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Abstract. The W algorithm of Milner [Mil78] and its numerous vari-
ants [McA98,LY98,YTMW00] implement type reconstruction by build-
ing type substitutions. We define an algorithm W E centered around
building type equations rather than substitutions. The design of W E

is motivated by the belief that reasoning with substitutions is awkward.
More seriously, substitutions fail to preserve the exact syntactic form of
the type equations they solve. This makes analysing the source of type
errors more difficult. By replacing substitution composition with unions
of sets of type equations and eliminating the application of substitution
to environments, we obtain an algorithm for type reconstruction that is
simple and also useful for type error reconstruction. We employ a se-
quentiality principle for unifier composition and a constructive account
of mgu-induced variable occurrence relation to design W E and prove
its correctness. We introduce syntax equations as a formal syntax for
progam slices. We use a simple constraint generation relation to relate
syntax equations with type equations to trace program slices responsible
for a type error.

1 Introduction

The Damas-Milner type system [DM82,Dam85], also known as the Hindley-
Milner type system, is the basis for type reconstruction in higher-order, poly-
morphically typed functional languages like ML [MTH90] and Haskell [PJH99].
Type reconstruction in Damas-Milner is implemented using Milner’s principal
type algorithm W [Mil78]. An important practical concern affecting the usability
of these languages has been the issue of intelligent type error diagnosis, that is,
locating the elements of the source program that contribute to the type error
in an ill-typed program. The problem of type error diagnosis has led to several
proposals for modifying W [McA98,LY98,YTMW00].

The W algorithm and the above mentioned variants compute the principal
type of an expression by building substitutions, which are maps from type vari-
ables to types. Each type variable is a placeholder for the type of a subexpression
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of the program expression. It is intuitively appealing, however, to consider divid-
ing the process of building solution substitutions into two phases: an initial phase
in which type constraints are constructed and accumulated followed by a second
phase in which these constraints are solved to obtain a solution substitution.
Such a separation of phases, for example, is the basis of Wand’s proof [Wan87]
of Hindley’s theorem, in which the typability problem for simply-typed lambda
calculus is reduced to term unification [CF58,Hin69]. Viewing type assignments
as solutions to type equations was encouraged by Milner himself [Mil78], and
later by Cardelli [Car87] as well, mainly through examples. In this paper, we
present an algorithm WE that relies on a limited separation of the generation of
type equations from their solution. Using the algorithm for unification source-
tracking developed earlier [Cho02,CH03], we show how this algorithm may be
used for tracking the source of type errors.

The substitutions computed by the Milner W algorithm and others are so-
lutions (unifiers) of sets of type equations, yet these equations are never made
explicit in these algorithms. Since substitutions lose information about the ex-
act form of the term equations they solve, it is difficult to reconstruct source
information from substitutions alone. Therefore, we seek a type reconstruction
algorithm centered around the computation of type equations with the follow-
ing property: The equations should have an mgu that is trivially related to the
mgu computed by W . Otherwise, the non-unifiability of these equations, which
indicates untypability, should be diagnosable independent of the Damas-Milner
type system, using unification source-tracking [CH03], for example.

Separating the generation of type equations from their solution is, however,
easier said than done for Damas-Milner type reconstruction. The difficulty may
be traced to the non-compositional behavior of the W algorithm and its variants:
in the expression let x = e in e′, the type of e is required to compute the type
of e′. This non-compositional behavior is due to the absence of the principal
typing (as opposed to the principal type) property of the Damas-Milner type
system [Wel02].

To be sure, separation is possible, either by generating type inequations , or
by unfolding all the let bindings in the original program. But these approaches
move the type reconstruction problem outside the realm of unification and the
Damas-Milner regime respectively, and are also unsatisfactory from a practical
point of view. The solution of type inequations requires semi-unification rather
than ordinary unification [Hen93], while the unfolding of let bindings reduces the
problem to typability in the Curry-Hindley calculus at the cost of an increase
in program size in practice, and an exponential increase in the theoretical worst
case [KMM91].

Our approach offers a middleground in which the type equation generation
phase is continued until a let expression let x = e in e′ is encountered. The
type equations for e′ refer to the type of e, which is obtained by solving the type
equations generated by e. By solving the equations at let boundaries, we avoid
both the problem of proliferation of type equations caused by let unfolding and
the need to generate type inequations.
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1.1 Summary of Contributions and Outline of Paper

The main contributions of this paper are:

1. A sequentiality principle for unifier composition that relates unifier compo-
sition with union of term equations (Theorem 1, Section 2).

2. A constructive characterization of variable occurrences in terms computed
by applying most general unifiers (Lemmas 1 and 2, Section 2.2). This result
relies on the unification path framework developed earlier [CH03]. It is used
to provide a formal, constructive interpretation of a common implementation
mechanism for identifying non-generic variables. (Section 4.2).

3. A type equation based polymorphic type reconstruction algorithm WE for
Damas-Milner (Section 4).

4. An application of the unification source-tracking algorithm developed in
[CH03] to extract type equation slices from the output of WE (Section 5).

5. A simple framework for error diagnosis in the Damas-Milner type system.
The framework consists of syntax equations (Section 5.1), which are a formal
notation for expressing program slicing information, type equations , and a
constraint generation relation relating syntax equations to type equations
(Section 5.2). Type equation slices computed in (4) are mapped back to
syntax equation slices generating a type error.

Section 2 presents a constructive view of unification. Section 3 briefly reviews
the Milner W algorithm. Section 4 defines WE and sketches its correctness.
Section 5 shows how WE can be used for tracking type errors. Section 6 compares
our approach with published variants of W and other related work. Section 7
concludes with pointers to future work.

Proofs of all the results of this paper are included in an accompanying tech-
nical report [Cho03b].

2 A Constructive View of Unification

Term unification is at the heart of Damas-Milner type reconstruction. In this
section we first introduce a sequentiality principle for term unification. This
principle is used to justify the correctness of replacing substitution operations
with generation of term equations. Using examples, we then briefly review the
constructive approach to term unification offered by the unification path frame-
work of Choppella and Haynes [CH03]. We use this framework to formulate a
constructive account of the occurrence of variables in solutions computed by most
general unifiers. We assume familiarity with the basic concepts of term unifica-
tion, including terms, substitutions, idempotent substitutions, term equations,
unifiers, and most general unifiers (mgus).

If E is a system of term equations and s is a substitution, then sE denotes
the set of equations {sτ ?= sτ ′ |τ ?= τ ′ ∈ E}. vars(S) denotes the set of variables
occurring in the syntactic entity S, where S represents a term, substitution, term
equation, or aggregates of these objects. If E is a set of term equations and s is
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a most general unifier (mgu) of E, then ind(s, E) denotes the set of independent
variables of s (that is, all variables unchanged by s) also occurring in E.

Our first result relates mgu composition with the union of term equations
and forms the basis of our reformulation of W .

Theorem 1 (Sequentiality of unifier composition).
If s1 is a unifier (mgu) of E1, and s′2 is a unifier (respectively mgu) of s1E2,

then s′2s1 is a unifier (respectively mgu) of E1 ∪ E2.

A consequence of the sequentiality of unifier composition is the “left-to-right”
bias of W [McA98]. Theorem 1 suggests that a way out of this sequentiality is
to replace unifier composition with the symmetric operation of term equation
union.

2.1 Unification Paths

A system of term equations E is efficiently represented using a unification graph
(also denoted E) using structure sharing: variable nodes are shared; constructor
nodes may be shared. E is unifiable if and only if the quotient graph E/∼ under
the unification closure ∼ of E is acyclic and homogenous (Paterson and Weg-
man [PW78]). Thus, the unifiability of E depends on the connectivity properties
of E/∼.

Unification source-tracking consists of witnessing the connectivity in the quo-
tient graph E/∼ in terms of a special connectivity relation in the “source” graph
E. This special connectivity relation is defined using the idea of unification paths
introduced in [Cho02]. Unification paths are defined over the labeled directed
graph (LDG) underlying E (also denoted E). The LDG underlying E is ob-
tained by labeling each projection edge from a constructor vertex labeled f to
its ith child with the symbol fi. Equational edges in E are oriented arbitrarily
and labeled ε, the empty string. The inverse E−1 of E is the LDG obtained by
reversing the orientation and inverting the label of each edge of E. The inverse
of a label fi is f−1

i ; the inverse of ε is ε. Each inverted projection symbol f−1
i is

treated as an open parenthesis symbol whose matching closed parenthesis sym-
bol is fi. A unification path over E is any labeled path p in E ∪E−1 whose label
l(p) is a suffix of a balanced string over these parenthesis symbols. The formal
relation between unification paths in E and paths in E/∼ and an extension of
the unification algorithm to compute unification paths is presented in [CH03].
In the rest of this section, we summarize the relation between unification paths,
unification closure and non-unifiability.

Let u, v be vertices in the unification graph of a system of term equations E.
E |= p : u � v (E |= u � v) denotes that p is a (there is a) unification path from
u to v over the unification graph of E, respectively. Thus, � is a reachability
relation. In the framework of unification paths, unification closure is a special
case of unification path reachability: E |= u ∼ v if and only if E |= p : u � v
and l(p) is a balanced parentheses string. Unification failure is also a special case
of reachability. For a clash, E |= u ∼ v, for some constructor vertices u and v
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with different labels. For a cycle, E |= p : u � u, for some variable u in E and
path p such that l(p) is an unbalanced suffix of a balanced parentheses string.
The following example illustrates the idea of unification paths:

Example 1. Consider the system of (named) term equations E

e : t7
?= t8 → t6 f : t7

?= t1 g : t8
?= t5

h : t10
?= t11 → t9 j : t10

?= t5 → t6 k : t11
?= t5 → t6

The LDG underlying the unification graph of E is shown in Figure 1. Construc-
tor vertices are identified by circles containing a constructor symbol. Projection
edges originate from constructor edges and are identified by solid arrows. Equa-
tional edges are named and are identified by open arrows. The names of the left
and right projection edges originating from a constructor vertex targeted by an
equational edge y are assumed to be y1 and y2 respectively. To reduce clutter,
these names are omitted. The labels on these edges are also omitted, but are
equal to →1 and →2, respectively. Each →i for i = 1, 2 may be thought of as a
closed parenthesis symbol whose open parenthesis symbol is →−1

i . The label ε
on each equational edges is also omitted. An edge y in E−1 corresponds to an
edge y−1 in E with the direction of y and its label inverted. The thick brush
edges highlight specific unification paths of interest. The quotient graph with
respect to the unification closure of E is shown in Figure 2. The vertex set of
E/∼ is the set of equivalence classes of ∼.

t_9

t_7 t_1

t_10

t_5

t 8

hj

k

e f

g

t_11

w_1 w_2

w_3

w_4

t_6

Fig. 1. Unification graph of the set of term equations of Example 1.

The element t6 ∼ t9 of ∼ is witnessed by the unification path j−1
2 j−1hh2

whose label is →−1
2 εε →2, which simplifies to the balanced string →−1

2 →2. E
is non-unifiable because the quotient graph E/∼ has a cycle. The cycle in the
quotient graph corresponds to the unification cycle j−1

1 j−1hh1kk1 highlighted in
the source graph E. The label of this path is →−1

1 →1→1 after simplification.
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t_5 t_8 t_11

w_1 t_10w_2

w_3

t_7t_1w_4

t_6 t_9

Fig. 2. Quotient graph modulo the unification closure of the unification graph in Fig-
ure 1.

2.2 Unification Paths, mgu’s and Variable Occurrences

The use of unification paths is not limited to witnessing unification failure. In
this section, we show that when a system of equations is unifiable, unification
paths may be used as witnesses to the variable occurrence relation imposed by
any most general unifier for that system of equations. This witness construction
is used in Section 4.2 to track the source of non-generic type variables computed
during Damas-Milner type reconstruction.

Lemma 1 (Reachability and mgu-induced occurrence relation).
Let E be a unifiable set of term equations whose mgu is s. If t′ ∈ vars(E) and
t ∈ ind(s, E), then t occurs in s(t′) if and only if E |= t′ � t.

Example 2. Continuing Example 1, consider the system E′ consisting of the
equations {e, f, g}. The unification graph of E′ is a subgraph of E. The following
substitution s′ is an mgu of E′: {t1 �→ t5 → t6, t7 �→ t5 → t6, t8 �→ t5}. Note that
ind(s′, E′) = {t5, t6}. Both variables t5 and t6 occur in s′(t1). This occurrence is
witnessed by the reachability of t5 and t6 from t1 in E′ via the unification paths
f−1ee1g and f−1ee2 respectively, highlighted in Figure 1.

It is useful to extend the notion of reachability relative to an arbitrary set of
variables. The set of variables in E reachable from V is defined as:

reachable(E, V ) def= {t ∈ vars(E) | ∃t′ ∈ V : E |= t′ � t}
Example 3. Continuing Example 2, let V = {t1}. The set reachable(E′, V ) is
vars(E′) = {t1, t5, t6, t7, t8}. It is simple to verify that every variable in E′ is
indeed reachable from t1 via a unification path.

Lemma 2 (Reachability and variable occurrences). If E is a set of term
equations, s is an idempotent mgu of E, and V is any set of variables, then

vars(sV ) ∩ ind(s, E) = reachable(E, V ) ∩ ind(s, E) (1)
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Lemma 2 implies that if t ∈ E is an independent variable of s and occurs in
s(V ) (lhs of (1)), then this occurrence can be witnessed by a unification path
over E from some variable in V to t (rhs). This result is used in Section 4.2 to
constructively characterize the non-genericity of type variables.

3 The Milner W Algorithm

The syntax of program and type expressions and the Milner W algorithm for
computing principal types are shown in Figure 3.

x ∈ Var

e ∈ Exp ::= x | λx. e | @ e e | let x = e in e

t ∈ TyVar
τ ∈ Ty ::= t | τ → τ
σ ∈ TySch ::= τ | ∀t.σ

s ∈ TySubst = TyVar
fin→ Ty

A ∈ TyEnv = Var
fin→ TySch

1 W(A, e) =
2 case e of
3 xi :
4 let ∀α.τ = A(x)

5 in 〈Id, τ [α/α′ ]〉 where α′ new
6 @i ej ek:
7 let 〈sj , τj〉 = W (A, ej) and 〈s′k, τk〉 = W (sjA, ek)

8 and u = mgu{s′k(τj)
?
= τk → t}

9 in 〈u s′k sj , u(t)〉 where t new
10 λi xj .ek:
11 let 〈sk, τk〉 = W (A[x : t], ek)
12 in 〈sk, sk(t) → τk〉 where t new
13 leti xj = ek in el:
14 let 〈sk, τk〉 = W (A,ek) and α = vars(τk) − FV(skA)
15 and〈s′l, τl〉 = W ((skA)[x : ∀α.τk], el)
16 in 〈s′lsk, τl〉

Note: W fails if the mgu on line 8 does not exist.

Fig. 3. The syntax of program and type expressions and the principal type algorithm
W of the Damas-Milner type system DM.

We abbreviate ∀t1 . . . ∀tn.τ by ∀t1, . . . , tn.τ and t1, . . . , tn by t. The set of
free type variables in a type scheme ∀t.τ is equal to vars(τ) − t. The set of free
variables FV(A) in a type environment A is the union of all free variables in
all type schemes in the range of A. The closure clo(A, τ) of the type τ with



60 Venkatesh Choppella

respect to the type environment A denotes the type scheme ∀α.τ , where α =
vars(τ) − FV(A).

The following example of untypability illustrates the well-known restriction
of monomorphic types imposed on λ-bound variables.

Example 4. In the core ML expression λz. let y = λx. @zx in @yy, although
y is let-bound, y can only be assigned a monomorphic type. This in turn makes
the application @yy and hence the expression e untypable. More precisely, since
z is λ-bound, the type τz of z is monomorphic. This type is assigned to the
subexpression λx. @zx as well. The type assigned to the let-bound variable y
is the closure clo([z : τz], τz), which is τz. This monomorphic type τz is in turn
assigned to y causing @yy to be untypable.

The use of substitutions (composition and application to terms and type envi-
ronments) in W is pervasive. In the next section, we reformulate W to minimize
the use of substitutions.

4 W E: Polymorphic Type Reconstruction
Using Type Equations

The algorithm WE (Figures 4 and 5) is based on the construction of type equa-
tions rather than substitutions. WE takes a type environment A and an ex-
pression e. It returns a pointed set of type equations 〈t, E〉 consisting of a type
variable t, a placeholder for the type of e, and a set E of type equations generated
for e.

1 WE(A, ei) =
2 case ei of
3 xi :
4 let ∀α.τ = A(x)
5 and τi = τ [α/α′]

6 and di = {ti
?
= τi}

7 and Ei = di

8 in 〈ti, Ei〉
9 where ti, α′ new
10 @i ej ek:
11 let 〈tj , Ej〉 = W E(A, ej)
12 and 〈tk, Ek〉 = W E(A, ek)

13 and di = {tj
?
= tk → ti}

14 and Ei = Ej ∪ Ek ∪ di

15 in 〈ti, Ei〉 where ti new

Fig. 4. Algorithm W E: VAR and APP cases.
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16 λi xj .ek:
17 let 〈tk, Ek〉 = W E(A[x : tj ], ek)

18 and di = {ti
?
= tj → tk}

19 and Ei = Ek ∪ di

20 in 〈ti, Ei〉 where ti, tj new
21 leti xj = ek in el:
22 let 〈tk, Ek〉 = W E(A, ek)
23 and sk = mgu(Ek)
24 and τk = sk(tk)
25 and α = vars(τk) − FV(sk(A))
26 and 〈tl, El〉 = W E(A[x : ∀α.τk], el)

27 and di = {ti
?
= tl, tj

?
= tk}

28 and Ei = Ek ∪ El ∪ di

29 in 〈ti, Ei〉 where ti, tj new
Note: W E fails if the mgu on line 23 does not exist.

Fig. 5. Algorithm W E ABS and LET cases.

Unlike in W , the role of substitutions in WE is greatly diminished: Unifiers
are computed only at let boundaries (line 23, Figure 5). Substitution composi-
tion is replaced by type equation union. Substitutions are not applied to type
environments, except to compute generic variables (line 25, Figure 5). However,
this application too can be eliminated (see Section 4.2). W computes the type
substitution for the application @i ej ek in a non-compositional way (line 7,
Figure 3). This instance of non-compositionality is eliminated when computing
type equations in WE (lines 11-12, Figure 4). Except at let boundaries, WE

neither computes nor applies substitutions. The relation between WE and W is
formally explored in the next section.

Example 5. Assume the expression e of Example 4 is decorated with locations
in the following way: λ0 z1. let2 y3 = λ4 x5. @6 z7 x8 in @9 y10 y11. This
allows us to refer to values as attributes of these locations. Thus, e0 refers to
the expression e at location 0, 〈t0, E0〉 to the pointed set of type equations at
location 0 etc. WE(∅, e0) returns 〈t0, E0〉, where E0 is the union of the set E of
equations e,f ,g,h,j and k of Example 1 and the following equations:

a : t0
?= t5 → t6 b : t2

?= t9 c : t3
?= t4 d : t4

?= t5 → t6

4.1 Correctness of W E

We consider a hybrid algorithm WSE obtained by splicing together W and
WE . WSE takes an expression e and a type environment A and returns the tuple
〈t, E, s, τ〉 consisting of a type variable t, a set E of type equations, a substitution
s, and a type τ . The pair 〈t, E〉 is exactly that returned by WE . The type τ is
equal to the type returned by W and the substitution s is an extension of the
substitution returned by W . The algorithm WSE is given in [Cho03b].
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Our goal is to show that t, E, s and τ are related in the following manner: if
WSE(A, e) = 〈t, E, s, τ〉, then t is a variable in E, s is an mgu of E and τ = s(t).
However, this statement needs to be strengthened before it can be proved as an
invariant of WSE .

Lemma 3 (WSE invariants). Let e be an expression and A a type environ-
ment. If WSE(A, e) = 〈t, E, s, τ〉, then

1. t ∈ vars(E), s is an mgu of E, and s(t) = τ . Furthermore,
2. if σ is any idempotent substitution such that vars(σ) is disjoint from vars(E)−

FV(A), and WSE(σA, e) = 〈tσ, Eσ, sσ, τσ〉, then sσ is an mgu of σE.

The proof of invariant (2) relies on Theorem 1 (details are in [Cho03b]). The
invariants of WSE are used to relate W and WE :

Theorem 2 (Relation between W and WE). Let e be an expression and A
a type environment:

1. If W (A, e) = 〈s, τ〉, then WE(A, e) = 〈t, E〉, E is unifiable with an mgu s′,
s is a restriction of s′, and s′(t) = τ .

2. If WE(A, e) = 〈t, E〉 and E is unifiable with mgu s′, then W (A, e) = 〈s, τ〉
for some s and τ such that s is a restriction of s′ and s′(t) = τ .

In W , not all locations of a program are decorated with type variables. This
is why the substitution s returned by W is a restriction of the substitution s′

returned by WE .

4.2 Constructive Interpretation of Non-genericity

The algorithm WE still has one instance where a substitution is applied to a
type environment (line 25, Figure 5) in order to compute the generic variable set
α = vars(τk)−FV(skA). To eliminate it, we employ the well-known implementa-
tion trick of computing α as the difference between vars(τk) and the non-generic
variables β = vars(τk) ∩ FV(skA). This trick relies on the following informal
observation: a variable β of vars(τ) is non-generic if it can be reached from some
type variable in A in the “currently computed unification closure of the unifica-
tion graph constructed so far.” Using the results of Section 2.2, this statement
can be formalized and tightened. Since sk is an mgu of Ek and β ∈ ind(sk, Ek),
by Lemma 2, each non-generic variable β ∈ β is in reachable(Ek,FV(A)). Hence,
for each β ∈ β, there is a type variable t ∈ FV(A) such that Ek |= t � β. This
characterization is constructive because there is a unification path witnessing the
reachability of β. It also immediately implies that t ∈ vars(Ek), and thus reveals
the following two bounds on the search for the non-generic variables of τk:

1. the type equation space in which to determine the reachability is bounded
by Ek.

2. the set of type variables in FV(A) from which to search for reachability to
variables in τk is bounded by FV(A) ∩ vars(Ek).
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Example 6. Consider the invocation WE(A4, e4) in the computation WE(∅, e0)
of Example 5. e4 is the subexpression λ4 x5. @6 z7 x8 of e0, and A4 = [z : t1].
This invocation returns 〈t4, E4〉 (line 22, Figure 5), where E4 is the type equation
set {d, e, f, g}. The mgu s4 of E4 maps t1,t4 and t7 to t5 → t6, and maps t8 to
t5. Since both s4(t1) and τ4 = s4(t4) (line 24) are equal to t5 → t6, vars(τ4) −
FV(s4(A4)) = ∅ (line 25). This means that both t5 and t6 occurring in τ4 are
non-generic type variables.

Unification paths from the type variable t1 of the λ-bound variable z provide
a constructive explanation of the non-genericity of t5 and t6. These paths were
already identified in Example 2. While searching for paths from the free variables
of the type environment A4, due to observation (1), we can limit our search for
reachability to E4. The type environment A4 contains only [z : t1]. In general,
though, the binding of z could be nested arbirtrarily deep, making A4 much
larger. Due to observation (2), the search for source vertices of the unification
paths needs to consider only those free variables in the type environment A4

that occur in E4.

5 Using W E for Source-Tracking Type Errors

Any ordinary unification algorithm can be used to compute the mgu (line 23,Fig-
ure 5) in WE . However, when the unification source-tracking algorithm of [CH03]
is used, WE can report type equation slices causing a type error. A type error
in Damas-Milner is signaled by non-unifiability of a system of type equations,
and the unification source-tracking algorithm is designed to return the equation
slices generating the symptom of non-unifiability (clash or cycle).

Example 7. The expression e in Example 5 is untypable because the system of
equations E0 is non-unifiable. When the unification source-tracking algorithm
of [CH03] is used as part of WE , it signals non-unifiability and returns the
unification cycle j−1

1 j−1hh1kk1 witnessing this unification failure (see Exam-
ple 1). This path may be partitioned into the following type equation slices:
t10

?= t11 → �, t10
?= t5 → �, t11

?= t5 → �. Each slice is obtained by erasing
(replacing by �’s) information not relevant to the type error. The type equation
slices obtained by dividing the unification path witnessing the non-genericity of
t5 are t1

?= t7, t7
?= t8 → �, t8

?= t5. The corresponding slices for t6 are t1
?= t7,

t7
?= � → t6.

Type equation slices by themselves are only partly useful for type error diag-
nosis. We want to be able to identify the slices of the source program contributing
to the type error. In the next few sections, we present a framework for computing
program slices from type equation slices.

5.1 Syntax Equations

We express the syntactic relation between locations of a program expression us-
ing a system of syntax equations , inspired by the flat system formalism for set
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equations of Barwise and Moss [BM96]. Syntax equations encode constraints be-
tween various locations of a program. They are a more expressive alternative to
using locations as units of program slicing information. Syntax equations are ei-
ther local , relating an expression to its immediate subexpressions, or referential ,
in which a variable occurrence refers to its binding location. Each location i with
constructor f and children at locations i1, . . . in is represented by the equation
i = f(i1, . . . , in). Each variable reference at location i to a λ-bound (respec-
tively let-bound) variable at location j is represented by the syntax equation
i = λvar(j) (respectively i = letvar(j)).

Example 8. The decorated expression λ0 z1. let2 y3 = λ4 x5. @6 z7 x8 in
@9 y10 y11 of Example 5 yields the following syntax equations: The lhs of each
equation the is the subexpression at which the equation was generated.

0 = λ(1, 2) 2 = let(3, 4, 9) 4 = λ(5, 6)
6 = @(7, 8) 7 = λvar(1) 8 = λvar(5)
9 = @(10, 11) 10 = letvar(3) 11 = letvar(3)

5.2 A Simple Constraint Generation Relation

We relate each type equation to its source information by defining a constraint
generation relation relating the syntax equation at location i of a subexpression
to the (new) type equations generated by WE at i. Each element of the constraint
generation relation is of the form “syntax equation =⇒ type equation”.

Example 9. The constraint generation relation for the decorated expression e of
Example 8 is given below:

0 = λ(5, 6) =⇒ a : t0
?= t5 → t6 2 = let(3, 4, 9) =⇒ b : t2

?= t9

2 = let(3, 4, 9) =⇒ c : t3
?= t4 4 = λ(5, 6) =⇒ d : t4

?= t5 → t6

6 = @(7, 8) =⇒ e : t7
?= t8 → t6 7 = λvar(1) =⇒ f : t7

?= t1

8 = λvar(5) =⇒ g : t8
?= t5 9 = @(10, 11) =⇒ h : t10

?= t11 → t9

10 = letvar(3) =⇒ j : t10
?= t5 → t6 11 = letvar(3) =⇒ k : t11

?= t5 → t6

The type equation slices causing the type error in e and the syntax equation
slices deriving them are:

� = @(10, 11) =⇒ t10
?= t11 → � 10 = letvar(3) =⇒ t10

?= t5 → �

11 = letvar(3) =⇒ t11
?= t5 → �

5.3 Limitations of the Simple Constraint Generation Relation

The λvar and local syntax equations generate type equations that are linear
(each type variable occurs just once). Furthermore, the type variables in these
type equations refer to locations occurring in the corresponding syntax equations.
This is, however, not true at let variable references. Consider Example 9 in which
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the type equations generated at locations 10 and 11 contain variables t5 and t6
not occurring in the corresponding syntax equations. In general, however, type
equations at references to let bindings could contain newly cloned generic type
variables not occurring anywhere before. The simple generation relation shown
here is inadequately equipped to trace the origin of generic type variables. This
problem will be addressed in a successor paper [Cho04] where a framework for
expressing success proofs (why a type variable is mapped to a certain type by a
substitution) will be presented.

6 Related Work

The problem of type error diagnosis has received much attention. A more detailed
survey of related work is reported elsewhere [Cho03b].

Lee and Yi [LY98] present a top-down variant of algorithm W that relies
on eager application of intermediate substitutions. They prove that this eager
application not only generates better error messages, but that their algorithm
halts sooner than W for untypable programs. Our algorithm WE fails later
than W does, but when used with the unification source-tracking algorithm
of [CH03], returns the set of type equations slices that led to the failure. The
algorithm UAE of Yang et al. [YTMW00] depends on unifying type assumption
environments. McAdam [McA98] uses a special algorithm for unifying substi-
tutions. Our approach of unifying type equations is more natural and simpler.
McAdam [McA00] uses an annotated graph structure to directly store program
source information with the unification graph. In contrast, our approach sepa-
rates the extraction of type equation slices (using unification source-tracking)
with the extraction of program slices from the type slices (using the constraint
generation relation). Haack and Wells [HW03] focus on the generation of mini-
mal program slices which combines the use of a novel unification algorithm with
a constraint collecting algorithm due to Damas [Dam85]. Their analysis of type
diagnosis is inspired by intersection types, while the recent work of Neubauer
and Thiemann [NT03] employs disjoint unions.

Trace-based approaches for type error diagnoses have also been suggested.
Early work here is Maruyama et al. [MMA92]. Their trace information is un-
fortunately too closely dependent on the order of the unifications performed.
Recently, Heeren et al. [HHS03] have proposed the use of type inference di-
rectives and specialized type rules to control the order of unification and type
inference. Our approach, on the other hand, is based on tracing inferences in
the connectivity space of the term equation graph rather than the execution
sequence of the reconstruction algorithm.

The early work of Wand [Wan86] and Johnson and Walz [JW86,Wal89] cor-
rectly identified that the root of the type error problem lay in the source-tracking
of unification. Their work focused on retrofitting unification algorithms with
source-tracking information, but lacked a formal basis. There has also been a
considerable effort in the area of type explanation, where the focus is to provide
human readable analyses of type errors, often in an interactive environment that
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sometimes includes visual navigation of the type graph annotated with various
entities [BS94,DB96,YM00,Chi01]. Our approach for computing slicing infor-
mation has a more formal basis: the unification paths used in our framework
encode proofs in the unification path logic PU introduced in [CH03]. Other for-
mal approaches for include the unification logics of Le Chenadec [LC89] and the
pushdown automata of Cox [Cox87].

Remy [Rém92] proposed an improvement in the search for non-generic vari-
ables using a ranked variant of the Damas-Milner based on levels of nesting of
let constructs. In our approach, non-genericity is constructively demonstrated
using unification paths. The unification path formalism is also simpler and ties
in more naturally with our overall framework for type and error reconstruction.

7 Conclusions and Future Work

We have argued that substitution-based type reconstruction algorithms are lim-
ited in their ability to effectively track the source of type errors. This is because
substitutions fail to preserve the type equations that they solve. We have formal-
ized a sequentiality principle for unifier composition. This formalism sheds light
on how to obtain the type equation based type reconstruction algorithm WE . We
believe that WE is easier to understand and reason with than other algorithms
implementing Damas-Milner. We have used the framework of unification paths
developed earlier to build a constructive account of the non-genericty of type
variables. We have introduced syntax equations as a new syntactic formalism for
expressing program slicing. We have introduced a simple constraint generation
relation to relate syntax equations to type equations. WE , the constraint gener-
ation framework, and the unification source-tracking algorithm developed earlier
together constitute a simple framework for source-tracking type errors. We have
implemented this framework in Scheme for a mini-ML prototype [Cho03a].

A central feature of Damas-Milner is the controlled cloning of existing type
variables to create generic type. The origin of these generic type variables, can-
not, however, be accurately traced by the constraint generation relation de-
scribed. This problem is addressed in a forthcoming paper [Cho04]. The algo-
rithm WE is defined on the core subset of ML. Considerable work is needed to
extend this algorithm to the large type systems of current day functional pro-
gramming languages which typically support features like polymorphic recur-
sion, subtyping, type classes, overloading, reference types etc. Also, our program
slicing information is currently text-based. A visual front-end for viewing slic-
ing information would be very useful. We are currently developing a graphical
front-end for WE using existing graph displaying packages.
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