using the specification approach allows us to formally establish the sound-
ness of the logical model with respect to the ER model using typechecking.
Soundness is established by proving a set of correctness conditions generated
in the process of typechecking the specification.

The main contributions of this work may therefore be summarised as fol-
lows:

1. Specification of data models as parametric theories: Our implementa-
tion shows how a data model may be formally specified at various levels
of abstraction. The theories specifying the different models are param-
eterized on the types of the entitities, relationships and attributes, and
constraints are stated as axioms.



1 INTRODUCTION 9

2. Correctness of implementation via typechecking: We define a particu-
lar table structure implementing a conceptual data model and prove the
correctness of the mapping from the conceptual to the table schema.

3. Better insight into existing diagrammatic representations. Implement-
ing data model in a specification language provides a better understand-
ing of existing diagram-based representations, which has important ped-
agogical value. For example, the formalism we use yields the following
observations about an ER model and its diagram:

(a) Each of the edges in an ER model diagram are more useful when
interpreted as arrows (directed edges) denoting projection functions
from the relation or entity to the entity or attribute, respectively.

(b) The distinction between entity types and entity sets, not clear from
the diagrammatic representation of the ER model, is made explicit
in the model formalized in the specification language.

(c) A key constraint may be thought of as a consequence of the injectiv-
ity of the projection function restricted to a particular entity set.

We illustrate our methodology using an example data model adapted from [31].
The model is implemented as a set of PVS theories. Our presentation of the
example is very “code oriented.” We believe that understanding the model
requires careful scrutiny of the source code of the theories that make up the
model. To make the paper self-contained, the entire source code (minus some
comments) from the implementation is listed and discussed in the paper. Fa-
miliarity with PVS syntax is not assumed. The original source code (with com-
ments) for the example model is available online [2].

Paper Roadmap

The rest of the paper consists of the following sections: Section 2 introduces
the example model using an ER diagram and points to specific limitations of
this approach. Section 3 defines a high-level specification of the data model in
PVS. The next seven sections cover the implementation of the model in PVS in
detail and form the bulk of the paper. The first two of these sections specify
the abstract data model. Section 4 defines the attributes, entities and relation-
ships in the abstract data model as uninterpreted types. Section 5 shows how
constraints over abstract entity sets in the abstract model are specified as ax-
ioms. Section 6 shows how the abstract model is instantiated to obtain an ER
model whose attribute, relation and entity types are concrete record types. The
next four sections are devoted to developing the specification of the logical (re-
lational) data model. Section 7 specifies the types used in the logical model.
Section 8 defines the tables used in the logical model. Section 9 specifies the
constraints in the logical model and also functions for reconstructing entity el-
ements from table entries. Section 10 completes the specification by showing
the correctness of the logical model with respect to the conceptual (ER) model



1 INTRODUCTION 10

defined in Section 6. Section 11 discusses the results of the implementation:
the sizes of the theories, and effort involved in proving type correctness con-
ditions and user defined lemmas. Section 12 compares our work with existing
approaches in the literature. Section 13 discusses future work and Section 14
concludes the paper.

2 An Example Movie Data Model

The implementation discussed in this paper is based on the “movies” example
used in [31, Chapter 2]. The diagram representing the ER model for the movies
enterprise is shown in Figure 1.

2.1 Attribute, Entity and Relationship types

The ER model of the movie enterprise consists of four entity types: stars, stu-
dios, movies, and crews. Each of these types contains attributes. Each of stars
and studios have a name and an address. A movie has a title and the year in which
movie was made. A crew has a number. The movie enterprise also has four
relationships: The stars in relationship relates stars with movies. The owns re-
lationship relates movies with studios. The unit of relationship relates crews
with studios. A crew is identified by its number and the studio of which it is
a unit. The contracts relationship relates stars, movies, and studios. Attributes
are drawn as circles, entities as boxes, and relationships as diamonds in ER
diagrams.

2.2 Entity and Relationship sets and Constraints

The description in Section 2.1 refers to the types of the different attributes, en-
tities and relations. Distinct from these are specific sets of entities and relations
over these types. This distinction between entity types and entity sets is not
explicitly made in traditional ER diagrams.

The entities and relationships of the movies enterprise are governed by a
total of twelve constraints on the participating entity and relationship sets:
four key constraints, two cardinality constraints, and six referential integrity
constraints. The ER diagram fails to convey this information completely and
precisely. Therefore it is complemented with an informal, but precise natural
language specification of the constraints, which are given in the rest of this
section.

2.3 Key Constraints

1. The attribute name is a key for the stars entity set.

2. The attribute name is a key for the studios entity set.

3. The combined attribute title, year is a key for the movies entity set.
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Figure 1: ER model diagram of the movie enterprise
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4. The compound attribute obtained by combining the number attribute of
crew with the studio element reached via the unit of relation from an ele-
ment of the crews entity set is a key for the crews entity. (See cardinality
constraint 2 in Section 2.4.)

In ER diagram notation, key constraints are expressed by underlining key
attribute names. crews is referred to as a weak entity because its key is defined in
terms of attributes from supporting relationships in which crews participates.
The weak entity and its supporting relationship are marked by double borders.

2.4 Cardinality constraints

The relationship and entity sets are governed by the following cardinality con-
straints:

1. Every element in the movies entity set is related to exactly one element in
the studios set via the owns relationship, and that movie-studio pair is in
the owns relationship set. In other words, owns set captures a many-to-
one relationship from movies set to studios set.

2. Every element in the crews entity set is related to exactly one element in
the studios set via the unit of relationship, and that crews-studio pair is in
the unit of relationship set. In other words, unit of set captures a many-
to-one relationship from crews set to studios set.

In ER diagram notation, many-to-one relationships are indicated by edges
with round arrows at the “one” end of the relation.

2.5 Referential Integrity Constraints

The entity components for every relationship set in the enterprise are drawn
from their respective entity sets. Thus

1. For every element in the stars in relationship set, the constituent compo-
nents are drawn from stars and movies entity sets.

2. For every element in the owns relationship set, the constituent compo-
nents are drawn from movies and studio entity sets.

3. For every element in the unit of relationship set, the constituent compo-
nents are drawn from studios and crews entity sets.

4. For every element in the contracts relationship set, the constituent com-
ponents are drawn from stars, movies and studios entity sets.

5. The relation obtained by projecting the star and movie components from
the contracts relationship set is a subset of the stars in relationship set.
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6. The relation obtained by projecting the movie and studio components from
the contracts relationship set is a subset of the owns relationship set.

Note that referential integrity constraints are not explicitly indicated in the ER
diagram notation.

3 High-level architecture of example data model

Specifications in PVS are written as a set of parameterized theories. The specifi-
cation of the movie enterprise in PVS consists of four main theories and three
auxiliary theories:

• movie param abstract : an abstract specification of the elements of
the model. The abstract specification consists of two parts: the first is a
type specification containing type and function declarations. The second
is a constraint specification that defines constraints over types declared
in the type specification.

• movie rec : A record-based definition of entities over a set of uninter-
preted “primitive” types.

• movie er : The realization of the abstract specification as an ER model
obtained by instantiating the parameters of movie param abstract
with the types defined in movie rec .

• movie schema : A schema-based implementation shown to be correct
with respect to the ER model in movie er .

• keys : A parametric specification of key constraints.

• props : A helper theory with logical miscellany. (See Appendix A.)

• function results : A helper theory dealing with propositions about
functions. (See Appendix A.)

3.1 The PVS theory importing mechanism

In PVS, a theory consists of a set of related type and constant definitions, ax-
ioms, and theorems. Our implementation of the data model in PVS relies ex-
tensively on PVS’s theory import mechanism, which comes in two forms, serv-
ing different, but related purposes. The two forms are distinguished by the
different syntax for imports (“[...]” vs. “{{...}}”) in PVS.

theory parameterization and instantiation : Theories in PVS may be parame-
terized, where the parameters may be types, or constants. A parameter-
ized theory A may be imported by a theory B by an import statement in
B. The import may be thought of as instantiating A with appropriate ar-
guments matching the parameters of A. The parameterized theory A may
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include assumptions which need to be discharged as proof obligations by
the importing theory B. An example of this in our implementation is the
theory key (see Section 5.1 on page 16) which contains assumptions
that are discharged when it is imported at various occasions in theories
movie param abstract and movie er (see for example, Sections 5.2
on page 19 and 9.1 on page 33).

theory interpretation : The theory interpretation mechanism of PVS allows
the specification of an “abstract” theory by definining a set of uninter-
preted types, constants and axioms. An abstract theory A is implemented
by a concrete theory B when B imports A. The uninterpreted types and
constants of the imported (abstract) theory A are provided definitions in
the importing (concrete) theory B. The interpretation obligates the con-
crete theory to prove that it satisfies the axioms of the abstract theory.

Our implementation relies on both import mechanisms. The parametric
theory movie param abstract (Section 4) defines an abstract ER model
parameterized on attribute, entity and relationship types, entity sets and pro-
jection functions. The abstract theory contains constraints encoded as axioms
(Section 5 on page 16). These axioms are defined using the types, constants and
functions. The theory movie er (Section 6 on page 26) imports movie param abstract
by instantiating the parameters of movie param abstract with the types
and functions defined in the theory movie rec (Section 6.1). The theory
movie er still contains the axioms defined by movie er, but these are now
instantiated versions. Thus movie er is a concrete instance of the more ab-
stract data model specified in movie er. movie er, however, still contains
constants which, while denoting entity and relationship sets, are left uninter-
preted. In the second part of the implementation, the theory movie schema
imports the theory movie er specifying the record-based ER model using
the theory interpretation mechanism (Section 10 on page 41). During this im-
port, the interpretation for the entity and relationship sets left uninterpreted in
movie er is supplied in movie schema.

4 Abstract model: type specifications

We begin the specification of the abstract model by defining a theory movie param abstract
parameterized by attributes, entities and relationships types. The code show-
ing this parameterization is given in Listing 4.0.1 on the next page. All the
above parameters are declared as uninterpreted, but non-empty types (indicated
by the keyword TYPE+). There is no distinction made between attribute, en-
tity, and relationship types. We collectively refer to these as abstract entity types
or abstract entities. The eventual concrete realization of these abstract entities
is irrelevant to this level of modeling. Thus we do not wish to commit to the
actual representation (as datatypes like records, or lists, or tables) of objects at
this level of modeling. We also defer the decision of what additional attributes
an entity or relation may have in its eventual concrete form.
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Listing 4.0.1 (Movie Types)

13 movie_param_abstract[
14 Name, Address, Title, Year, Num: TYPE+,
15 Star, Studio, Movie, Crew: TYPE+,
16 StarsIn, Owns, UnitOf, Contracts: TYPE+,

The second set of parameters to the theory are functions between the vari-
ous abstract types. These roughly correspond to the edges in the ER diagram
model. We first consider projection functions on abstract entities, which project
attributes from entities. These are declared in Listing 4.0.2.

Listing 4.0.2 (Functions on Entities)

17 star_name: [Star -> Name],
18 star_address: [Star -> Address],
19 studio_name: [Studio -> Name],
20 studio_address: [Studio -> Address],
21 movie_title: [Movie -> Title],
22 movie_year: [Movie -> Year],
23 crew_num: [Crew -> Num],

Next, we declare projection functions on the abstract relationship entities
which that we would like to eventually model as relationships. These functions
are shown in Listing 4.0.3. The distinction between projection functions on
entities and those on relationships is, strictly speaking, arbitrary at this stage
of the modeling, but we will continue to make the distinction for the sake of
convenience.

Listing 4.0.3 (Functions on Relationships)

25 stars_in_star: [StarsIn -> Star],
26 stars_in_movie: [StarsIn -> Movie],
27

28 owns_movie: [Owns -> Movie],
29 owns_studio: [Owns -> Studio],
30

31 unit_of_crew: [UnitOf -> Crew],
32 unit_of_studio: [UnitOf -> Studio],
33

34 contracts_star: [Contracts -> Star],
35 contracts_movie: [Contracts -> Movie],
36 contracts_studio: [Contracts -> Studio],

4.1 Abstract Entity Sets

Listing 4.1.1 on the following page identifies a set of abstract entity sets in the
model. These are just sets over the abstract types defined in Listing 4.0.1. Like
the abstract types and abstract projection functions, each abstract entity set is
declared as a parameter to the theory.
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Listing 4.1.1 (Abstract Entity Sets)

38 stars_set: set[Star],
39 studios_set: set[Studio],
40 movies_set: set[Movie],
41 crews_set: set[Crew],
42

43 stars_in_set: set[StarsIn],
44 owns_set: set[Owns],
45 contracts_set: set[Contracts],
46 unit_of_set: set[UnitOf]
47 ]: THEORY

5 Abstract model: constraints

ER diagrams come equipped with a limited set of notational conventions to
express a certain fixed class of constraints. Thus key attributes are underlined,
n-to-m relations are indicated by annotating edges, and weak entities are indi-
cated by double boxes. Arbitrary constraints, including specialized constraints
on the types of attributes or entities, cardinality constraints etc. are tradition-
ally expressed in natural language.

PVS allows the expression of arbitrary constraints as higher-order predi-
cates over abstract entity sets. In the example we consider, however, we restrict
ourselves to modeling key constraints, cardinality constraints and integrity
constraints.

5.1 A parametric theory for keys

Key constraints are specified by instantiaing a theory for keys. The theory for
keys, shown in Listing 5.1.1, defines the condition under which an abstract
“attribute” entity of type R can be a key for uniquely identifying entities in a
set S of elements of type D. The goal of this theory is to identify a key function
that can be used to map a key to a value in the entity set, if it exists. The
function f : D → R is usually a projection function, projecting an attribute in
R from an entity in D. The elements of R can be used as keys provided the
restriction of f to S is injective. This assumption is specified as an axiom in the
theory. To see why this formulation implies the existence of a key function, let
I ⊆ R be the image of f on S. Since f restricted to S is injective, h : S → I
defined to be identical to f over S is a bijection. Thus the function g from R
to the lifted domain S⊥ can be used as a key function, where g is obtained by
extending the bijective function h−1 : I → S to the domain R and range S⊥.
For an element k ∈ R, g maps k to h−1(k), if k is I , and to ⊥ otherwise.

Listing 5.1.1 (A theory for Keys)
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25 key[D:TYPE, S:set[D],
26 R:TYPE, f:[D -> R]]: THEORY
27 BEGIN
28 ASSUMING
29 restriction_is_injective: AXIOM
30 injective?[(S), R]
31 (restrict[D,(S),R](f))
32 ENDASSUMING
33

34 image_f_S: set[R] = image[D, R](f,S)
35

36 I: TYPE = (image_f_S)
37 h(s:(S)): I = f(s)
38

39 h_is_bijective: LEMMA bijective?(h)
40

41 getForKey: [I -> (S)] = inverse_alt(h)
42

43 forKey(r: R): lift[(S)] =
44 IF (member(r,image_f_S))
45 THEN up(getForKey(r))
46 ELSE bottom ENDIF
47 END key

The PVS theory key is parameterized on domain and range types D and
R, a set S consisting of elements of type D, and a function f from D to R.
The theory is further parameterized by the assumption (lines 28–32) that the
function restrict[D,(S),R](f), which denotes the restriction of f to
S, is injective. In PVS, types have a set-theoretic semantics and a set may be
converted to a type. The type expression (S) indicates the type obtained from
the set S. image[D,R](f,S) denotes the image of f on S and is abbrevi-
ated image f S. This is turned into the type (image f S) and abbreviated
I. The function h going from (S) to I is defined to coincide with f. The
lemma h is bijective follows from the injection is restrictive
axiom. The PVS proof consists of just two steps: a reference to the axiom fol-
lowed by (grind), which is an all-purpose simplification command. The
function g is defined to be the inverse of h using the in-built higher-order
function inverse alt. The image of f restricted to S given by is de-
fines a function forKey, which takes an element r from R, and returns
an element from S uniquely determined by the key, if it exists, and bottom
otherwise.

The typechecking of the theory generates three type correctness conditions,
shown in Listing 5.1.2.

Listing 5.1.2 (TCC’s for the key theory)

1 % Subtype TCC generated (at line 40, column 18) for f(s)
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2 % expected type I
3 % proved - complete
4 h_TCC1: OBLIGATION FORALL (s: (S)): image_f_S(f(s));
5

6 % Assuming TCC generated (at line 44, column 28)
7 % for inverse_alt
8 % generated from assumption
9 % function_inverse_alt.inverse_types

10 % proved - complete
11 getForKey_TCC1: OBLIGATION
12 (EXISTS (d: (S)): TRUE) OR (FORALL (r: I): FALSE);
13

14 % Subtype TCC generated (at line 48, column 26) for r
15 % expected type I
16 % proved - complete
17 forKey_TCC1: OBLIGATION
18 FORALL (r: R): (member(r, image_f_S)) IMPLIES image_f_S(r);

The tcc’s are obligations that the type checking process generates. The
first is a verification condition that checks if the result f(s) belongs to the set
image f S. Its proof directly follows from the definition of image f S. The
second is a technical condition generated as a consequence of the definition of
the library theory inverse alt. Its proof is straightforward from a case
analysis of the emptyness and non-emptyness of the set S. The proof of the
third condition follows directly from the definition of the predefined set mem-
bership predicate member. These proofs are easy enough for PVS to complete
them automatically. The status proved-complete indicates that the proofs
(and dependencies, if any, of the proofs) have been proved by PVS.

The PVS proof of the Lemma h is injective is stored as a lisp structure
consisting of just two proof steps:

Listing 5.1.3 (PVS proof of h is injective)
((use "restriction_is_injective")

(grind))

The first proof step commands invokes the restriction is injective
Axiom, declared as part of the theory’s assumptions (Listing 5.1.1, line 32). The
next command (grind) instructs the theorem prover to apply its standard
simplification rules. Figure 2 shows the PVS-generated human readable form
of the sequent-style proof.

Specific uses of the key theory are obtained by by suitably instantiating
the key constraints with different entity types and sets. These are discussed in
the following subsections.
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Verbose proof for h is bijective .
h is bijective:

{1} bijective?(h)

h is bijective:

{1} bijective?(h)

Using lemma restriction is injective,
h is bijective:

{-1} injective?
[
(S), R

]
(restrict

[
D, (S), R

]
(f ))

{1} bijective?(h)

Trying repeated skolemization, instantiation, and if-lifting,
This completes the proof of h is bijective .
Q.E.D.

Figure 2: Proof of Lemma h is bijective. The step (grind) of the stored lisp
structure in Listing 5.1.3 corresponds to the last step of skolemization, instan-
tiation and if-lifting.

5.2 Key Constraints for stars set

The key constraint on stars set states that two elements of stars set are identical
if they agree on their star name value. This is easily captured as the constraint
below:

Constraint 5.2.1 (Key constraint on stars set) ∀s1, s2 ∈ stars set : star name(s1) =
star name(s2) =⇒ s1 = s2

We are, however, interested in stating the constraint as a property of the func-
tion star name :

Constraint 5.2.2 (Equivalent constraint on stars set) star name restricted to stars set
is injective.

Returning to the theory movie param abstract, in Listing 5.2.1, the
key constraint star name injective on stars set is defined as an ax-
iom. This axiom states that the projection star name is injective when re-
stricted to the stars set abstract entity. From the theory of keys defined
in Section 5.1, it follows that the Name abstract attribute entity is a key for
elements of the Star abstract entity in the star set abstract entity set.

We define star key as an instantiation of the theory key with the param-
eter list [Star, (stars set), Name, star name]. Finally we define
the star-specific key function star for name to be the forKey function of
the instantiated theory star key. The axiom star name injective on stars set
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ensures that the importing theory movie param abstract satisfies the as-
sumption restriction is injective of Listing 5.1.1, lines 28–32.

Listing 5.2.1 (Key constraint on stars set)

57 star_name_injective_on_stars_set: AXIOM
58 injective?[(stars_set), Name](
59 restrict[Star,(stars_set), Name](star_name))
60

61 IMPORTING key[Star, (stars_set), Name, star_name]
62 AS star_key
63

64 star_for_name: [Name -> lift[(stars_set)]] =
65 star_key.forKey

The importing of theory key proceeds without the generation of addi-
tional tcc’s.

5.3 Key Constraints for studios set

The key constraint for studios set is modeled in a way that is similar to
stars set. The constraint for studios set is shown in Constraint 5.3.1,
and its PVS specification is shown in Listing 5.3.1.

Constraint 5.3.1 (Key constraint on studios set) studio name restricted to studios set
is injective.

Listing 5.3.1 (Key constraint on studios set)

70 studio_name_injective_on_studios_set: AXIOM
71 injective?[(studios_set), Name](
72 restrict[Studio, (studios_set),Name](studio_name))
73

74 IMPORTING key[Studio, (studios_set), Name, studio_name]
75 AS studio_key
76

77 studio_for_name: [Name -> lift[(studios_set)]] =
78 studio_key.forKey

The theory key is instantiated as studio key . The key function studio for name
is defined as the exported function studio key.forKey .

5.4 Key Constraints for movies set

The entity set movies set has the pair (title, year) as a key. The abstract entity set
movies set uses the combination of the projection functions movie title and
movie year as a key:
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Constraint 5.4.1 (Key constraint on movies set) The function

λm : Movie. (movie title(m), movie year(m))

is injective on movies set.

The specification of this constraint is shown in Listing 5.4.1. The compound
type TitleYear and projection function movie title year from the ab-
stract entity Movie to TitleYear are used to define a key function. The
rest of the specification is similar to the specification of key constraints for
stars set and studios set. The key theory is instantiated as movie key . The
key function movie for title year is defined as the exported function
movie key.forKey .

Listing 5.4.1 (Key constraint on movies set)

83 TitleYear: TYPE = [Title, Year]
84

85 movie_title_year(mv: Movie): TitleYear =
86 (movie_title(mv), movie_year(mv))
87

88 movie_title_year_injective_on_movies_set: AXIOM
89 injective?[(movies_set), TitleYear](
90 restrict[Movie, (movies_set),
91 TitleYear](movie_title_year))
92

93 IMPORTING key[Movie, (movies_set),
94 TitleYear, movie_title_year]
95 AS movie_key
96

97 movie_for_title_year: [TitleYear -> lift[(movies_set)]] =
98 movie_key.forKey

5.5 Referential Integrity Constraints for stars in set

Referential integrity and participation constraints typically apply to relation-
ship sets. Referential integrity requires that for every element in a relationship
set, every constituent element that is of an entity type must be present in the
data model’s entity set of that type.

We start with the referential integrity constraint for stars in set, stated be-
low:

Constraint 5.5.1 (Referential Integrity for stars in set) ∀s ∈ stars in set : stars in star(s) ∈
stars set ∧ stars in movie(s) ∈ movies set.

The PVS rendition of Constraint 5.5.1 is shown in the stars in ref integrity
axiom in Listing 5.5.1. The function stars in stars movie projects pairs of
type [Star, Movie] from elements of type [StarsIn]. The image of this
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function on stars in set is defined to be the binary relation stars in,
which in traditional conceptual ER modeling is treated as a basic relationship
set. Here, however, stars in is derived from the more abstract (and hence
not necessarily binary) entity stars in set.

Listing 5.5.1 (Referential Integrity for stars in set)

111 stars_in_ref_integrity: AXIOM
112 FORALL (sm: (stars_in_set)):
113 member(stars_in_star(sm),stars_set) AND
114 member(stars_in_movie(sm),movies_set)
115

116 stars_in_star_movie(si:StarsIn): [Star, Movie]=
117 (stars_in_star(si), stars_in_movie(si))
118

119 stars_in: set[[Star, Movie]] =
120 image(stars_in_star_movie, stars_in_set)

5.6 Referential Integrity Constraints for owns set

The referential integrity constraint for owns set is similar to the constraint
for stars in set:

Constraint 5.6.1 (Referential Integrity for owns set) ∀o ∈ owns set : owns studio(o) ∈
studio set ∧ owns movie(o) ∈ movies set

The PVS rendition of Constraint 5.6.1 is shown in the owns ref integrity
axiom in Listing 5.6.1. The function owns movie studio projects pairs of
type [Movie, Studio] from an element of type [Owns]. The image of
this function on owns set is defined to be the binary relation owns.

Listing 5.6.1 (Referential Integrity for owns set)

137 owns_ref_integrity: AXIOM
138 FORALL (own: (owns_set)):
139 member(owns_studio(own),studios_set) AND
140 member(owns_movie(own),movies_set)
141

142 owns_movie_studio(o:Owns): [Movie, Studio] =
143 (owns_movie(o), owns_studio(o))
144

145 owns: set[[Movie,Studio]] =
146 image(owns_movie_studio, owns_set)

5.7 Cardinality Constraint for owns set

There is an additional constraint on owns set: every movie in movies set is owned
by exactly one studio which also occurs in studios set. This constraint is cap-
tured in Listing 5.7.1 by the function owns axiom. A consequence of this



5 ABSTRACT MODEL: CONSTRAINTS 23

axiom is the function studio for movie, which maps an element m of
movies set to the (unique) element related to it by the owns relation.

Listing 5.7.1 (Many-to-one cardinality constraint on owns set)

148 function_owns: AXIOM
149 FORALL (m: (movies_set)):
150 exists1(LAMBDA(s: (studios_set)): owns(m,s))
151

152 studio_for_movie(m: (movies_set)): (studios_set) =
153 the(s:(studios_set) | owns(m,s))

The definition of studio for movie spawns a tcc which is easily proved
in four steps using the exists1 singleton? equivalence lemma from
the library theory props listed in Appendix A.

5.8 Referential Integrity Constraints for contracts set

The referential integrity constraint for contracts set, is a collection of three inde-
pendent constraints. They are listed as follows:

Constraint 5.8.1 (Referential Integrity for constraints set) ∀c ∈ constraints set:

1. contracts star(c) ∈ stars set∧ contracts studio(c) ∈ studios set∧ contracts movie(c) ∈
movies set

2. (contracts star(c), contracts movie(c)) ∈ stars in

3. contracts studio(c) = studio for movie(contracts movie(c))

(1) states that for every element c of the abstract entity set contracts set, the
projections of c are present in the respective abstract entity sets. (2) states
that the pair ( contracts star (c), contracts movie (c)) is contained in
the binary relation stars in , defined earlier in Listing 5.5.1. (3) states that
studio and movie components of contracts set are related via the
studio for movie function defined in Listing 5.7.1.

These constraints are captured by three axioms in Listing 5.8.1.

Listing 5.8.1 (Referential Integrity for contracts set)

175 contracts_ref_integrity: AXIOM
176 FORALL (c: (contracts_set)):
177 member(contracts_star(c),stars_set) AND
178 member(contracts_studio(c),studios_set) AND
179 member(contracts_movie(c),movies_set)
180

181 contracts_star_movie(c: Contracts):
182 [Star, Movie] =
183 (contracts_star(c), contracts_movie(c))



5 ABSTRACT MODEL: CONSTRAINTS 24

184

185 contracts_star_movie: set[[Star, Movie]] =
186 image(contracts_star_movie, contracts_set)
187

188 contracts_stars_in_ref_integrity: AXIOM
189 subset?(contracts_star_movie, stars_in)
190

191 contracts_owns_ref_integrity: AXIOM
192 FORALL (c: (contracts_set)):
193 contracts_studio(c) =
194 studio_for_movie(contracts_movie(c))

5.9 contracts set induces a function: An example of reasoning
in the abstract model

From the contracts owns ref integrity axiom, the studio component is
uniquely determined by the movie component. This means that the pair consist-
ing of the star, movie components projected from contracts set uniquely
determine the studio component. Equivalently, the (graph of the) binary rela-
tion contracts obtained by pairing the pair consisting of the star and movie
components of contracts set with the studio component of contracts set
is a function. This result is captured by the lemma function contracts in
Listing 5.9.1.

Listing 5.9.1 (contracts is a function)

205 contracts_star_movie_studio(c: Contracts):
206 [[Star,Movie], Studio] =
207 (contracts_star_movie(c), contracts_studio(c))
208

209 contracts: set[[[Star,Movie],Studio]] =
210 image(contracts_star_movie_studio, contracts_set)
211

212 studio_for_stars_in_relation(sm:[Star,Movie], std:Studio)
213 :bool =
214 stars_in(sm) AND std = studio_for_movie(sm‘2)
215

216 function_studio_for_stars_in_relation: LEMMA
217 function?(studio_for_stars_in_relation)
218

219 subset_contracts_studio_for_stars_in_relation: LEMMA
220 subset?(contracts, studio_for_stars_in_relation)
221

222 function_contracts: LEMMA
223 function?(contracts)
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The proofs of the Lemmas subset contracts studio for stars in relation
and function studio for stars in relation are one and three steps
respectively and are not shown.

Lemma function contracts follows from the two preceding lemmas
subset contracts studio for stars in relation and
function studio for stars in relation and the lemma subset function
of the library theory function results (listed in Appendix A). The PVS
proof script is shown in Listing 5.9.2.

Listing 5.9.2 (Proof of contracts is a function)

((use "subset_contracts_studio_for_stars_in_relation")
(use "function_studio_for_stars_in_relation")
(use "subset_function[[Star,Movie],Studio]")
(grind))

5.10 Referential Integrity and cardinality constraints for unit of set

Next, we consider the constraints on unit of and its implication on the weak en-
tity crew. The referential integrity constraint of unit of set states that both
participating studio and crew elements must be drawn from the respective en-
tity sets studios set and crews set. This is shown in Listing 5.10.1.

Listing 5.10.1 (Referential Integrity of unit of set)

240 unit_of_ref_integrity: AXIOM
241 FORALL (u: (unit_of_set)):
242 member(unit_of_studio(u),studios_set) AND
243 member(unit_of_crew(u),crews_set)
244

245 unit_of_crew_studio(u:UnitOf): [Crew, Studio] =
246 (unit_of_crew(u), unit_of_studio(u))
247

248 unit_of: set[[Crew,Studio]] =
249 image(unit_of_crew_studio, unit_of_set)

The cardinality constraint for unit of requires that this relation be many-to-
one: for every element drawn from crew set, there is a unique element from
studios set related to it in the binary relation unit of. This element is
obtained by projecting the crew and studio components from unit of set.
The constraint is specified by the axiom function unit of. This axiom
allows the definition of a function crew studio that maps crews set to
studios set.

Listing 5.10.2 (Many-to-one from crew to studio in unit of set)
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251 function_unit_of: AXIOM
252 FORALL (cr: (crews_set)):
253 exists1(LAMBDA(s: (studios_set)): unit_of(cr,s))
254

255 crew_studio(cr: (crews_set)): (studios_set) =
256 the(s:(studios_set) | unit_of(cr,s))
257

5.11 Keys for weak entities

The entity crews set is weak. The weakness is witnessed by the key for
crews set, which involves the (unique) studio in studios set obtained
via the crew studio function and the (unique) number obtained using the
crew number function. The PVS specification to build the key function for
the entity set crews set is given in Listing 5.11.1.

Listing 5.11.1 (Key constraint for weak entity set crews set)

275 crew_studio_num(c:(crews_set)): [Studio, Num] =
276 (crew_studio(c), crew_num(c))
277

278 crew_studio_num_injective_on_crews_set: AXIOM
279 injective?[(crews_set), [Studio, Num]](crew_studio_num)
280

281 IMPORTING key[(crews_set), (crews_set),
282 [Studio, Num], crew_studio_num]
283 AS crew_key
284

285 crew_for_studio_num: [[Studio, Num] -> lift[(crews_set)]]
286 = crew_key.forKey
287 END movie_param_abstract

Along with Section 3, this section completes the specification of the type
structure and constraints on the movie model listed in the theory movie param abstract.
Typechecking of theory results in four easily provable tcc’s. In addition, the
reasoning part consists of three lemmas (see Table 4 on Page 46).

6 Record-based ER model

The data model introduced in Sections 3 and 5 was abstract because it was
parameterized on the types of objects and functions between them. In this sec-
tion, the abstract model is instantiated into a concrete ER model using a record
representation for entities and the corresponding record projection functions.
In the ER model, however, the types of the attributes are left uninterpreted, i.e.,
unspecified. This is because the concrete types of these have no role to play in
the modeling at the ER level for our example.
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6.1 Record types for Entities and Relationships

The first step in constructing the concrete ER model is to define record types
corresponding to the entities and the relationships. This is done in the theory
movie rec . Note that the attribute types in this theory are left uninterpreted.
Thus the ER model based on importing movie rec is kept generic. The theory
movie rec shown in Listing 6.1.1.

Listing 6.1.1 (Uninterpreted types for Attributes)

13 movie_rec: THEORY
14

15 BEGIN
16

17 % Attribute Types
18 % ---------------
19 NameEntity: TYPE+
20 AddressEntity: TYPE+
21 TitleEntity: TYPE+
22 YearEntity: TYPE+
23 NumEntity: TYPE+
24 TitleYearEntity: TYPE = [TitleEntity,YearEntity]

Entities are defined as record types with projection functions corresponding
to record selections (indicated by the infix back quote operator). The definition
of these entities is shown in Listing 6.1.2.

Listing 6.1.2 (Entity Type Definitions)

27 % Entity Types
28 % ------------
29 StarEntity: TYPE = [# name: NameEntity, address: AddressEntity #]
30 star_entity_name(s:StarEntity): NameEntity = s‘name
31 star_entity_address(s:StarEntity): AddressEntity = s‘address
32

33 StudioEntity: TYPE = [# name: NameEntity, address: AddressEntity #]
34 studio_entity_name(s:StudioEntity): NameEntity = s‘name
35 studio_entity_address(s:StudioEntity): AddressEntity = s‘address
36

37 MovieEntity: TYPE = [# title: TitleEntity, year: YearEntity #]
38 movie_entity_title(s:MovieEntity): TitleEntity = s‘title
39 movie_entity_year(s:MovieEntity): YearEntity = s‘year
40

41 CrewEntity: TYPE = [# num: NumEntity, studio: StudioEntity #]
42 crew_entity_num(c: CrewEntity): NumEntity = c‘num
43 crew_entity_studio(c: CrewEntity): StudioEntity = c‘studio

Next, in Listing 6.1.3, we define relationships based on the entities. These
relationships are implemented as nested record structures.
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Listing 6.1.3 (Relationship Type Definitions)

45 StarsInEntity: TYPE =
46 [# star: StarEntity, movie: MovieEntity #]
47 stars_in_entity_star(stars_in: StarsInEntity): StarEntity
48 = stars_in‘star
49 stars_in_entity_movie(stars_in: StarsInEntity): MovieEntity
50 = stars_in‘movie
51

52 OwnsEntity: TYPE = [# studio: StudioEntity, movie: MovieEntity #]
53 owns_entity_studio(owns: OwnsEntity): StudioEntity = owns‘studio
54 owns_entity_movie(owns: OwnsEntity): MovieEntity = owns‘movie
55

56 UnitOfEntity: TYPE = [# crew: CrewEntity, studio: StudioEntity #]
57 unit_of_entity_crew(unit_of: UnitOfEntity): CrewEntity
58 = unit_of‘crew
59 unit_of_entity_studio(unit_of: UnitOfEntity): StudioEntity
60 = unit_of‘studio
61

62 ContractsEntity: TYPE =
63 [# star: StarEntity, movie: MovieEntity, studio: StudioEntity #]
64 contracts_entity_star(contracts: ContractsEntity): StarEntity
65 = contracts‘star
66 contracts_entity_movie(contracts: ContractsEntity): MovieEntity
67 = contracts‘movie
68 contracts_entity_studio(contracts: ContractsEntity): StudioEntity
69 = contracts‘studio
70 END movie_rec

6.2 Instantiating the abstract model to obtain an ER model

The theory movie er constructs an ER model in three stages. The first in-
volves importing the theory movie rec , which contains type definitions of
the entities and relationships. In addition, a helper theory props used for
proving type conditions is also imported. The code corresponding to this is
shown in Listing 6.2.1.

Listing 6.2.1 (Relationship Type Definitions)

14 movie_er: THEORY
15

16 BEGIN
17

18 IMPORTING props
19 IMPORTING movie_rec

In the next stage, shown in Listing 6.2.2, entity and relationship sets are
defined. Note that these are defined as uninterpreted constants.
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Listing 6.2.2 (Entity and Relationship sets)

21 stars_entity_set: set[StarEntity]
22 studios_entity_set: set[StudioEntity]
23 movies_entity_set: set[MovieEntity]
24 crews_entity_set: set[CrewEntity]
25

26 stars_in_entity_set: set[StarsInEntity]
27 owns_entity_set: set[OwnsEntity]
28 contracts_entity_set: set[ContractsEntity]
29 unit_of_entity_set: set[UnitOfEntity]

In the final stage, shown in Listing 6.2.3, the theory movie param abstract
is imported and instantiated with types and the entity and relationship sets de-
fined earlier in the theory.

Listing 6.2.3 (Importing movie param abstract)

31 IMPORTING movie_param_abstract[
32 NameEntity, AddressEntity, TitleEntity,
33 YearEntity, NumEntity, StarEntity,
34 StudioEntity, MovieEntity, CrewEntity,
35 StarsInEntity, OwnsEntity,
36 UnitOfEntity, ContractsEntity,
37

38 star_entity_name, star_entity_address,
39 studio_entity_name, studio_entity_address,
40 movie_entity_title, movie_entity_year,
41 crew_entity_num,
42 stars_in_entity_star, stars_in_entity_movie,
43 owns_entity_movie, owns_entity_studio,
44 unit_of_entity_crew, unit_of_entity_studio,
45

46 contracts_entity_star, contracts_entity_movie,
47 contracts_entity_studio,
48

49 stars_entity_set, studios_entity_set,
50 movies_entity_set, crews_entity_set,
51

52 stars_in_entity_set, owns_entity_set,
53 contracts_entity_set, unit_of_entity_set]
54 END movie_er

7 Relational Model: Types

The ER model specified in Section 6 on page 26 is implemented as a relational
schema-based model. The implementation is defined as the theory movie schema
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which defines a set of schemas and integrity constraints on tables, which are sets
of instances of schemas. The implementation is divided into four parts. The
first part (this Section) consists of the type definitions. The second part consists
of table definitions (Section 8 on page 32). The third part defines axioms that
capture the integrity constraints at the table level (Section 9 on page 33). Finally,
the relational schema model is defined as an instantiation of the parametric ER
model (Section 10 on page 41).

The type definitions for the primitive attribute types are shown in List-
ing 7.0.4. We choose to make concrete the attribute types which were left ab-
stract in the abstract model. We could, however, have postponed this decision
further, since the rest of the development of the theory movie schema is ag-
nostic to the actual choice of the type of the attributes. Traditionally, however,
the choice of primitive types for attributes is made at the relational model level.

In the second part of Listing 7.0.4, the record-based implementation movie rec
is imported with the primitives defined earlier.

Listing 7.0.4 (Schema type definitions)

16 movie_schema: THEORY
17 BEGIN
18 IMPORTING props
19 IMPORTING function_results
20

21 % Types
22 % -----
23

24 NameP: TYPE = string
25 AddressP: TYPE = string
26 TitleP: TYPE = string
27 YearP: TYPE = posnat
28 NumP: TYPE = nat
29

30 IMPORTING movie_rec{{
31 NameEntity:= NameP,
32 AddressEntity:= AddressP,
33 TitleEntity:= TitleP,
34 YearEntity:= YearP,
35 NumEntity:= NumP
36 }}
37

38 TitleYearP: TYPE = [TitleP,YearP]

The schema are defined in terms of the entities specified in movie rec.
The schema definitions are given in Listing 7.0.5.

Listing 7.0.5 (Entity Schema type definitions)
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40 % Schemas
41 % -------
42

43 StarSchema: TYPE = StarEntity
44 star_schema_name(s:StarSchema): NameP = s‘name
45 star_schema_address(s:StarSchema): AddressP = s‘address
46

47 StudioSchema: TYPE = StudioEntity
48 studio_schema_name(s:StudioSchema): NameP = s‘name
49 studio_schema_address(s:StudioSchema): AddressP = s‘address
50

51 MovieSchema: TYPE = MovieEntity
52

53 movie_schema_title(s:MovieSchema): TitleP = s‘title
54 movie_schema_year(s:MovieSchema): YearP = s‘year
55

56 CrewSchema: TYPE = [# num: NumP,
57 studio_name: NameP #]
58 crew_schema_num(c: CrewSchema): NumP = c‘num
59 crew_schema_studio_name(c: CrewSchema): NameP = c‘studio_name
60 crew_schema_studio_name_num(c: CrewSchema): [NameP,NumP] =
61 (crew_schema_studio_name(c),
62 crew_schema_num(c))

The schema definitions for relationships are presented next (in Listing 7.0.6).

Listing 7.0.6 (Relationship Schema type definitions)

78 OwnsSchema: TYPE = [# studio_name: NameP, movie_title: TitleP,
79 movie_year: YearP #]
80

81 owns_schema_studio_name(owns: OwnsSchema): NameP =
82 owns‘studio_name
83 owns_schema_movie_title(owns: OwnsSchema): TitleP =
84 owns‘movie_title
85 owns_schema_movie_year(owns: OwnsSchema): YearP =
86 owns‘movie_year
87 owns_schema_movie_title_year(owns: OwnsSchema):
88 TitleYearP = (owns‘movie_title, owns‘movie_year)
89

90 UnitOfSchema: TYPE = CrewSchema
91 unit_of_schema_crew_num(unit_of: UnitOfSchema): NumP =
92 unit_of‘num
93 unit_of_schema_studio_name(unit_of: UnitOfSchema): NameP =
94 unit_of‘studio_name
95 unit_of_schema_studio_name_crew_num(unit_of: UnitOfSchema):
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96 [NameP,NumP] = (unit_of_schema_studio_name(unit_of),
97 unit_of_schema_crew_num(unit_of))
98

99 ContractsSchema: TYPE = [# star_name: NameP,
100 movie_title: TitleP,
101 movie_year: YearP,
102 studio_name: NameP #]
103

104 contracts_schema_star_name(contracts: ContractsSchema):
105 NameP = contracts‘star_name
106 contracts_schema_movie_title(contracts: ContractsSchema):
107 TitleP = contracts‘movie_title
108 contracts_schema_movie_year(contracts: ContractsSchema):
109 YearP = contracts‘movie_year
110 contracts_schema_movie_title_year(c: ContractsSchema):
111 TitleYearP = (contracts_schema_movie_title(c),
112 contracts_schema_movie_year(c))
113

114 contracts_schema_studio_name(contracts: ContractsSchema):
115 NameP = contracts‘studio_name

8 Relational Model: Tables

The next part of the theory defines the tables as sets of elements of schema
types. It is useful to also define a set of derived tables, or views, which are
projections of the original tables. The PVS code for the table definitions is given
in Listing 8.0.7.

Listing 8.0.7 (Table Definitions)

117 % Tables
118 % ------
119 stars_table: set[StarSchema]
120 studios_table: set[StudioSchema]
121 movies_table: set[MovieSchema]
122 crews_table: set[CrewSchema]
123 stars_in_table: set[StarsInSchema]
124 owns_table: set[OwnsSchema]
125 contracts_table: set[ContractsSchema]
126 unit_of_table: set[UnitOfSchema] = crews_table
127

128 % Derived Tables
129 % --------------
130 star_names_table: set[NameP] =
131 image(star_schema_name,(stars_table))
132
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133 studio_names_table: set[NameP] =
134 image(studio_schema_name,(studios_table))
135

136 movie_titles_table: set[TitleP] =
137 image(movie_schema_title,(movies_table))
138

139 movie_years_table: set[YearP] =
140 image(movie_schema_year,(movies_table))
141

142 movie_schema_title_year(mv: MovieSchema): TitleYearP =
143 (movie_schema_title(mv), movie_schema_year(mv))
144

145 movie_title_years_table: set[TitleYearP] =
146 image(movie_schema_title_year,(movies_table))
147 studio_name_crew_nums_table: set[[NameP,NumP]] =
148 image(crew_schema_studio_name_num, (crews_table))

9 Relational Model: Constraints and Instance Re-
construction

While the constraints on the conceptual model were predicates over entity sets,
in the relation model, constraints are predicates over tables. We consider the
constraints on each of the tables corresponding to entity and relationship.

Along with each constraint, we also define conversion functions that re-
construct entity elements from table entries. These functions are then used to
provide interpretations to the entity and relationship set identifiers of the ER
model (Listing 6.2.2 on page 29). This interpretation is the link that establishes
the correctness of the schema model of this section with respect to the ER model
of Section 6 on page 26.

9.1 Key Constraints on stars table

Key constraints on stars table are specified by instantiating the key the-
ory: The projection function star schema name is injective on stars table.

Listing 9.1.1 (Key Constraints on stars table)

155 star_schema_name_injective_on_stars_table: AXIOM
156 injective?[(stars_table), NameP]
157 (restrict[StarSchema, (stars_table),
158 NameP](star_schema_name))
159

160 IMPORTING key[StarSchema, (stars_table),
161 NameP, star_schema_name] AS star_schema_key
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162

163 maybe_stars_table_entry_for_name:
164 [NameP -> lift[(stars_table)]] = star_schema_key.forKey
165

166 stars_table_entry_for_name:
167 [(star_names_table) -> (stars_table)] =
168 star_schema_key.getForKey
169

170 % Instances for Stars Table Entries
171 % ---------------------------------
172 star_instance_for_stars_table_entry(s:(stars_table)):
173 StarEntity = s

The reconstruction of star entities from star table entries (Lines 172–173 in
Listing 9.1.1 on the previous page) is trivial since both are represented iden-
tically.

9.2 Key Constraints on studios table

The specification of key constraints on studios table is similar to the con-
straints of stars table and is given in Listing 9.2.1. The reconstruction of studio
entities is also similar to the reconstruction of star entities in Section 9.1 on the
previous page.

Listing 9.2.1 (Key Constraints on studios table)

178 studio_schema_name_injective_on_studios_table: AXIOM
179 injective?[(studios_table), NameP]
180 (restrict[StudioSchema, (studios_table),
181 NameP](studio_schema_name))
182

183 IMPORTING key[StudioSchema, (studios_table),
184 NameP, studio_schema_name] AS studio_schema_key
185

186 maybe_studios_table_entry_for_name:
187 [NameP -> lift[(studios_table)]] = studio_schema_key.forKey
188

189 studios_table_entry_for_name:
190 [(studio_names_table) -> (studios_table)] =
191 studio_schema_key.getForKey
192

193 % Instances for Studios Table Entries
194 % ---------------------------------
195 studio_instance_for_studios_table_entry
196 (s:(studios_table)): StudioEntity = s
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9.3 Key Constraints on movies table

The key constraint on movies table is specified by declaring that the projec-
tion function movie scheme title year when restricted to movies table
is injective. Again, because of the identical representation of movie entity ele-
ments and movie table entries, the reconstruction of movie entities from movie
table entries is just the identity function.

Listing 9.3.1 (Key Constraints on movies table)

201 movie_schema_title_year_injective_on_movies_table: AXIOM
202 injective?[(movies_table), TitleYearP](
203 restrict[MovieSchema, (movies_table),
204 TitleYearP](movie_schema_title_year))
205

206 IMPORTING key[MovieSchema, (movies_table),
207 TitleYearP, movie_schema_title_year]
208 AS movie_schema_key
209

210 maybe_movies_table_entry_for_title_year:
211

212 [TitleYearP -> lift[(movies_table)]] =
213 movie_schema_key.forKey
214

215 movies_table_entry_for_title_year:
216 [(movie_title_years_table) -> (movies_table)] =
217 movie_schema_key.getForKey
218

219 % Instances for Movies Table Entries
220 % ----------------------------------
221 movie_instance_for_movies_table_entry
222 (m:(movies_table)): MovieEntity = m

9.4 Referential Integrity Constraints of stars in table

Like the key constraints, the referential integrity constraints of relationships
in the conceptual model are mapped to the tables in the logical model. The
referential integrity constraint on the stars in table specifies that every
entry in the stars in table has its components drawn from the derived
tables star names table and movie title years table (these tables
are defined in Listing 8.0.7 on page 32).

The code for reconstructing a stars in entity element from the corresponding
table element (lines 245–262 in Listing 9.4.1) is verbose but self-explanatory.

Listing 9.4.1 (Referential Integrity Constraints on stars in table)

235 stars_in_table_ref_integrity: AXIOM
236 FORALL (si: (stars_in_table)):
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237 member(stars_in_schema_star_name(si), star_names_table)
238 AND
239 member(stars_in_schema_movie_title_year(si),
240 movie_title_years_table)
241

242 % Instances for StarsIn Table Entries
243 % -----------------------------------
244

245 star_instance_for_stars_in_table_entry(si: (stars_in_table)):
246 StarEntity =
247 LET n = stars_in_schema_star_name(si) IN
248 LET s = stars_table_entry_for_name(n) IN
249 star_instance_for_stars_table_entry(s)
250

251 movie_instance_for_stars_in_table_entry(si: (stars_in_table)):
252 MovieEntity =
253 LET ty = stars_in_schema_movie_title_year(si) IN
254 LET m = movies_table_entry_for_title_year(ty) IN
255 movie_instance_for_movies_table_entry(m)
256

257 stars_in_instance_for_stars_in_table_entry
258 (si:(stars_in_table)): StarsInEntity =
259 (#
260 star:= star_instance_for_stars_in_table_entry(si),
261 movie:= movie_instance_for_stars_in_table_entry(si)
262 #)

9.5 Referential Integrity and Cardinality Constraints for owns table

The referential integrity constraints on owns table specifies that every en-
try in the owns table has its components drawn from the derived tables
movie title years table and studio names table. The cardinality
constraint on owns table requires that for each movie table entry there is ex-
actly one studio table entry such that the two are related via the owns relation.
This is stated by declaring that the owns relation is a function.

The constraints are shown Listing 9.5.1. Note the correspondence between
these axioms and the referential integrity and cardinality constraint axioms for
abstract entity set owns set shown in Listing 5.6 on page 22 and Listing 5.7
on page 22.

Reconstruction of an owns set element from the corresponding owns table
entry is done by extracting the movie and studio components and then combin-
ing them together to form a owns record. The code is shown on lines 293-309 in
Listing 9.5.1.

Listing 9.5.1 (Referential Integrity and Cardinality Constraints on owns table)
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270 owns_table_ref_integrity: AXIOM
271 FORALL (own: (owns_table)):
272 member(owns_schema_movie_title_year(own),
273 movie_title_years_table) AND
274 member(owns_schema_studio_name(own),
275 studio_names_table)
276

277 owns(s:StudioSchema, m: MovieSchema): bool =
278 member((# studio_name := studio_schema_name(s),
279 movie_title := movie_schema_title(m),
280 movie_year := movie_schema_year(m) #),
281 owns_table)
282

283 function_owner: AXIOM
284 FORALL (m: (movies_table)):
285 exists1(LAMBDA(s: (studios_table)): owns(s,m))
286

287 owner(m: (movies_table)): (studios_table) =
288 the({s: (studios_table) | owns(s,m)})
289

290 owner_for_movie_entry:
291 [(movies_table) -> (studios_table)] = owner
292

293 % Instances for Owns Table Entries
294 % --------------------------------
295 studio_instance_for_owns_table_entry
296 (x: (owns_table)): StudioEntity =
297 LET n = owns_schema_studio_name(x) IN
298 LET s = studios_table_entry_for_name(n) IN
299 studio_instance_for_studios_table_entry(s)
300

301 movie_instance_for_owns_table_entry
302 (x: (owns_table)): MovieEntity =
303 LET ty = owns_schema_movie_title_year(x) IN
304 LET m = movies_table_entry_for_title_year(ty) IN
305 movie_instance_for_movies_table_entry(m)
306

307 owns_instance_for_owns_table_entry(x: (owns_table)): OwnsEntity =
308 (# studio := studio_instance_for_owns_table_entry(x),
309 movie := movie_instance_for_owns_table_entry(x) #)

9.6 Referential Integrity Constraints of contracts table

The three referential integrity constraints of contracts table mirror the
constraints on contracts set specified in Section 5.8 on page 23.

The specification of the contracts table constraints is shown in List-
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ing 9.6.1. The first constraint contracts table ref integrity states that
for every entry c of contracts table , its star, studio and movie com-
ponents are drawn respectively from stars table , studio table and
movies table. For the second constraint, first, the function contracts schema stars in
is used to construct the triplet consisting of star name, movie title and movie year
from each entry of contracts table to yield the set contracts table stars in
(line 332-333). The constraint contracts table stars in ref integrity
defined next states that this set is a subset of stars in table. The third
constraint contract table owns ref integrity states that the set contracts table owns
obtained by extracting the studio, movie title and movie year components from
contracts table using the function contracts schema owns is a subset
of owns table .

The rest of the code (lines 351-378) in Listing 9.6.1 is devoted to reconstruct-
ing ContractEntity elements from contracts table entries.

Listing 9.6.1 (Constraints on contracts table)

317 contracts_table_ref_integrity: AXIOM
318 FORALL (c: (contracts_table)):
319 member(contracts_schema_star_name(c),
320 star_names_table) AND
321 member(contracts_schema_studio_name(c),
322 studio_names_table) AND
323 member(contracts_schema_movie_title_year(c),
324 movie_title_years_table)
325

326 contracts_schema_stars_in(c: ContractsSchema):
327 StarsInSchema =
328 (# star_name:= contracts_schema_star_name(c),
329 movie_title:= contracts_schema_movie_title(c),
330 movie_year:= contracts_schema_movie_year(c) #)
331

332 contracts_table_stars_in: set[StarsInSchema] =
333 image(contracts_schema_stars_in, contracts_table)
334

335 contracts_table_stars_in_ref_integrity: AXIOM
336 subset?(contracts_table_stars_in, stars_in_table)
337

338 contracts_schema_owns(c: ContractsSchema):
339 OwnsSchema =
340 (# studio_name := contracts_schema_studio_name(c),
341 movie_title := contracts_schema_movie_title(c),
342 movie_year := contracts_schema_movie_year(c) #)
343

344 contracts_table_owns: set[OwnsSchema] =
345 image(contracts_schema_owns, contracts_table)
346
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347 contracts_table_owns_ref_integrity: AXIOM
348 FORALL (c: (contracts_table)):
349 subset?(contracts_table_owns, owns_table)
350

351 % Instances for Contracts Table Entries
352 % -------------------------------------
353

354 star_instance_for_contracts_table_entry
355 (x: (contracts_table)): StarEntity =
356 LET n = contracts_schema_star_name(x) IN
357 LET s = stars_table_entry_for_name(n) IN
358 star_instance_for_stars_table_entry(s)
359

360 studio_instance_for_contracts_table_entry
361 (x: (contracts_table)): StudioEntity =
362 LET n = contracts_schema_studio_name(x) IN
363 LET s = studios_table_entry_for_name(n) IN
364 studio_instance_for_studios_table_entry(s)
365

366

367 movie_instance_for_contracts_table_entry
368 (x: (contracts_table)): MovieEntity =
369 LET ty = contracts_schema_movie_title_year(x) IN
370 LET m = movies_table_entry_for_title_year(ty) IN
371 movie_instance_for_movies_table_entry(m)
372

373 contracts_instance_for_contracts_table_entry
374 (c: (contracts_table)): ContractsEntity =
375 (# star:= star_instance_for_contracts_table_entry(c),
376 movie := movie_instance_for_contracts_table_entry(c),
377 studio:= studio_instance_for_contracts_table_entry(c)
378 #)

9.7 Referential Integrity constraints for unit of table

The referential integrity constraint for unit of table is shown in Listing 9.7.1.
Note that because the unit of table and crews table are synonymous
(Listing 8.0.7 on page 32), the referential integrity for unit of table needs to
specify the constraint only on the studio component of the unit of table.
It might be instructive to compare the definition of this constraint at the table
level with the constraint on unit of set (Listing 5.10.1 on page 25).

Listing 9.7.1 (Referential Integrity and Cardinality Constraints on unit of table)

386 unit_of_table_ref_integrity: AXIOM
387 FORALL (u: (unit_of_table)):
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388 member(unit_of_schema_studio_name(u),
389 studio_names_table)
390

391 studio_for_crew(cr: (crews_table)): (studios_table) =
392 studios_table_entry_for_name(crew_schema_studio_name(cr))
393

394 unit_of: set[[(crews_table), (studios_table)]] =
395 graph(studio_for_crew)
396

397 function_unit_of: LEMMA
398 function?[(crews_table), (studios_table)](unit_of)

9.8 Key Constraints of crews table

The key constraints on crews table are specified by instantiating the key
theory, as shown in Listing 9.8.1. The second part of the listing (lines 420-439)
defines the functions for reconstructing crew and unit of entities from their re-
spective tables. crew instance for crews table entry is used to recon-
struct crew instances from crews table entries. Note the use of the key function
studios table entry for name and the studio instance extraction func-
tion studio instance for studios table entry defined earlier in List-
ing 9.1.1 on page 33. The reconstruction of unit of entries relies on the equiva-
lence of representation of the UnitofSchema and CrewSchema types.

Listing 9.8.1 (Key Constraints on crews table)

404 crew_schema_studio_name_num_injective_on_crews_table: LEMMA
405 injective?[(crews_table), [NameP, NumP]]
406 (crew_schema_studio_name_num)
407

408 IMPORTING key[(crews_table), (crews_table),
409 [NameP, NumP], crew_schema_studio_name_num]
410 AS crew_key
411

412 maybe_crew_for_studio_num:
413 [[NameP, NumP] -> lift[(crews_table)]]
414 = crew_key.forKey
415

416 crew_entry_for_studio_num:
417 [(studio_name_crew_nums_table) -> (crews_table)]
418 = crew_key.getForKey
419

420 % Instances for CrewsTable Entries
421 % ---------------------------------
422

423 crew_instance_for_crews_table_entry
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424 (c: (crews_table)): CrewEntity =
425 LET n = crew_schema_num(c),
426 sn = crew_schema_studio_name(c) IN
427 LET se = studios_table_entry_for_name(sn) IN
428 LET st = studio_instance_for_studios_table_entry(se) IN
429 (# num:= n, studio:= st #)
430

431 % Instances for UnitOf Table Entries
432 % ---------------------------------
433

434 % Exploit the equivalence of UnitOfSchema and CrewSchema
435 unit_of_instance_for_unit_of_table_entry
436 (u: (unit_of_table)): UnitOfEntity =
437 LET cr = crew_instance_for_crews_table_entry(u) IN
438 LET st = crew_entity_studio(cr) IN
439 (# crew:= cr, studio:= st #)

10 Relational Model: Correctness of Implementa-
tion

We rely on the theory interpretation mechanism of PVS to ensure the correct-
ness of the theory movie schema specifying the logical model with respect
to the theory movie er specifying the ER model. The automatic verification
of the soundness of the implementation with respect to the ER model consists
of the following steps, which we collectively refer to as the implementation
correctness roadmap:

1. Mapping the types, entity sets and constraints of the abstract model to
constraints in the relational model (Sections 7 to 9). A summary of these
constraints is discussed in Section 10.1.

2. Providing an interpretation of the entity sets of the ER model in the rela-
tional model. This is discussed in Section 10.2 on the next page.

3. Importing the ER model from the logical model. This is discussed in
Section 10.3 on page 44.

4. Proving the type correctness conditions generated during the typecheck-
ing of the specifications and by the import. This is discussed in Sec-
tion 10.4 on page 45 and also in Section 11 on page 45.

10.1 Constraint specification at different levels of abstraction

Tables 1 to 3 summarize the different constraints of the movie enterprise. The
constraints are specified at three levels: natural language (Section 2), axioms
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Constraint PVS Specification

Sec. 2.3 (1) star name injective on stars set : AXIOM (Listing 5.2.1 on page 20)

star schema name injective on stars table : AXIOM (Listing 9.1.1 on page 33)

Sec. 2.3 (2) studio name injective on studios set : AXIOM (Listing 5.3.1 on page 20)

studio schema name injective on studios table : AXIOM (Listing 9.2.1 on
page 34)

Sec. 2.3 (3) movie title year injective on movies set : AXIOM (Listing 5.4.1 on page 21)

movie schema title year injective on movies table : AXIOM (Listing 9.3.1 on
page 35)

Sec. 2.3 (4) crew studio num injective on crews set : AXIOM (Listing 5.11.1 on page 26)

crew schema studio name num injective on crews table : LEMMA (Listing 9.8.1
on page 40)

Table 1: Specification of key constraints across movie theories. For each
row, the left column entry refers to the definition of the constraint in English.
The right column entry refers to the corresponding PVS constraints for the
abstract conceptual model (Section 5) and the relational schema-based model
(Section 9).

in the PVS specification of the abstract model (Section 5 on page 16), and ax-
ioms or lemmas in the PVS specification of the relational model (Section 9 on
page 33). Note that because of representation decisions made at the relational
level (namely, identifying the type UnitOfSchema with CrewSchema , some
constraints expressed as axioms at the abstract level are lemmas at the rela-
tional level. (See row 4 of Table 1 and row 2 of Table 2 on the following page.)
In addition, in row 3 of Table 3, axiom unit of table ref integrity ,
alongwith the equivalence of representation between unit of table and
crews table is strong enough to implement the axiom unit of ref integrity
specifying the referential integrity constraint of the unit of abstract entity
set.

10.2 Entity Sets from Tables

The next step of the implementation correctness roadmap is to define an im-
plementation of the entity sets of the ER model in terms of the tables of the re-
lational model. Recall that these entity sets were defined as uninterpreted con-
stants in the ER model. The definitions of implementations of the entity sets is
shown in Listing 10.2.1 on page 44. stars entity set, studios entity set
and movies entity set are obtained directly as their table implementa-
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Constraint PVS Specification

Sec. 2.4 (1) function owns : AXIOM (Listing 5.7.1 on page 23)

function owns : AXIOM (Listing 9.5.1 on page 36)

Sec. 2.4 (2) function unit of : AXIOM (Listing 5.10.2 on page 25)

function unit of : LEMMA (Listing 9.7.1 on page 39)

Table 2: Specification of cardinality constraints across movie theories. For
each row, the left column entry refers to the definition of the constraint in
English. The right column entry refers to the corresponding PVS constraints
for the abstract conceptual model (Section 5) and the relational schema-based
model (Section 9).

Constraint PVS Specification

Sec. 2.5 (1) stars in ref integrity : AXIOM (Listing 5.5.1 on page 22)

stars in table ref integrity : AXIOM (Listing 9.4.1 on page 35)

Sec. 2.5 (2) owns ref integrity : AXIOM (Listing 5.6.1 on page 22)

owns table ref integrity : AXIOM (Listing 9.5.1 on page 36)

Sec. 2.5 (3) unit of ref integrity : AXIOM (Listing 5.10.1 on page 25)

unit of table ref integrity : AXIOM (Listing 9.7.1 on page 39)

Sec. 2.5 (4) contracts ref integrity : AXIOM (Listing 5.8.1 on page 23)

contracts table ref integrity : AXIOM (Listing 9.6.1 on page 38)

Sec. 2.5 (5) contracts stars in ref integrity : AXIOM (Listing 5.8.1 on page 23)

contracts table stars in ref integrity : AXIOM (Listing 9.6.1 on page 38)

Sec. 2.5 (6) contracts owns ref integrity : AXIOM (Listing 5.8.1 on page 23)

contracts table owns ref integrity : AXIOM (Listing 9.6.1 on page 38)

Table 3: Specification of referential integrity constraints across movie theories.
For each row, the left column entry refers to the definition of the constraint in
English. The right column entry refers to the corresponding PVS constraints
for the abstract conceptual model (Section 5) and the relational schema-based
model (Section 9).
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tions. The other entity sets are defined using the instance reconstruction func-
tions.

Listing 10.2.1 (Entity Sets from Tables)

445 stars_entity_set: set[StarEntity] = stars_table
446 studios_entity_set: set[StudioEntity] = studios_table
447 movies_entity_set: set[MovieEntity] = movies_table
448 crews_entity_set: set[CrewEntity] =
449 image(crew_instance_for_crews_table_entry,
450 crews_table)
451

452 stars_in_entity_set: set[StarsInEntity] =
453 image(stars_in_instance_for_stars_in_table_entry,
454 stars_in_table)
455 owns_entity_set: set[OwnsEntity] =
456 image(owns_instance_for_owns_table_entry, owns_table)
457 contracts_entity_set: set[ContractsEntity] =
458 image(contracts_instance_for_contracts_table_entry,
459 contracts_table)
460 unit_of_entity_set: set[UnitOfEntity] =
461 image(unit_of_instance_for_unit_of_table_entry,
462 unit_of_table)

10.3 Interpreting the ER model theory in the Relational model
theory by importing

The third step of the implementation correctness roadmap is to specify, using
the PVS import statement, the interpretation of the ER model theory movie er
by the relational model theory movie schema. The import is shown in List-
ing 10.3.1. The parameter list to the import is a mapping consisting of elements
of the form

uninterpreted-constant := interpreted-value

Here, uninterpreted-constants denote entity sets in the ER theory movie er ,
while interpreted-values are their implementations in movie schema.

Listing 10.3.1 (Importing theory movie er)

465 IMPORTING movie_er{{
466 stars_entity_set:= stars_entity_set,
467 studios_entity_set:= studios_entity_set,
468 movies_entity_set:= movies_entity_set,
469 crews_entity_set:= crews_entity_set,
470

471 stars_in_entity_set:= stars_in_entity_set,
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472 owns_entity_set:= owns_entity_set,
473 contracts_entity_set:= contracts_entity_set,
474 unit_of_entity_set:= unit_of_entity_set}}
475 END movie_schema

10.4 Type correctness conditions

The final step of the implementation correctness roadmap is to ensure the over-
all type correctness of all the theories involved in the specification. A summary
of the number of type correctness conditions for each of the theories is shown
in Section 11, Table 4. Not surprisingly, the bulk of the tcc’s generated are for
the theory movie schema (15 of 22) There are, however, no tcc’s generated
due to the import statement itself, and this is surprising. This indicates that
the type checker was able to successfully resolve all the type conditions for this
import before it got to the import statement.

11 Results

The number of lines of code, the number of tcc’s generated, and the number
of user formulas in each of the seven theories constituting the specification
of the movie model are shown in Table 4. The abstract and schema specifi-
cations make up the bulk of the source code (441 lines out a total of 564). A
total of 22 tcc’s are generated. These are divided amongst the abstract and
schema specifications, and the key library theory. The rest of the theories do
not generate any tcc’s, including movie er , which is somewhat unexpected.
There is, on the average, about one tcc generated for every 30 lines of code.
The specification also consists of 11 user-defined lemmas: four in the library
theory function results , three in movie param abstract, two in
movie schema and on each in key and props. Together with the tcc’s,
the total number formulas is 33.

The distribution of the sizes of proofs of these 33 formulas is shown in
Figure 3. All but two of them are of four or less steps in length and almost
three-fourths are of length two or less. The proofs of the remain two lemmas,
subset function of theory function results and exists1 singleton? equivalence
of theory props , are of length 47 and 25, respectively. Fortunately, these mod-
erately sized proofs are both from the library theories: all the proofs in the main
(abstract, er, and schema) theories are small.

The results of Figure 3 encourage us to believe that even as the size of the
specifications and number of constraints increase, the number of tcc’s will in-
crease, but not the sizes of their proofs. The proofs in our implementation
all use only elementary proof steps; PVS proof strategies have not been used.
Their use could reduce the sizes of some of the longer proofs.
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Theory # lines TCC’s User Lemmas Total Formulas (TCC’s + Lemmas)

props 7 0 1 1

function results 21 0 4 4

key 18 3 1 4

movie rec 45 0 0 0

movie er 32 0 0 0

movie param abstract 133 4 3 7

movie schema 308 15 2 17

Total 564 22 11 33

Table 4: TCC’s and User Formulas in the movie theories.

1 step

36.4%

 12

2 steps

36.4%

 12

3 steps

9.1%

 3
4 steps

12.1%

 4

>= 25 steps

6.1%

 2

Figure 3: Distribution of the 33 proofs of the movie model according to size (in
number of proof steps). All proofs are either of size four or less, or 25 or more.
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12 Related Research

Research on conceptual models for database applications is not new. Since
the early 70s, commonly accepted modeling approaches have been developed
for databases, including the conceptual ER model [12] and the more physi-
cal relational model [13]. Since then, other models have been developed and
used such as the object-oriented model [8] and the object-relational model [28].
One of the primary objectives for such models is to aid in the design of busi-
ness data in applications for the purpose of automating business processes.
These techniques were invented to “improve the quality of deliverables and
to ensure that inexperienced system developers could follow repeatable SDLC
processes.[22]” Typically, a conceptual model lends itself to easy migration to
a logical and finally a physical model. The conceptual model can be used for
presentation purposes, the logical model for formulating ad-hoc queries and
the physical model for actual implementation in a database.

Deductive database languages like Datalog [9] have been used for reason-
ing with data models in the past by Neumann and others [23, 18]. Their ap-
proach relies on encoding instances, models and metamodels as Datalog pro-
grams. Integrity constraints are encoded as predicates and verification is done
by querying these predicates for violations. On the other hand, the methodol-
ogy proposed in our work relies on the typechecking capabilities of a general-
purpose specification language to prove correctness of the model and its im-
plementation.

Although the importance of conceptual models in application design is
well-accepted in literature, using a conceptual model for the purpose of specifi-
cation is less common. There is some research in developing conceptual model
through the process of specification [26]. Extensions to the ER model have
been proposed with some amount of reasoning, semantics and constraint spec-
ification features [15]. Constraint specification is also researched in the context
of object-oriented databases and UML [17]. A generic specification process of
diagram languages such as the ER model has been researched by [21]. Spec-
ification languages are more common, however, in knowledge-based systems
[16] and semantic databases [3], where the semantics of the data are more im-
portant than just mere structures. Finally, conceptual model-based verification
and validation have also been researched, although more in the context of spe-
cific applications such as diagnosis [32].

Although different components of our work can be found in the literature
on semantic databases and object-oriented databases, a coherent method for
formal specification of conceptual models for the purpose of model verification
still seems to be a necessity, something that we provide in this paper.

13 Future Work

Our work must be seen as an experiment in the evolution of a methodology
that emphasizes correctness in data modeling and design. There are several
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directions in which this work can be extended.

13.1 Automation

While the size of our example was consisted of about fifteen or so elements
(attributes, entities and relationships), the construction of its specification was
relatively large (about 1000 lines of PVS code). Fortunately, it should be rela-
tively straightforward to automatically generate the specification from the ER
diagram. The second aspect of the automation involves generating automatic
proofs of type correctness conditions and the correctness lemmas. Since most
of the proofs involved a few steps and a judicious use of axioms of the model,
it should not be difficult to automate most, if not all of the proofs. This is a
positive indication for building future tools supporting this methodology.

13.2 Trigger Generation

Triggers are the the practical implication of constraints. It should be possible to
automatically translate constriants into triggers, which are tests that ensure the
invariants are maintained at the end of every update to the database. However,
while constraints are typically stated in terms of global properties, an efficient
trigger will involve computation proportional to size of the the update to the
database, not the size of the database itself.

13.3 Modeling of more complex data

This work has applied the specification language approach to the more tradi-
tional Entity-Relationship modeling of data. The approach should be applica-
ble to other data models like Object-Oriented or Object Relational, but we have
no empirical evidence yet that this is indeed the case. Another interesting area
is to formalize a data model of XML data. Again, we do not have a clear idea
in what interesting ways the modeling of XML will impact the formalizaion.

14 Conclusions

The goal of this work was to show how data models may be constructed and
validated using a formal specification language. We have shown, using a stan-
dard text-book example, how this is done. In the process, we have shown that
design and modeling process can be carried out as a programming task in a
strongly typed language with a reasonably sophisticated type checker at the
backend.

While design verification plays in an important role in other disciplines
(hardware and program verification), it has generally received less attention
in data modeling. Data modeling is an important part of the requirements
analysis phase of software engineering. We believe that this lack of emphasis
is due to the absence of a design methodology that emphasize correctness and
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tools that support validation. The experiment presented in this paper is a small,
but positive step towards creating such a methodology.
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A Additional Library Theories

Listing A.0.1 (function results)

10 function_results[D,R: TYPE]: THEORY
11

12 BEGIN
13 x: VAR D
14 y: VAR R
15 f,h: VAR set[[D,R]]
16 g: VAR [D -> R]
17

18

19 dom(f): set[D] = image((LAMBDA(p:[D,R]): p‘1), f)
20 cod(f): set[R] = image((LAMBDA(p:[D,R]): p‘2), f)
21

22 function?(f): bool =
23 FORALL(x: (dom(f))):
24 exists1 (LAMBDA (y: (cod(f))): member((x,y),f))
25

26 function?_function: LEMMA
27 function?(graph(g))
28

29 subset_dom: LEMMA
30 subset?(h,f) IMPLIES subset?(dom(h), dom(f))
31

32 subset_cod: LEMMA
33 subset?(h,f) IMPLIES subset?(cod(h), cod(f))
34

35 subset_function: LEMMA
36 subset?(h,f) AND function?(f) IMPLIES function?(h)
37

38 END function_results

Listing A.0.2 (props)

11 props[T:TYPE]: THEORY
12

13 BEGIN
14 s: VAR T
15 p: VAR pred[T]
16 exists1_singleton?_equivalence: LEMMA
17 exists1(LAMBDA (s: T): p(s)) IFF singleton?[T](s: T | p(s))
18 END props
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