
Memory-Constrained

Data Locality Optimization
for Tensor Contractions

Alina Bibireata1, Sandhya Krishnan1, Gerald Baumgartner1, Daniel Cociorva1,
Chi-Chung Lam1, P. Sadayappan1, J. Ramanujam2,

David E. Bernholdt3, and Venkatesh Choppella3

1 Department of Computer and Information Science
The Ohio State University, Columbus, OH 43210, USA

{bibireat,krishnas,gb,cociorva,clam,saday}@cis.ohio-state.edu
2 Department of Electrical and Computer Engineering

Louisiana State University, Baton Rouge, LA 70803, USA
jxr@ece.lsu.edu

3 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
{bernholdtde,choppellav}@ornl.gov

Abstract. The accurate modeling of the electronic structure of atoms
and molecules involves computationally intensive tensor contractions
over large multi-dimensional arrays. Efficient computation of these con-
tractions usually requires the generation of temporary intermediate ar-
rays. These intermediates could be extremely large, requiring their stor-
age on disk. However, the intermediates can often be generated and used
in batches through appropriate loop fusion transformations. To optimize
the performance of such computations a combination of loop fusion and
loop tiling is required, so that the cost of disk I/O is minimized. In
this paper, we address the memory-constrained data-locality optimiza-
tion problem in the context of this class of computations. We develop
an optimization framework to search among a space of fusion and tiling
choices to minimize the data movement overhead. The effectiveness of
the developed optimization approach is demonstrated on a computation
representative of a component used in quantum chemistry suites.

1 Introduction

An increasing number of large-scale scientific and engineering applications are
highly data intensive, operating on large data sets that range from gigabytes to
terabytes, thus exceeding the physical memory of the machine.

Scientific applications, in particular electronic structure codes widely em-
ployed in quantum chemistry [12, 13], computational physics, and material sci-
ence, require elaborate interactions between subsets of data; data cannot be
simply brought into the physical memory once, processed, and then over-written
by new data. Subsets of data are repeatedly moved back and forth between
a small memory pool, limited physical memory, and a large memory pool, the

L. Rauchwerger (Ed.): LCPC 2003, LNCS 2958, pp. 93–108, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

94 Alina Bibireata et al.

unlimited disk. The cost introduced by these data movements has a large impact
on the overall execution time of the computation. In such contexts, it is neces-
sary to develop out-of-core algorithms that explicitly orchestrate the movement
of subsets of data within the memory-disk hierarchy. These algorithms must en-
sure that data is processed in subsets small enough to fit the machine’s main
memory, but large enough to minimize the cost of moving data between disk
and memory.

This paper presents an approach to the automated synthesis of out-of-core
programs with particular emphasis on the Tensor Contraction Engine (TCE)
program synthesis system [1, 3, 2, 5, 4]. The TCE targets a class of electronic
structure calculations, which involve many computationally intensive compo-
nents expressed as tensor contractions (essentially generalized matrix products
involving higher dimensional matrices). Although the current implementation
addresses tensor contraction expressions arising in quantum chemistry, the ap-
proach developed here has broader applicability; we believe it can be extended
to automatically generate efficient out-of-core code for a range of computations
expressible as imperfectly nested loop structures operating on arrays potentially
larger than the physical memory size.

The evaluation of such expressions involves explicit decisions about:

– the structure of loops, including tiling strategies
– the evaluation order of intermediate arrays
– memory operations (allocate, deallocate, reallocate)
– disk operations (read, write)

The fundamental compiler transforms that we apply here are loop fusion and
loop tiling:

– Loop Fusion: The evaluation of the tensor contraction expressions often
results in the generation of large temporary arrays that would be too large
to be produced entirely in main memory by a “producer” loop nest and then
consumed by a “consumer” loop nest. By suitably fusing common loops in the
producer and consumer loop nests, it is feasible to reduce the dimensionality
of the buffer array used in memory and store the intermediate array on disk.
Thus, a smaller in-memory array may be used to produce the full disk array
in chunks.

– Loop Tiling: It enables data locality to be enhanced, so that the cost of
moving data to/from disk is decreased.

For minimizing the disk access cost under a given memory constraint, the
compiler needs to search among many possible loop fusion structures, tile sizes,
and placements of temporaries on disk. Conceptually, it is necessary to search
along all three dimensions simultaneously. A decoupled approach that first
searches for a fusion structure that minimizes the memory usage, followed by
tiling and disk placements [5], may produce code with a sub-optimal disk-access
cost as an example in the next section illustrates. A decoupled approach that
first optimizes disk access by tiling the loops and placing temporaries on disk,

Memory-Constrained Data Locality Optimization for Tensor Contractions 95

followed by loop fusion for reducing memory usage, may fail to find a solution
that fits into memory since the constraints imposed by tiling prohibit many
possible fusions. However, a simultaneous search along all three dimensions is
computationally infeasible.

In this paper, we present an integrated approach in which we first search
for possible fusion structures together with disk placements. The result of this
search is a set of candidate loop structures with different memory requirements
and different combinations of disk placements for the temporaries. For each of
the solutions from this search we then search for the tile sizes that minimize the
disk access cost [6]. We present two algorithms for the combined fusion and disk
placement search: an optimal algorithm that is guaranteed to find the solution
that will have the minimum disk access cost after tiling and a heuristic algorithm
that is more efficient but may result in a suboptimal solution after tiling.

The rest of the paper is organized as follows. In the next section, we discuss
the class of computations that we consider and discuss an example from compu-
tational chemistry. In Sec. 3, we introduce the main concepts used in this paper.
Sec. 4 presents an optimal fusion plus tiling algorithm. Sec. 5 presents a sub-
optimal, but empirically efficient fusion plus tiling algorithm. Sec. 6 presents
experimental evidence of the performance of this algorithm, and conclusions are
provided in Sec. 7.

2 The Computational Context

We consider the class of computations in which the final result to be computed
can be expressed in terms of tensor contractions, essentially a collection of multi-
dimensional summations of the product of several input arrays. There are many
different ways to compute the final result due to commutativity, associativity and
distributivity. The ways to compute the final result could differ widely in the
number of floating point operations required, in the amount of memory needed,
and in the amount of disk-to-memory traffic.

As an example, consider a transformation often used in quantum chemistry
codes to transform a set of two-electron integrals from an atomic orbital (AO)
basis to a molecular orbital (MO) basis:

B(a, b, c, d) =
∑

p,q,r,s

C1(d, s) × C2(c, r) × C3(b, q) × C4(a, p) × A(p, q, r, s).

Here, A(p, q, r, s) is an input four-dimensional array (assumed to be initially
stored on disk), and B(a, b, c, d) is the output transformed array, which needs to
be placed on disk at the end of the calculation. The arrays C1 through C4 are
called transformation matrices.

The indices p, q, r, and s denote the total number of orbitals, and have the
same range N equal to O + V , where O is the number of occupied orbitals in
the chemistry problem and V is the number of unoccupied (virtual) orbitals.
Similarly, the indices a, b, c, and d have the same range equal to V . Typical
values for O range from 10 to 300, and the number of virtual orbitals V is
usually between 50 and 1000.

96 Alina Bibireata et al.

The result array B is computed in four steps to reduce the number of
floating point operations from O(V 4N4) in the initial formula (8 nested loops,
for p, q, r, s, a, b, c, and d) to O(V N4) as shown below:

B(a, b, c, d) =
∑

s

C1(d, s)

×
(∑

r

C2(c, r) ×
(∑

q

C3(b, q) ×
(∑

p

C4(a, p) × A(p, q, r, s)

)))
.

The result of this operation-minimal approach is the creation of three temporary
intermediate arrays T 1, T 2, and T 3 as follows: T 1(a, q, r, s) =

∑
p C4(a, p)A(p, q,

r, s), T 2(a, b, r, s) =
∑

q C3(b, q)T 1(a, q, r, s), and T 3(a, b, c, s) =
∑

r C2(c, r)
T 2(a, b, r, s). Assuming that the available memory limit on the machine running
this calculation is less than V 4 (which is 3TB for V = 800), any of the logical
arrays A, T 1, T 2, T 3, and B is too large to entirely fit in memory. Therefore, if
the computation is implemented as a succession of four independent steps, the
intermediates T 1, T 2, and T 3 have to be written to disk once they are produced,
and read from disk before they are used in the next step. Furthermore, the
amount of disk access volume could be much larger than the total volume of the
data on disk containing A, T 1, T 2, T 3, and B. Since none of these arrays can
be fully stored in memory, it may not be possible to perform all multiplication
operations by reading each element of the input arrays from disk only once.

We use loop fusion to reduce the memory requirements for the temporary
arrays and loop fusion together with loop tiling to reduce the disk access volume.
For illustrating the interactions between fusion and tiling consider the following
simple example with only two contractions:

Dij =
∑

k

Aik ×
(∑

l

Bkl × Cjl

)
.

To prevent the intermediate array t[k, j] =
∑

l Bkl × Cjl from having to be
written to disk in case it does not fit in memory, we need to fuse loops between
the producer and the consumer of t[k, l]. This results in the intermediate array
being formed and used in a pipelined fashion. For every loop that is fused between
the producer and the consumer of an intermediate, the corresponding dimension
can be removed from the intermediate. E.g., in the loop structure in Fig. 1(a),
the intermediate t[k, l] could be reduced to a scalar, while in the loop structure
in Fig. 2(a), it could only be reduced to a vector t[k].

Notice that for reducing the memory requirements of the temporary to a
scalar in Fig. 1(a), it is necessary to have the file read operations for B and C
inside the innermost loop. This results in the input arrays to be read redundantly
multiple times. In this example, B is read once for every iteration of the j loop,
while C is read once for every iteration of the k loop.

The number of redundant read operations can be reduced by tiling the loops
and reading entire tiles in one operation as illustrated in Fig. 1(b). B, e.g., is now
only read redundantly once for every iteration of the jT tiling loop. In exchange,

Memory-Constrained Data Locality Optimization for Tensor Contractions 97

FOR i, j
D[i,j] = 0

FOR j, k
t = 0
FOR l

t += C[j,l] * B[k,l]
FOR i

D[i,j] += A[i,k] * t

(a) Memory minimal loop structure

FOR iT, jT
Initialize(D[iI,jI],0.0)
Write D[iI,jI] to D[iT + iI,jT + jI]

FOR jT, kT
Initialize(t[jI,kI],0.0)
FOR lT
C[jI,lI] = Read C[jT + jI,lT + lI]
B[kI,lI] = Read B[kT + kI,lT + lI]
FOR jI, kI, lI

t[jI,kI] += C[jI,lI] * B[kI,lI]
FOR iT
D[iI,jI] = Read D[iT + iI,jT + jI]
A[iI,kI] = Read A[iT + iI,kT + kI]
FOR jI, kI, iI

D[iI,jI] += A[iI,kI] * t_2[jI,kI]
Write D[iI,jI] to D[iT + iI,jT + jI]

(b) Tiled loop structure

Fig. 1. Illustration of the decoupled approach for a simple example

FOR j
FOR k

t[k] = 0.0
FOR l

C = Read C[j,l]
FOR k
B = Read B[k,l]
t[k] += B * C

FOR i
D = 0.0
FOR k
A~= Read A[i,k]
D += A~* t[k]

Write D to D[i,j]

(a) Best loop structure with
temporary in memory

FOR jT
FOR kT, jI, kI

t[kT + kI,jI] = 0.0
FOR lT

C[jI,lI] = Read C[j,l]
FOR kT

B[kI,lI] = Read B[k,l]
FOR jI, lI, kI

t[kT + kI,jI] += B[kI,lI] * C[jI,lI]
FOR iT

FOR jI, iI
D[iI,jI] = 0.0

FOR kT
A[iI,kI] = Read A[i,k]
FOR jI, iI, kI

D[iI,jI] += A[iI,kI] * t[kT + kI,jI]
Write D[iI,jI] to D[i,j]

(b) Tiled loop structure

Fig. 2. Illustration of the integrated approach for a simple example

the memory requirement increases since all fused array dimensions get expanded
to tile size. The disk access volume for a given loop structure can, therefore, be
minimized by increasing the tile sizes until the memory is exhausted.

In our previous decoupled approach to fusion and tiling, we first fused the
loops in order to minimize the memory usage. The memory-minimal loop struc-
ture was then tiled to minimize the disk access cost, as shown in Fig. 1. We found
that for some examples, this resulted in suboptimal solutions, since there were
too many redundant read operations for the input arrays. Also, the memory-
minimal loop structure often results in the summation loop being the outer-
most loop for a contraction. This requires the initialization of the result array
to be outside the non-summation tiling loops, which then requires both a read
and a write operation for the result array. This is illustrated with array D in
Fig. 1(b).

98 Alina Bibireata et al.

Minimizing the disk access cost before fusion by deciding which temporaries
to put on disk is not possible, since the resulting constraints on the loop struc-
ture might prevent the solution from fitting in memory. Also, since fusion can
eliminate the need of writing some temporaries to disk, it can help reduce the
disk access cost. What is, therefore, needed is an integrated approach in which
we minimize the disk access cost under a memory constraint. The loop structure
in Fig. 2 is the result of such an integrated approach.

It is not feasible, to simultaneously search for all possible loop structures and
all possible tile sizes. Instead, we first produce a set of candidate loop structures
and decide which of the temporaries are written to disk for a given loop structure.
For each candidate solution in this set, we then determine the tile sizes that
minimize the disk access cost. Finally, we select the tiled loop structure with the
minimal disk access cost. We have previously described the tile size search and
the proper placement of I/O operations in the tiled loop structure [6]. In this
paper, we concentrate on the algorithms for finding the candidate solutions for
the tile size search.

3 Preliminaries

Before describing the algorithms, we first need to present the notions of expres-
sion trees, fusions, and nestings. Since these concepts, as well as the algorithms,
are not limited to tensor contraction expressions, we describe them in the context
of arbitrary sums-of-products expressions. For more detailed explanation, read-
ers are referred to [7, 8, 9, 10, 11]. As an example to illustrate the concepts, we
use the multi-dimensional summation shown in Figure 3(a) represented by the
expression tree in Figure 3(b). One way to fuse the loops is shown in Figure 3(c).

Indexset Sequence. To describe the relative scopes of a set of fused loops, we
introduce the notion of an indexset sequence, which is defined as an ordered list
of disjoint, non-empty sets of loop indices. For example, f = 〈{i, k}, {j}〉 is an
indexset sequence. For simplicity, we write each indexset in an indexset sequence
as a string. Thus, f is written as 〈ik, j〉. Let g and g′ be indexset sequences. We
denote by Set(g) the union of all indexsets in g, i.e., Set(g) =

⋃
1≤r≤|g| g[r]. For

instance, Set(f) = Set(〈j, i, k〉) = {i, j, k}.

Fusion. We use the notion of an indexset sequence to define a fusion. Intuitively,
the loops fused between a node and its parent are ranked by their fusion scopes
in the subtree from largest to smallest; two loops with the same fusion scope
have the same rank (i.e., are in the same indexset). In the example, the fusion
between B and f2 is 〈k, jl〉.

Nesting. Similarly, a nesting of the loops at a node v can be defined as an
indexset sequence. Intuitively, the loops at a node are ranked by their scopes in
the subtree; two loops have the same rank (i.e., are in the same indexset) if they
have the same scope. In the example, the loop nesting at f2 is 〈k, jl〉 (because
the fused k-loop covers one more node, namely C).

Memory-Constrained Data Locality Optimization for Tensor Contractions 99

W [k] =
∑

i

∑
j

∑
l

(A[i, j] × B[j, k, l] × C[k, l])

(a) A multi-dimensional summation

B[j, k, l] C[k, l]

�
�

�
�

A[i, j] ×f2

∑
i

∑
kf1 f3

�
�

�
�

×f4

∑
jf5

(b) An expression tree for computing (a)

Initialize f1[j]
for i⎡
⎣ for j[

A = Read A[i,j]
f1[j] += A

Initialize f5[k]
for k⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

for l[
C[l] = Read C[k,l]

for j⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Initialize f3
for l⎡
⎣ B = Read B[j,k,l]
f2 = B × C[l]
f3 += f2

f4 = f1[j] ×f3
f5[k] += f4

(c) A loop fusion configuration for (b)

Fig. 3. An example multi-dimensional summation

The “More-Constraining” Relation on Nestings. A nesting h at a node v
is said to be more or equally constraining than another nesting h′ at the same
node, denoted h � h′, if any loop fusion configuration for the rest of the ex-
pression tree that works with h also works with h′. This relation allows us to
do effective pruning among the large number of loop fusion configurations for
a subtree.

4 Optimal Fusion + Tiling Algorithm

We derive the memory usage and the disk access volume of arrays in tiled,
imperfectly nested loops as follows. Without tiling, the memory usage of an
array is the product of the ranges of its unfused dimensions. With tiling, the
tile sizes of the fused dimensions also contribute to the product. The disk access
volume is the size of the array times the trip counts of the loops surrounding
the read/write statement but not corresponding to the dimensions of the array.
Without tiling, the trip counts of such extra loops are simply their index ranges.
With tiling, the trip counts become their index ranges divided by their tile sizes.
In addition, if partial sums are produced and written to disk, they need to be
read back into memory, thus doubling the disk access volume.

MemUsage(A, f) =
∏

i∈FusedDimens(A,f)

Ti ×
∏

i∈UnfusedDimens(A,f)

Ni

DiskCost(A, f) = WriteFactor(A, f) ×
∏

i∈A.dimens

Ni ×
∏

i∈ExtraLoops(A,f)

Ni/Ti

100 Alina Bibireata et al.

where

WriteFactor(A, f) =

⎧⎨
⎩

2 if f is the fusion between produce A and write A
and A.dimens ⊂ Set(f)

1 otherwise

FusedDimens(A, f) = A.dimens ∩ Set(f)

UnfusedDimens(A, f) = A.dimens − Set(f)

ExtraLoops(A, f) = Set(f) − A.dimens

and f is the fusion between read A and consume A, between produce A and
consume A, or between produce A and write A.

As an example, for a disk-resident array X [i, j, k], if the fusion between
produce X and write X is g = 〈ij〉, then we have from the above equations:

FusedDimens(X, g) = {i, j}

UnfusedDimens(X, g) = {k}

MemUsage(X, g) = Ti × Tj × Nk

WriteFactor(X, g) = 1

ExtraLoops(X, g) = ∅

DiskCost(X, g) = Ni × Nj × Nk

Note that if an intermediate array is written to disk, it would have two
potentially-different MemUsage: one for before writing to disk and one after
reading back from disk. Similarly, it would have two DiskCost: one for writing
it and one for reading it.

Since MemUsage and DiskCost depend on tile sizes, it may appear we cannot
compare MemUsage and DiskCost between different fusions without knowing the
tile sizes. However, some comparison is still possible. Continuing with the above
example, if the fusion between produce X and write X is g′ = 〈il〉, then:

MemUsage(X, g′) = Ti × Nj × Nk

DiskCost(X, g′) = Ni × Nj × Nk × Nl/Tl

No matter what tile sizes are used for g′, we can use the same tile sizes for g
and assure that MemUsage(X, g) ≤ MemUsage(X, g′) and DiskCost(X, g) ≤
DiskCost(X, g′) because Tj ≤ Nj and Nl/Tl ≥ 1. Hence, fusion g′ for array X is
inferior to fusion g and can be pruned away.

Generalizing from this example, we obtain the sufficient conditions for a fu-
sion to result in less or equal MemUsage or DiskCost than another one.

LeqMemUsage(A, f, f ′) = FusedDimens(A, f) ⊇ FusedDimens(A, f ′)

LeqDiskCost(A, f, f ′) = ExtraLoops(A, f) ⊆ ExtraLoops(A, f ′)

Memory-Constrained Data Locality Optimization for Tensor Contractions 101

The first condition above implies UnfusedDimens(A, f) ⊆
UnfusedDimens(A, f ′) and hence MemUsage(A, f) ≤ MemUsage(A, f ′) for
same set of tile sizes because Ti ≤ Ni for any index i. Similarly, the second
condition above (for LeqDiskCost (A, f, f ′)) implies WriteFactor(A, f) ≤
WriteFactor(A, f ′) and DiskCost(A, f) ≤ DiskCost(A, f ′) for same set of tile
sizes because Ni/Ti ≥ 1 for any index i.

In our example, both LeqMemUsage(X, g, g′) and LeqDiskCost(X, g, g′) are
true because FusedDimens(X, g) = {i, j} is a superset of FusedDimens(X, g′) =
{i} and ExtraLoops(X, g) = ∅ is a subset of ExtraLoops(X, g′) = {l}.

To apply LeqMemUsage and LeqDiskCost to compare different solutions cor-
responding to different fusion configurations for a subtree, we need to consider
the different combinations of whether each array is disk-resident or not.

LeqMemUsage(s, s′) ≡
∀ array A in the subtree rooted at s.root,

{
LeqMemUsage(A, s.A.fr, s′.A.fr) and
LeqMemUsage(A, s.A.fw, s′.A.fw) if s.A.ondisk and s′.A.ondisk

FusedDimens(A, s.A.fr) ⊃ FusedDimens(A, s′.A.fc) and
FusedDimens(A, s.A.fw) ⊃ FusedDimens(A, s′.A.fc) if s.A.ondisk and not s′.A.ondisk

LeqMemUsage(A, s.A.fc, s′.A.fr) and
LeqMemUsage(A, s.A.fc, s′.A.fw) if not s.A.ondisk and s′.A.ondisk

LeqMemUsage(A, s.A.fc, s′.A.fc) if not s.A.ondisk and
not s′.A.ondisk

}
LeqDiskCost(s, s′) ≡

∀ array A in the subtree rooted at s.root,

{
LeqDiskCost(A, s.A.fr, s′.A.fr) and
LeqDiskCost(A, s.A.fw, s′.A.fw) if s.A.ondisk and s′.A.ondisk

not s.A.ondisk otherwise
}

where

s.A.ondisk means array A is disk-resident in solution s

s.A.fr is the fusion between read A and consume A in solution s

s.A.fw is the fusion between produce A and write A in solution s

s.A.fc is the fusion between produce A and consume A in solution s

For input or final-result arrays where fusions fr or fw do not apply, or for inter-
mediate disk-resident arrays where fusion fr is yet to be decided, such fusions
are considered empty sets.

Making use of the above results, we can compare and prune solutions as
follows. A solution that has higher or equal memory usage and disk access cost
and a more or equally constraining nesting than another solution is considered
inferior and can be pruned away safely. Between solutions for the entire tree and
between solutions for a subtree whose root array is disk-resident and its fusion fr

is undecided, pruning without the condition of a more or equally constraining
nesting is also safe.

102 Alina Bibireata et al.

Inferior(s′, s) ≡
LeqMemUsage(s, s′) and
LeqDiskCost(s, s′) and
(s′.root.nesting � s.root.nesting or

s.root = Root or
(s.root.ondisk and s′.root.ondisk and s.root.fr = s′.root.fr = ∅))

A dynamic programming, bottom-up algorithm using the Inferior condition
as a pruning rule works as follows. For each leaf node (corresponding to an input
array) in the tree, one solution is formed for each possible fusion fr (or fc if it
is not disk-resident) with its parent and then inferior solutions are pruned away.
For each intermediate array A in the tree, all possible legal fusions fw and fc,
for writing A to disk or not respectively, are considered in deriving new solutions
from the children of A. Solutions that write A to disk are pruned against each
other before all possible legal fusions fr are enumerated to derive new solutions.
Then all inferior solutions for the subtree rooted at A, whether writing A to
disk or not, are pruned away. For the root of tree, if it is to be written to disk,
all possible legal fusions fw are considered in deriving new solutions. Finally, all
inferior solutions for the entire tree are pruned away.

Although this approach is guaranteed to find an optimal solution, it could
be expensive. The reason is the condition LeqMemUsage(s, s′) requires each and
every array in the subtree in solution s to have lower or equal memory usage
than the corresponding array in solution s′, and similarly for LeqDiskCost(s, s′)
in terms of disk access cost. If either the memory usage or the disk access cost
of any array in s is incomparable to the corresponding array in s′, no solution
derived from s for a larger subtree would be comparable to any solution derived
from s′. Thus, in the worse case, the number of unpruned solutions for the entire
tree could grow exponentially in the number of arrays. Due to its exponential
complexity, we have yet to implement this approach.

5 Efficient Fusion + Tiling Algorithm

Since the optimal fusion and tiling algorithm is impractical to implement, due to
its large number of unpruned solution, we have devised a sub-optimal, efficient
algorithm to solve the fusion and tiling problem. The central idea of this algo-
rithm is to first fix a tile size T common to all the tiled loops, and, based on this
tile size, determine a set of candidate solutions by a bottom-up tree traversal. In
the second part of the algorithm, the tile sizes are allowed to vary, and optimal
tile sizes are determined for all candidate solutions. The candidate solution with
the lowest disk cost is finally chosen as the best overall solution.

Our current implementation of the first part of the algorithm uses T =
1. With WriteFactor(A, f), FusedDimens(A, f), UnfusedDimens(A, f), and
ExtraLoops(A, f) defined according to Section 4, the memory usage and disk
cost for an array A become:

Memory-Constrained Data Locality Optimization for Tensor Contractions 103

MemUsage(A, f) =
∏

i∈UnfusedDimens(A,f)

Ni

DiskCost(A, f) = WriteFactor(A, f) ×
∏

i∈Set(f)

Ni

where f is the fusion between read A and consume A, between produce A and
consume A, or between produce A and write A.

When an intermediate array is stored on disk, it has two MemUsage: one
for before writing to disk and one after reading back from disk. In this case, we
define MemUsageas the maximum of the two values. Similarly, the array has two
DiskCost: one for writing it and one for reading it. We define the total disk cost
of an intermediate array that is stored on disk as the sum of the disk costs for
writing it and for reading it back.

With these definitions, we calculate the memory usage and disk cost of a so-
lution s corresponding to a given fusion configuration for a subtree:

MemUsage(s) =
∑

Ain the subtree rooted at s.root

MemUsage(A, fs)

DiskCost(s) =
∑

Ain the subtree rooted at s.root

DiskCost(A, fs)

where fs is the fusion between read A and consume A, between produce A and
consume A, or between produce A and write A given the fusion configuration of
the solution s.

Different solutions corresponding to different fusion configurations for a sub-
tree are now easily comparable:

LeqMemUsage(s, s′) ≡ {MemUsage(s) ≤ MemUsage(s′)}

LeqDiskCost(s, s′) ≡ {DiskCost(s) ≤ DiskCost(s′)}

Making use of the above results, we can introduce pruning rules similar to
those of the optimal algorithm: a solution that has higher or equal memory usage
and disk access cost and a more or equally constraining nesting than another
solution is considered inferior and can be pruned away safely.

Inferior(s′, s) ≡
LeqMemUsage(s, s′) and
LeqDiskCost(s, s′) and
(s.root.nesting � s′.root.nesting or

s.root = Root or
(s.root.ondisk and s′.root.ondisk and s.root.fr = s′.root.fr = ∅))

A dynamic programming, bottom-up algorithm using the Inferiorcondition
as a pruning rule works in the same fashion as the optimal algorithm described in
Section 4. The major difference between the optimal algorithm and the efficient

104 Alina Bibireata et al.

FOR r, s
FOR a, q

T1[a,q] = 0.0
FOR p

C4[a] = Read C4[p,a]
FOR q
A~= Read A[p,q,r,s]
FOR a

T1[a,q] += A~* C4[a]
FOR b

FOR a
T2[a] = 0.0

FOR q
C3 = Read C3[q,b]
FOR a

T2[a] += T1[a,q] * C3
Write T2 to T2[a,b,r,s]

FOR a, b, c
FOR s
T3 = 0.0

FOR r
C2 = Read C2[r,c]
FOR s

T2 = Read T2[a,b,r,s]
T3 += T2 * C2

FOR d
B = 0.0
FOR s

C1 = Read C1[s,d]
B += T3 * C2

Write B to B[a,b,c,d]

Fig. 4. Fused Structure with temporary T2 on disk

algorithm is that the Inferior(s, s′) condition is more relaxed in the latter: we
no longer require that the MemUsage and DiskCost inequalities be valid for
all individual arrays in the subtree rooted at s.root. Instead, only the sums of
MemUsage and DiskCost over the entire subtree need to be compared.

The result of this approach is a set of candidate solutions that are character-
ized by pairs of the form (MemUsage(s), DiskCost(s)). The algorithm described
above prunes away all solutions that have higher MemUsage and DiskCost un-
der the tile size constraint T = 1. For each candidate solution in the set, we then
search for the tile sizes that minimize the disk access cost [6]. Increasing the tile
sizes causes the disk access cost to decrease and the memory usage to increase,
since array dimensions that have been eliminated by fusion get expanded to tile
size. Finally, we select the solution with the least disk access cost.

6 Experimental Evaluations

We used the algorithm from Sec. 5 to generate code for the AO-to-MO index
transformation calculation described in Sec 2. The algorithm generated 77 can-
didate solutions that would then be run through the tiling algorithm. We present
two representative solutions generated by this algorithm.

The solution shown in Fig. 4 places only temporary T 2 on disk, while the
solution shown in Fig. 5 places only the temporary T 1 on disk. After tile size
search, the tiled code with the least disk access cost was the one based on the
solution with T 2 on disk. The optimal code is shown in Fig. 6.

Measurements were taken on a Pentium II system with the configuration
shown in Table 1. The codes were all compiled with the Intel Fortran Compiler

Table 1. Configuration of the system whose I/O characteristics were studied

Processor OS Compiler Memory Hard disk

Pentium II 300 MHz Linux 2.4.18-3 gcc version 2.96 128MB Maxtor 6L080J4

Memory-Constrained Data Locality Optimization for Tensor Contractions 105

FOR q, r, s
FOR a

T1[a] = 0.0
FOR p

A~= Read A[p,q,r,s]
FOR a
C4 = Read C4[p,a]
T1[a] += A~* C4

Write T1[a] to T1[a,q,r,s]

FOR b
C3[q] = Read C3[q,b]
FOR a
FOR s, c

T3[s,c] = 0.0
FOR r

C2[c] = Read C2[r,c]
FOR s

T2 = 0.0
FOR q

T1 = Read T1[a,q,r,s]
T2 += T1 * C3[q]

FOR c
3[s,c] += T2 * C2[c]

FOR d
FOR c

B[c] = 0.0
FOR s

C1 = Read C1[s,d]
FOR c

B[c] += T3[s,c] * C1
Write B[c] to B[a,b,c,d]

Fig. 5. Fused Structure with temporary T1 on disk

FOR rT, sT
FOR aT, qT, rI, sI, aI, qI

T1[aT+aI,qT+qI,rI,sI] = 0.0
FOR pT

C4[pI,aT+aI] = Read C4[p,a]
FOR qT
A[pI,qI,rI,sI] = Read A[p,q,r,s]
FOR aT, rI, sI, pI, qI, aI

T1[aT+aI,qT + qI,rI,sI] +=
A[pI,qI,rI,sI] * C4[pI,aT+aI]

FOR bT
FOR aT, rI, sI, bI, aI
T2[aT+aI,bI,rI,sI] = 0.0

FOR qT
C3[qI,bI] = Read C3[q,b]
FOR aT, rI, sI, bI, qI, aI

T2[aT+aI,bI,rI,sI] +=
T1[aT+aI,qT+qI,rI,sI]*C3[qI,bI]

Write T2[aT+aI,bI,rI,sI] to
T2[a,b,r,s]

FOR aT, bT, cT
FOR sT, aI, bI, cI, sI
T3[aI,bI,cI] = 0.0

FOR rT
C2[rI,cI] = Read C2[r,c]
FOR sT

T2[aI,bI,rI,sI] =
Read T2[a,b,r,s]

FOR aI, bI, cI, rI, sI
T3[aI,bI,cI] +=

T2[aI,bI,rI,sI]*C2[rI,cI]
FOR dT
FOR aI, bI, cI, dI

B[aI,bI,cI,dI] = 0.0
FOR sT

C1[dI,sI] = Read C1[d,s]
FOR aI, bI, cI, dI, sI

B[aI,bI,cI,dI] +=
T3[aI,bI,cI]*C2[dI,sI]

Write B[aI,bI,cI,dI] to B[a,b,c,d]

Fig. 6. Loop Structure after tiling

for Linux. Although this machine is now very old and much slower than PCs
available today, it was convenient to use for our experiments in an uninterrupted
mode, with no interference to the I/O subsystem from any other users.

Table 2 shows the measured I/O time for the AO-to-MO transform where the
sizes of the tensors (double precision) considered were: Np = Nq = Nr = Ns = 80
and Na = Nb = Nc = Nd = 70. We used 100MB as the memory limit. The I/O
time for each array was separately accumulated. The predicted values match
quite well with the measured time. The match is better for the overall I/O time
than for some individual arrays. This is because disk writes are asynchronous
and may be overlapped with succeeding disk reads — hence the measurements
of I/O time attributable to individual arrays is subject to error due to such
overlap, but the total time should not be affected by the interleaving of writes

106 Alina Bibireata et al.

with succeeding reads. For these tensor sizes and an available memory of 100MB,
it is possible to choose fusion configurations so that the sizes of any two out of
the three intermediate arrays can be reduced to fit completely in memory, but
it is impossible to find a fusion configuration that fits all three intermediates
within memory. Thus, it is necessary to keep at least one of them on disk, and
incur disk I/O cost for that array.

Table 3 shows the predicted I/O times and the improvement factor of the
integrated fusion+tiling algorithm over the decoupled algorithm for the AO-to-
MO transformation example for different array sizes and memory limits. For
the arrays sizes a = 70 and p = 80, actual measurements were performed using
the 100MB, 500MB, and 2000MB memory limits and, in all cases, for the
integrated algorithm, the predicted results matched the actual results. For the
memory limits of 500MB and 2000MB and the small array sizes, both the
decoupled and the integrated algorithm were able to fit all the temporaries in
memory, and thus no significant improvement was achieved.

Depending on the size of the problem, as the memory pressure increases, the
improvement factor of the integrated algorithm over the decoupled algorithm
increases significantly. This is to be expected, because the decoupled algorithm
introduces more redundant reads and writes than the integrated algorithm. With
high memory pressure, the tiles cannot be made very large, which results in an
insufficient reduction of the redundant disk accesses.

The measured results and the predicted results match well and the integrated
fusion+tiling algorithm outperforms the decoupled datalocality algorithm.

7 Conclusion

We have described an optimization approach for synthesizing efficient out-of-core
algorithms in the context of the Tensor Contraction Engine. We have presented
two algorithms for performing an integrated fusion and tiling search. Our algo-
rithms produce a set of candidate solutions, each with a fused loop structure
and read and write operations for temporaries. After determining the tile sizes
that minimize the disk access cost, the optimal solution is chosen. We have
demonstrated with experimental results, that the integrated approach outper-
forms a decoupled approach of first determining the fused loop structure and
then searching for the optimal tile sizes.

Table 2. Predicted and Measured I/O Time: a solution generated by the new fusion-
datalocality algorithm for the AO-to-MO transform example

Predicted Results(seconds) Measured Results(seconds)

Array A 21.3 31

Array B 18.25 14

Array T2 40.14 41

Arrays C1,C2,C3,C4 0.052 0.72

Total time 79.74 86.7

Memory-Constrained Data Locality Optimization for Tensor Contractions 107

Table 3. Comparison of predicted I/O time for the AO-to-MO transform example

Ranges Decoupled Integrated Improvement factor

100MB

a=70, p=80 1.882×102 sec 0.747×102 sec 2.52
a=200, p=300 7.390×104 sec 0.850×104 sec 8.70
a=500, p=600 5.520×106 sec 2.300×105 sec 24.00

500MB

a=70, p=80 0.395×102 sec 0.395×102 sec 1.00
a=200, p=300 4.830×104 sec 0.850×104 sec 5.70
a=500, p=600 3.560×106 sec 2.300×105 sec 15.50

2000MB

a=70, p=80 0.395×102 sec 0.395×102 sec 1.00
a=200, p=300 3.780×104 sec 0.850×104 sec 4.45
a=500, p=600 2.140×106 sec 2.109×105 sec 10.14

Acknowledgments

We thank the National Science Foundation for its support of this research
through the Information Technology Research program (CHE-0121676 and
CHE-0121706), NSF grants CCR-0073800 and EIA-9986052, and the U.S. De-
partment of Energy through award DE-AC05-00OR22725.

References

[1] G. Baumgartner, D.E. Bernholdt, D. Cociorva, R. Harrison, S. Hirata, C. Lam,
M. Nooijen, R. Pitzer, J. Ramanujam, P. Sadayappan. A High-Level Approach
to Synthesis of High-Performance Codes for Quantum Chemistry. In Proc Super-
computing 2002, Nov. 2002. 94

[2] D. Cociorva, G. Baumgartner, C. Lam, P. Sadayappan, J. Ramanujam, M. Nooi-
jen, D. Bernholdt, and R. Harrison. Space-Time Trade-Off Optimization for
a Class of Electronic Structure Calculations. Proc. of ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation (PLDI), June
2002, pp. 177–186. 94

[3] D. Cociorva, X. Gao, S. Krishnan, G. Baumgartner, C. Lam, P. Sadayappan,
J. Ramanujam. Global Communication Optimization for Tensor Contraction Ex-
pressions under Memory Constraints. Proc. of 17th International Parallel & Dis-
tributed Processing Symposium (IPDPS), Apr. 2003. 94

[4] D. Cociorva, J. Wilkins, C.-C. Lam, G. Baumgartner, P. Sadayappan, and J. Ra-
manujam. Loop optimization for a class of memory-constrained computations. In
Proc. 15th ACM International Conference on Supercomputing(ICS’01), pp. 500–
509, Sorrento, Italy, June 2001. 94

[5] D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan, J. Ramanujam,
M. Nooijen, D.E. Bernholdt, and R. Harrison. Towards Automatic Synthesis of
High-Performance Codes for Electronic Structure Calculations: Data Locality Op-
timization. Proc. of the Intl. Conf. on High Performance Computing, Dec. 2001,

108 Alina Bibireata et al.

Lecture Notes in Computer Science, Vol. 2228, pp. 237–248, Springer-Verlag, 2001.
94

[6] S. Krishnan, S. Krishnamoorthy, G. Baumgartner, D. Cociorva, C. Lam, P. Sa-
dayappan, J. Ramanujam, D.E. Bernholdt, and V. Choppella. Data Locality Op-
timization for Synthesis of Efficient Out-of-Core Algorithms. In Proc. of the Intl.
Conf. on High Performance Computing, Dec. 2003, Hyderabad, India. 95, 98,
104

[7] C. Lam. Performance Optimization of a Class of Loops Implementing Multi-
Dimensional Integrals, Ph.D. Dissertation, The Ohio State University, Columbus,
OH, August 1999. 98

[8] C. Lam, D. Cociorva, G. Baumgartner and P. Sadayappan. Optimization of Mem-
ory Usage and Communication Requirements for a Class of Loops Implementing
Multi-Dimensional Integrals. Proc. 12th LCPC Workshop San Diego, CA, Aug.
1999. 98

[9] C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayappan. Memory-optimal
evaluation of expression trees involving large objects. In Proc. Intl. Conf. on High
Perf. Comp., Dec. 1999. 98

[10] C. Lam, P. Sadayappan and R. Wenger. On Optimizing a Class of Multi-
Dimensional Loops with Reductions for Parallel Execution. Par. Proc. Lett., (7)
2, pp. 157–168, 1997. 98

[11] C. Lam, P. Sadayappan and R. Wenger. Optimization of a Class of Multi-
Dimensional Integrals on Parallel Machines. Proc. of Eighth SIAM Conf. on Par-
allel Processing for Scientific Computing, Minneapolis, MN, March 1997. 98

[12] T. J. Lee and G.E. Scuseria. Achieving chemical accuracy with coupled cluster
theory. In S.R. Langhoff (Ed.), Quantum Mechanical Electronic Structure Calcu-
lations with Chemical Accuracy, pp. 47–109, Kluwer Academic, 1997. 93

[13] J.M. L. Martin. In P. v. R. Schleyer, P.R. Schreiner, N. L. Allinger, T. Clark, J.
Gasteiger, P. Kollman, H. F. Schaefer III (Eds.), Encyclopedia of Computational
Chemistry. Wiley & Sons, Berne (Switzerland). Vol. 1, pp. 115–128, 1998. 93

	Memory-ConstrainedData Locality Optimizationfor Tensor Contractions
	Introduction
	The Computational Context
	Preliminaries
	Optimal Fusion + Tiling Algorithm
	Efficient Fusion + Tiling Algorithm
	Experimental Evaluations
	Conclusion

