
Source-Tracking Unification

Venkatesh Choppella and Christopher T. Haynes

Computer Science Department
Indiana University

Bloomington, IN 47405, USA
{choppell,chaynes}@cs.indiana.edu

Abstract. We propose a practical path-based framework for deriving
and simplifying source-tracking information for term unification in the
empty theory. Such a framework is useful for debugging unification-based
systems, including the diagnosis of ill-typed programs and the generation
of success and failure proofs in logic programming.
The objects of source-tracking are deductions in the logic of unification.
The semantics of deductions are paths over a unification graph whose
labels form the language of suffixes of a semi-Dyck set. Based on this
framework, two algorithms for generating proofs are presented: the first
uses context-free shortest-path algorithms to generate optimal (shortest)
proofs in time O(n3), where n is the number of vertices of the unification
graph. The second algorithm integrates easily with standard unification
algorithms, entailing an overhead of only a constant factor, but generates
non-optimal proofs. These non-optimal proofs may be further simplified
by group rewrite rules.

1 Introduction

Unification failure indicates type errors in programming languages [3,11,13,28]
and unsuccessful queries in logic programs[5,9]. The reporting of this failure can
be confusing and insufficient for reconstructing the error. We present a unifica-
tion source-tracking algorithm to identify proofs of non-unifiability and construct
optimal (smallest sized) slices of the original term equations sufficient to prove
unification failure.

Our framework for source-tracking rests on a fundamental property relating
paths in labeled directed graphs to paths in their quotients under unification
closure. The labeled directed graph underlying a unification graph is obtained
by orienting and labeling each edge of the unification graph. The unification
rule for equating subterms (downward closure) may be captured by a connec-
tivity relation on the vertices of the underlying labeled directed graph. By
suitably labeling the edges of the unification graph, we obtain a characterization
of witnesses to membership as paths whose labels form the suffix language of
a semi-Dyck set (the language of balanced parentheses). This lets us think of
unification closure purely in terms of connectivity via these special paths. On
the basis of this characterization, we define an efficient proof-based unification
source-tracking algorithm. To our knowledge, previous work on the diagnosis of

F. Baader (Ed.): CADE-19, LNAI 2741, pp. 458–472, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [439 666.2] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Warn and ContinueEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

Source-Tracking Unification 459

unification systems, including those arising in the context of type systems and
logic programming, has not used this approach based on semi-Dyck sets.

The contributions of this work are:

1. Characterizing witnesses to membership in unification closure as a formal
language path problem. This allows the use of formal language path algo-
rithms to compute shortest proofs [2,19].

2. Defining a logic of unification path expressions for constructing witnesses of
unification closure.

3. Inexpensive integration of witness computation with standard unification
algorithms.

4. Simplification of witnesses computed by the unification source-tracking al-
gorithm by elementary group rewriting.

The rest of this paper is divided as follows: Section 2 outlines the main ideas
with an example. Section 3 defines the machinery of unification in terms of la-
beled directed graphs. Section 4 identifies source tracking with the problem of
tracking the source of paths in the quotient graph in terms of paths in the origi-
nal graph. Section 5 introduces unification path expressions. Section 6 shows how
to inexpensively integrate the construction of unification path expressions into
the unification algorithm. Section 7 shows how to simplify the unification ex-
pressions. Section 8 discusses related work. Section 9 concludes with suggestions
for future work.

2 Motivating Example

The main ideas of this paper are informally introduced using the following set of
term equations. (These are type equations whose derivation, with source-tracking
as the central concern, is reported elsewhere[7].)

a : t0
?= t1→t2 b : t2

?= t4 c : t3
?= bool

d : t4
?= t5 e : t3

?= t1 f : t6
?= t7→t4

g : t5
?= t1 h : t6

?= int→int i : t7
?= t1

The equations f and h, together with transitivity and symmetry, imply t7→t4
?=

int→int. Equating subterms yields the derived equations j : int
?= t7 and

k : int ?= t4. The equations j, i, e and c form a chain of equality int
?= t7

?= t1
?= t3

?= bool implying int
?= bool, which is a symptom of non-unifiability of the

original set of equations. Also, k, d, g, e and c form the chain int
?= t4

?= t5
?=

t1
?= t3

?= bool again yielding the symptom int
?= bool.

The unification graph of the system of term equations is shown in Figure 1.
Variables and function symbol occurrences are represented as vertices. Thick
branch edges represent the immediate subterm relation. Thin equational edges
represent equations. Each equational edge is oriented in an arbitrary direction.
Solid edges are original constraints and dashed edges are derived equations.

460 Venkatesh Choppella and Christopher T. Haynes

Fig. 1. Unification graph of example program. Each variable ti is represented by the
vertex i.

Unification may be viewed as establishing special connectivity relations be-
tween vertices in the graph. In the example, a proof for the equation int

?= bool
may be viewed as a path connecting the vertices int and bool in the unifica-
tion graph, with the assumption that edges may be traversed in either direction.
Traversal of an edge y in a direction opposite to its orientation is denoted y−1.
Thus the paths j−1ie−1c and k−1dge−1c between int and bool in Figure 1
are both witnesses to unsolvability. The edges j and k owe their existence to
the downward-closure rule and the connectivity of the → nodes via edges f
and h. Thus j is derived from the path p−1f−1hr consisting solely of original
constraints. Similarly, k is derived from the path q−1f−1hs.

Replacing j with p−1f−1hr in the path j−1ie−1c connecting int with bool
yields the path (p−1f−1hr)−1ie−1c. This path, containing only original edges,
simplifies to r−1h−1fpie−1c. Similarly, replacing k with q−1f−1hs in the path
k−1dge−1c and simplifying yields s−1h−1fqdge−1c. These two paths are differ-
ent unsolvability diagnoses for the original type constraints. Furthermore, these
paths are minimal: no other path consisting of a proper subset of the edges in
these paths connects int to bool.

2.1 Program Slices from Paths

Constructing program slices of the original set of term equations from these
paths is straightforward: The set of edges {r, h} corresponds to the weakening
t6

?= int → � of the constraint h : t6
?= int → int. The � represents a “hole”

indicating that the second occurrence of int is irrelevant. Each occurrence of a
hole is interpreted as a variable not occurring elsewhere in the set of equations.
Similarly, {f, p} corresponds to the weakening t6

?= t7 → � obtained by replacing
t4 with � in f . The path r−1h−1fpie−1c consisting of segments r−1h and fp,
along with edges i, e and c, therefore correspond to the following set E1 of
minimally non-unifiable type equations:

Source-Tracking Unification 461

t6
?= int → � t6

?= t7 → � t7
?= t1

t3
?= t1 t3

?= bool

Similarly, the set of minimally non-unifiable type equations E2 derived from
the path s−1h−1fqdge−1c are:

t6
?= � → int t6

?= � → t4 t4
?= t5

t5
?= t1 t3

?= t1 t3
?= bool

Thus a symptom of unification failure may have its origin in multiple pro-
gram slices. Each program slice is derived from a specially labeled path in the
unification graph. The definition, derivation and simplification of these paths is
the focus of the next few sections.

3 Notation and Basic Definitions

Our emphasis is on labeled directed graphs as a canonical representation of
terms, term equations and unification graphs.

Given an alphabet Σ and ε �∈ Σ, let Σ0, Σ+ and Σ∗ denote, respectively, the
set {ε} containing the empty sentence ε, the set of finite non-empty sentences
over Σ, and the set of finite sentences over Σ. A signature is an alphabet Σ of
functor symbols, along with an arity function α : Σ → N. A family of terms over
a signature Σ and a set of variables V (Σ-terms over V) is represented using a
Σ-term graph T = 〈W, X, b〉, where W is a set of functor vertices disjoint from
V, X ⊂ V is a set of strict vertices, and b : W −→ Σ(W ∪ X) is the subterm
function, where for any set A, Σ(A) is the set of terms f(a1, . . . , aα(f)), where
f ∈ Σ and for 1 ≤ i ≤ α(f), ai ∈ A. The term graph representation is closer to
the actual implementation data structures of terms. They explicate the sharing
assumptions of vertices: variables of a term are always shared, and non-variable
subterms may be shared.

A term equation is a symmetric relation on terms. The standard way to rep-
resent a set of of term equations is by using a unification graph. A Σ-unification
graph G is a a pair 〈T, E〉, where T is a Σ-term graph 〈W, X, b〉 and E is a relation
over W ∪ X. If w ∈ W and b(w) = f(u1, . . . , un), for some u1, . . . un ∈ W ∪ X,
then the label of w, denoted L(w), is f .

To understand source-tracking, we consider the labeled directed graph under-
lying a unification graph. A labeled directed graph (LDG) G is a triple 〈Σ, V, D〉,
where Σ is an alphabet, V is a set of vertices, and D ⊆ V × V × (Σ ∪ {ε}) is
the set of labeled directed edges of G. The triple 〈u, v, δ〉 ∈ D, written u

δ−→ v,
denotes an edge from u to v whose label is δ. The function l projects the label δ

from an edge u
δ−→ v. Edges with labels in Σ are branch edges and those labeled

ε are equational edges. An equational edge from a vertex to itself is called a
trivial edge.

If Σ is a signature, then {f.i | f ∈ Σ, 1 ≤ i ≤ α(f)}, denoted ΣN, is called
the projection alphabet of Σ. The LDG underlying a Σ-unification graph G =

462 Venkatesh Choppella and Christopher T. Haynes

〈〈W, X, b〉, E〉 is 〈ΣN, V, D〉, where V = W ∪ X, and D is the union of the set

of branch edges {w
f.i−→ ui | b(w) = f(u1, . . . , ui, . . . un)} and equational edges

{u
ε−→ v | (u, v) ∈ E}. When there is no ambiguity, the LDG underlying a Σ-

unification graph G is also denoted G.
We are interested in paths in LDG’s and their labels. The label l(p) of a path

p is the concatenation of the labels of each of its edges. The label of an empty
path is ε. The judgement G |= u

l−→ v denotes that there is a path from u to v
labeled l in G.

Given an LDG G = 〈Σ, V, D〉, a relation R on V is downward-closed if for
each uRu′, u

δ−→ v ∈ D and u′ δ−→ v′ ∈ D implies vRv′. The unification closure
of an LDG of G, denoted ∼, is the least downward-closed equivalence on the
vertices of G containing the equational edges of G. The quotient graph G/∼ is
the LDG 〈Σ, V/∼, D/∼〉 where V/∼ is the set of equivalence classes of ∼, and
for all vertices u, v ∈ V and δ ∈ D, [u]∼

δ−→ [v]∼ ∈ D/∼ if u
δ−→ v ∈ D.

If G = 〈W, X, b, E〉 is a unification graph, the unification closure of the LDG
underlying G is homogeneous if for each w, w′ ∈ W , w ∼ w′ implies L(w) =
L(w′). It is well-known [21] that a unification graph G is unifiable if and only
if the unification closure of its underlying LDG is homogeneous and the graph
G/∼ has no cycles whose labels are non-empty.

If Σ = {b1, . . . , bn}, then Σ−1 is the alphabet {b−1
i | bi ∈ Σ}, assumed dis-

joint from Σ. The inverse G−1 of an LDG G = 〈Σ, V, D〉 is the LDG

〈Σ−1, V, D−1〉, where D−1 = {v
δ−1

−→ u | u
δ−→ v ∈ D}, and ε−1 = ε. The op-

eration inv : (Σ ∪ Σ−1)∗ −→ (Σ ∪ Σ−1)∗ is defined as inv(ε) = ε, inv(c) = c−1

and inv(c−1) = c for c ∈ Σ−1, and for p, q ∈ (Σ ∪Σ−1)∗, inv(pq) = inv(q)inv(p).

3.1 Dyck and Semi-Dyck Sets

We will see that unification proofs can be labeled using semi-Dyck sets, which
are languages with nice cancellative properties. As will be shown in the next
section, this cancellation phenomenon is at the heart of unification closure.

Given an alphabet Σ, let D(Σ) and D′(Σ) denote the sets {b−1b ≈ ε | b ∈ Σ}
and {bb−1 ≈ ε, b−1b ≈ ε | b ∈ Σ} of one-way and two-way cancellative identities,
respectively. These identities, when oriented left to right, yield strongly nor-
malizing rewrite systems. One step rewriting under D(Σ) and D′(Σ) is de-
noted −→D(Σ) and −→D′(Σ), respectively. If x ∈ (Σ ∪ Σ−1)∗, let µD(Σ)(x) and
µD′(Σ)(x) denote the unique normal forms under D(Σ) and D′(Σ) rewriting,
respectively. If L ⊆ (Σ ∪ Σ−1)∗, let

D(Σ, L) def= {l ∈ (Σ ∪ Σ−1)∗ | µD(Σ)(l) ∈ L}
D′(Σ, L) def= {l ∈ (Σ ∪ Σ−1)∗ | µD′(Σ)(l) ∈ L}

We are primarily interested in the languages D(Σ, L) when L is Σ0, Σ+, and Σ∗.
These are abbreviated D0(Σ), D+(Σ), and D∗(Σ), respectively. D0(Σ) is known
as the semi-Dyck set over Σ. It is the set of balanced parentheses sentences whose
left and right parenthesis symbols are drawn from Σ−1 and Σ, respectively.

Source-Tracking Unification 463

Clearly, D0(Σ) and D+(Σ) are disjoint and D∗ = D0 ∪ D+. The language
D∗ is the set of all suffixes of D0 sentences, and is suffix-closed [12]. Informally,
D+ is the set of “unbalanced” suffixes of sentences of balanced parentheses. The
languages D0, D+, and D∗ may be generated using context-free grammars:

D0 ::= ε | D0b−1D0bD0 b ∈ Σ
D+ ::= D∗bD∗ b ∈ Σ
D∗ ::= D0 | D+

4 Source-Tracking

Let G = 〈Σ, V, D〉 be an LDG and let u, v ∈ V . A unification path from u to v
over G is a path p in G∪G−1 such that l(p) ∈ D∗(Σ). We are now ready to state
the first part of the main result of this paper, which characterizes connectivity
in the quotient graph G/∼ in terms of unification paths over G. This is the basis
for unification source-tracking because we can track paths in the quotient graph
in terms of their “source” paths in the original graph.

Theorem 1. (Soundness of unification paths)
Let G be an LDG 〈Σ, V, D〉 whose unification closure is ∼. If G ∪ G−1 |= u

l−→ v

and l ∈ D∗(Σ), then G/∼ |= [u]∼
µD(Σ)(l)−→ [v]∼.

Proof. By induction on the derivation of l in the grammar D∗(Σ).

Unification paths are complete with respect to connectivity in the ∼-quotient
of an LDG.

Theorem 2. (Unification path completeness)

Let G = 〈Σ, V, D〉 be an LDG with unification closure ∼. If G/∼ |= [u]∼
l′−→

[v]∼, then G ∪ G−1 |= u
l−→ v for some l ∈ D∗(Σ) such that µD(Σ)(l) = l′.

Proof. By induction on path construction in G/∼.

4.1 Computation of Shortest Unification Paths

Theorems 1 and 2 show how unification source-tracking information may be
encoded as unification paths. One measure of the succinctness of this informa-
tion is its length. Since unification paths are paths over a graph whose labels
are constrained by the context-free grammar (CFG) D∗(Σ) for an alphabet Σ,
computation of the shortest unification path is a special case of the context-free
path problem. If G is a directed graph whose edges are labeled from an alphabet
Σ, and L is a context-free language over Σ, the CFG shortest-path problem
consists of finding the shortest-path from the set of all paths p in G between a
given source and destination vertex such that the label of p is a sentence in L.

464 Venkatesh Choppella and Christopher T. Haynes

Shortest unification paths may therefore be computed using the dynamic-
programming-based CFG shortest-path algorithms of Barrett et al. [2]1 (See
also Melski and Reps [19]). If L is specified by a context-free grammar in Chom-
sky Normal Form, then the algorithm of Barrett et al. has time complexity
O(|V |5|N |2|R|), where V is the vertices in G, N the set of non-terminals, and
R the set of productions of the grammar. The efficiency may be improved to
O(|V |3|N ||R|) using Fibonacci heaps.

For unification paths over a directed labeled graph G = 〈Σ, V, D〉, the gram-
mar D∗(Σ) is of size O(Σ) and may be transformed into a grammar in CNF
whose set of non-terminals and productions are each of size O(Σ). Thus shortest
unification paths can be computed in O(|V |3|Σ|2) time. Assuming a fixed al-
phabet, this means that shortest unification paths can be computed in O(|V |3)
time, where V is the vertex set of the unification graph.

This worst-case complexity can make a direct implementation of computing
the optimal unification path expensive in practice. In the next few sections of
the paper, we present a simple extension to the unification algorithm that ef-
ficiently computes a non-optimal path which, in practice, may be adequate for
the purpose of diagnosis. Our extension to the unification algorithm computes
unification path expressions, which are unification paths extended with an in-
verse operation. These expressions may be informally thought of as the execution
“trace” of a particular inference made by the unification algorithm.

5 Unification Path Expressions

The construction of unification path expressions over an LDG G = 〈Σ, V, D〉 is
defined inductively using the system PU of rules shown in Figure 2. The rules
may be thought of as a type system whose untyped terms are drawn from the
term algebra T (ΣGr, D) generated by D, where ΣGr ={ε �→ 0, (.)−1 �→ 1, ◦ �→ 2}
is the group signature. Judgements are of the form G � p : u

l−→ v, where p ∈
T ∗(ΣGr, D), the set of ΣGr-terms over D, and l ∈ Σ∗. We let G �P U p : u

l−→ v

denote judgements derived from the rules of Figure 2. The triple u
l−→ v is the

“type” of the path expression p. The interesting rule here is DN, which given
a path p connecting u′ to v′, connects the child u of u′ with child v of v′. This
connection involves traversing in reverse direction the edge connecting u′ to u,
with the path c−1 labeled δ−1. This is concatenated with the path p labeled ε
and the path c′, labeled δ which consists of an edge from v′ to v. The label of
the resultant path c−1pc′ is δ−1εδ. This simplifies to ε, which is the “net” label
associated with the path from u to v.

Each term p ∈ T ∗(ΣGr, D) can be “flattened” to a unique sentence in (D ∪
D−1)∗: flatten(p), abbreviated p, is defined by ε = ε, p−1 = inv(p), and pq = p q.

The main point of introducing unification path expressions is to show that
each deduction G �P U p : u

l−→ v is a proof of membership of u, v in the unifi-
cation closure of G. This is formalized by the next lemma:
1 The algorithm is unaffected if labels on edges are drawn from Σ ∪ {ε}, where ε is

the empty sentence [17].

Source-Tracking Unification 465

INIT
G � c : u

δ−→ v
c : u

δ−→ v ∈ G

REF
G � ε : u

ε−→ u
u ∈ G

SYM G � p : v
ε−→ u

G � p−1 : u
ε−→ v

TRANS G � p : u
l−→ v′ G � q : v′ l′−→ v

G � pq : u
ll′−→ v

DN G � p : u′ ε−→ v′

G � c−1pc′ : u
ε−→ v

c : u′ δ−→ u ∈ G
c′ : v′ δ−→ v ∈ G

Fig. 2. The logic P U (G) of unification path expressions over an LDG G = 〈Σ, V, D〉.

Lemma 1. (Soundness and completeness of PU deductions with respect to uni-
fication paths)
Let G = 〈Σ, V, D〉 be a labeled directed graph.

1. (Soundness) If G �P U p : u
l′−→ v, then p is a unification path from u to v

such that µD(Σ)(l(p)) = l′.
2. (Completeness) If p is a unification path from u to v and µD(Σ)(l(p)) = l′,

then G �P U p : u
l′−→ v.

Proof. Soundness is by induction on PU deductions. Completeness is by induc-
tion on the derivation of unification path labels.

From this and theorems 1 and 2, the soundness and completeness of PU

deductions with respect to connectivity in the ∼-quotient graph follows.

Theorem 3. (Soundness and completeness of PU deductions with respect to
unification closure)
Let G = 〈Σ, V, D〉 be a labeled directed graph.

1. (Soundness) If G �P U p : u
l−→ v, then G/∼|= u

l−→ v.
2. (Completeness) If G/∼ |= u

l−→ v, then G �P U p : u
l−→ v where p is some

ΣGr-term over D.

6 Unification Algorithm with Source-Tracking

Construction of unification path expression deductions is easily integrated into
the standard unification algorithm to yield an algorithm that computes proof

466 Venkatesh Choppella and Christopher T. Haynes

of membership in the unification closure of a unification graph. To illustrate
the integration of computation of PU -deductions with unification, we pick the
quadratic-time unification algorithm of Corbin and Bidoit[8] as presented in
(Baader and Siekmann [1]) although other unification algorithms may be used
as well. The resulting algorithm is shown in Figure 3. The binding field of each
variable and the return value of find is a tuple containing two objects: a pointer
to the root of an equivalence class and a unification path expression denoting
the path expression to root. The procedures unify and union also carry an extra
parameter that is a unification path expression. The procedure occurs?(u, v)
returns either no or yes(x, p), where x is either 0 or +, and p is a unification
path expression from u to v in the unification graph containing the vertices u
and v.

Theorem 4. (Invariants for Unification algorithm with source-tracking)
Let G be a Σ-unification graph of a term equation τ1

?= τ2 between the Σ-terms τ1
and τ2 represented by the term graphs rooted at vertices v1 and v2 and connected
by an equational edge m . Let the top-level invocation of the unification algorithm
be unify(v1, v2, m). Then, the the following invariants are maintained:

1. For each call unify(u, v, p), G �P U p : u
ε−→ v.

2. For each call union(u, v, p), G �P U p : u
ε−→ v.

3. If find(u) = 〈v, p〉, then G �P U p : u
ε−→ v.

4. If occurs?(u, v) = yes(x, p), then x ∈ {0, +}, G �P U p : u
l−→ v and l ∈ Σx

N,
where ΣN is the set of projection labels in G.

Proof. By inspection of the path expressions constructed at each stage of the
algorithm.

The invariants show that at each stage, the unification algorithm with source
tracking not only constructs the unification closure ∼ of a unification graph G,
but also computes witnesses of membership in the relation ∼. These witnesses are
unification path expressions. When unify fails, the algorithm presents a witness
of non-unifiability:

Corollary 1. (Witnesses to non-unifiability)
Let G be a Σ-unification graph of term equation τ1

?= τ2 between Σ-terms τ1 and
τ2 represented by the term graphs rooted at vertices v1 and v2 and connected by
an equational edge m. Let unify(v1, v2, m) be the top-level call of the unification
algorithm. Then

1. If unify = fail(CY CLE, q), then G �P U q : u
l−→ u for some vertex u in G

and label l ∈ Σ+
N.

2. If unify = fail(CLASH, q), then G �P U q : w
ε−→ w′ for some functor ver-

tices w, w′ in G such that L(w1) �= L(w2).

Source-Tracking Unification 467

procedure unify(v1, v2, m) =
let 〈r1, p1〉 = find(v1) and 〈r2, p2〉 = find(v2)

in if r1 = r2 then return
else case r1.type, r2.type

strict, strict: union(r1, r2, p
−1
1 mp2)

functor, strict: unify(v2, v1, m
−1)

strict, functor: let ans = occurs?(r2, r1)
in case ans

no: union(r1, r2, p
−1
1 mp2)

yes(, q): fail(CYCLE, p−1
1 mp2q)

functor,functor:
if r1.L �= r2.L then fail(CLASH, p−1

1 mp2)
else

union(r1, r2, p
−1
1 mp2);

for i = 1 to α(r1.L) do
unify(r1.child(i), r2.child(i), b−1

1 p−1
1 mp2b2)

where b1 = edge(r1, r1.child(i))
and b2 = edge(r2, r2.child(i))

procedure union(r1, r2, p) = r1.binding := 〈r2, p〉

procedure find(v) =
if unbound?(v) then return 〈v, ε〉
else let 〈v′, p〉 = v.binding

in let 〈r, q〉 = find(v′) in return 〈r, pq〉

procedure occurs?(v1, v2) =
let 〈r1, p1〉 = find(v1) and 〈r2, p2〉 = find(v2)

in if r1 = r2 then return yes(0, p1p
−1
2)

else case r1.type
strict: return no
functor:

for i = 1 to α(r1.L) do
let ans = occurs?(r1.child(i), r2)

in case ans
no: continue
yes(, q): return yes(+, p1bqp

−1
2)

where b = edge(r1, r1.child(i))
return no

Fig. 3. Unification algorithm with source-tracking.

7 Simplification of Unification Path Expressions

Simplification of unification path expressions is achieved using the rewrite system
R/A for free groups of Peterson and Stickel [22].

468 Venkatesh Choppella and Christopher T. Haynes

The normal form of a term p under R/A rewriting is denoted µGr(p). It may
be computed by first flattening p to p and then reducing p to its normal form
by applying the two-sided cancellation rules:

Lemma 2. (Decomposition of normal forms)
If D is any set and p ∈ T ∗(ΣGr, D), then µGr(p) = µD′(D)(p).

Proof. It is easy to see that p
∗−→R/A p and therefore p and p have the same

normal form under R/A. Since p is flattened, every symbol in p is either c−1 or
c, where c ∈ D. Hence, the only redexes in p are of the form cc−1 −→R/A ε and
c−1c −→R/A ε. The redexes using D′(D) are the same.

Unification path expressions are not closed under one-step R/A rewriting
(thus PU lacks subject reduction), but types “lost” after one step of rewriting
are recovered at normalization.

Example 1. (One-step rewriting in R/A does not “preserve types,” but normal-
ization recovers them.)
Let G be an LDG consisting of the edges

{a : w
ε−→ w′, b1 : w

f.1−→ u, b2 : w′ f.1−→ v}

Let p = (b−1
1 (ab2))−1. Clearly G �P U p : v

ε−→ u. If q = (ab2)−1(b−1
1)−1, then

p −→R/A q, but G ��P U q : v
ε−→ u. However, G �P U b−1

2 a−1b1 : v
ε−→ u, where

b−1
2 a−1b1 is the normal form of p and q under R/A rewriting.

Simplification using R/A rewriting is justified because unification path ex-
pressions normalize to unification paths of the same type. In order to show this,
we rely on the following property, easily proved about Dyck languages, which
states that reduction by two-sided cancellations on D∗(Σ) sentences can be sim-
ulated by one-sided cancellation:

Lemma 3. (Closure of D∗(Σ) sentences under D′(Σ) reduction)
If x ∈ D∗(Σ) and x −→D′(Σ) y, then x ≈D(Σ) y and µD(Σ)(x) = µD(Σ)(y).

Proof. By induction on the derivation of D∗(Σ) sentences.

Theorem 5. (PU weak subject reduction)
Let G be an LDG and G �P U p : u

l−→ v. If p′ =µGr(p), then G �P U p′ : u
l−→ v.

Proof. By Lemma 1, G �P U p : u
l−→ v implies G �P U p : u

l−→ v. By Lemma 2,
p′ = µD′(D)(p). Since p

∗−→D′(D) p′, it follows that l(p) ∗−→D′(Σ) l(p′). Since
l(p) ∈ D∗(Σ), by Lemma 3, µD(Σ)(l(p′)) is equal to µD(Σ)(l(p)), which is l.

Then G �P U p′ : u
l−→ v follows from Lemma 1 (Completeness).

Source-Tracking Unification 469

7.1 Efficiency Considerations

The cost of constructing unification path expressions at each point in the algo-
rithm is constant time per call to unify, find, union and occurs?, assuming paths
are represented as terms sharing structure. Thus the addition of source-tracking
to the unification algorithm increases runtime by only a constant factor.

Since normalization is orthogonal to the building of path expressions, it may
be performed once the unification path expression has been computed. It is easily
seen that normalization using R/A takes time proportional to the size of the term
being normalized. Although the normal form does not always correspond to the
shortest unification path, its computation is considerably less expensive than
that of the shortest unification path.

A unification path p of type u
l−→ v in an LDG G is minimal if there is

no unification path q of type u
l−→ v in G such that the edge set of q is a

proper subset of the edge set of p. The normal forms obtained by R/A rewriting
do not yield minimal unification paths. Consider the example set of equations
{a : x

?= y, a′ : y
?= x}. The path a′a−1 : y

ε−→ y does not reduce to the minimal
path ε : y

ε−→ y under R/A rewriting without the presence of a “type aware”
rule that rewrites p to ε if p : u

ε−→ u.

8 Related Research

A more detailed survey is reported elsewhere [7].

8.1 Diagnosis of Type Inference

Wand [28] modified the unification algorithm to accumulate reasons when travers-
ing the the unification graph. Unfortunately, Wand did not show how the reasons
together simulate the error. More importantly, Wand’s algorithm sometimes fails
to report reasons critical to the reconstruction of the unification failure, and at
other times returns much redundant information. Eliminating redundant infer-
ences from reason lists in a systematic way can be done by abandoning the
algorithm’s set-based approach, and instead using the path-based approach sug-
gested by our algorithm.

Johnson and Walz [13,27] introduce “error-tolerant” unification, in which a
multi-set of type constraints is solved by using a disjunction of constraints rather
than a conjunction. Their scheme rests on a complicated algorithm that derives
implied type constraints obtained from the original type constraints by applying
the rules of substitution and transitivity. Unfortunately, their work presents
no correctness and completeness criterion against which their algorithm can be
judged.

The attribute grammar approach of Johnson and Walz and others confuses
the generation of type constraints, which is directed by the syntax of the pro-
gram, with the solution of these constraints, which is directed by the geometry
of the constraints themselves. In any unification-based type system, types are
more accurately viewed as flowing along special paths of the unification graph,

470 Venkatesh Choppella and Christopher T. Haynes

not through the source code. Other approaches include interactive explanation-
based systems[11], but these lack automation because the user is expected to
navigate the unification graph.

Polymorphic type inference algorithms designed specifically for better type
error reporting include the M algorithm of Lee and Yi [16], which is a top-
down version of Milner’s original W algorithm [20], and the incremental type
inference algorithm of Yang et al.[29]. Because these algorithms are built on top
of unification, they are unable to remove redundant inferences introduced by the
underlying unification process.

The output of our diagnostic unification algorithm may be considered as a
slice of the unification graph. “Origin tracking” [4,25,26] has focused on a for-
mal approach to program slicing based on term rewrite systems. This work has
been applied to locating errors in statically typed languages with type checking
but without type inference [10]. Term unification may also be approached as a
rewriting system in which equations are transformed to a solved form if unifi-
able [14,18], in contrast to the relational approach of solving unification [21],
which is closer to implementation. Results from origin-tracking are likely to be
applicable to the transformational view of unification, but we feel that this ap-
proach is much harder than the approach outlined in this paper. Other relevant
work is the path-based program slicing of Reps and others (see for example
[19,24]), which connects program slicing, context-free reachability and set-based
analysis.

8.2 Logic Programming and Unification-Based Systems

Port [23] carried out unification failure analysis by identifying minimally unifi-
able subsets. Port’s algorithm attempts to construct regular path expressions
over the unification graph. Our work shows that the path expressions of rele-
vance are context-free, not regular.

Cox [9] and Chen et al. [5] propose an algorithm to derive maximally unifi-
able subsets and minimally non-unifiable subsets of term equations employed
as the basis for developing search strategies for breadth-first resolution of logic
programs. Our extension to the unification algorithm keeps track of informa-
tion that is more precise than subsets. On the other hand, the simplification
framework proposed in this paper does not address minimality.

Le Chenadec [15] introduces a framework of logical systems to characterize
unification. The logic PU is equivalent to Le Chenadec’s logic LE0: both LE0
and PU are sound and complete with respect to paths in the quotient unifica-
tion graph. The syntactic machinery Le Chenadec’s logics involves terms and
contexts, whereas PU is a logic of labeled paths on graph vertices. This con-
nection with context-free languages makes it possible for us to extract practical
algorithms for proof construction.

9 Conclusions and Future Work

We have connected unification proofs with labeled path problems over an im-
portant class of context-free languages, the semi-Dyck sets. Our semantic char-

Source-Tracking Unification 471

acterization of unification proofs shows how unification proofs may be computed
independent of any unification algorithm. This characterization allows us to em-
ploy different implementations to compute these unification proofs. A simple
extension to the unification algorithm allows unification proofs to be inexpen-
sively constructed and simplified. This extension of the unification algorithm
has been implemented in Scheme [6]. On the other hand, computation of mini-
mum length unification proofs can be implemented by using shortest-path CFG
algorithms.

The design of fast algorithms for Semi-Dyck labeled-path problems, which
will help the efficient construction of optimized unification proofs, remains to be
investigated. Also, it is worthwhile to examine how the path-based framework
proposed here can be extended to diagnosis of unification failure in higher-order,
equational, and semi unification. Finally, from a practical viewpoint, it will be
valuable to integrate the unification source-tracking algorithm with logic pro-
gramming systems for diagnosis of the success and failure of queries and with
static type reconstruction systems for diagnosis of type errors.

References

1. Baader, F., and Siekmann, J. Unification theory. In Handbook of Logic in
Artificial Intelligence and Logic Programmaning, D. M. Gabbay, C. J. Hogger, and
J. A. Robinson, Eds. Oxford University Press, 1993.

2. Barrett, C., Jakob, R., and Marathe, M. Formal language constraint path
problems. SIAM Journal of Computing 30 (2000), 809–837.

3. Beaven, M., and Stansifer, R. Explaining type errors in polymorphic languages.
ACM Letters on Programming Languages (1994).

4. Bertot, Y. Origin Functions in λ-calculus and Term Rewriting Systems. In
CAAP’92 (1992). Springer Verlag LNCS 581.

5. Chen, T. Y., Lassez, J.-L., and Port, G. S. Maximal unifiable subsets and
minimal non-unifiable subsets. New Generation Computing (1986), 133–152.

6. Choppella, V. Implementation of unification source-tracking.
http://www.cs.indiana.edu/hyplan/chaynes/unif.tar.gz, July 2002.

7. Choppella, V. Unification Source-tracking with Application to Diagnosis of Type
Inference. PhD thesis, Indiana University, August 2002. IUCS Tech Report TR566.

8. Corbin, J., and Bidoit, M. A rehabilitation of Robinson’s unification algorithm.
In Information Processing (1983), R. E. A. Mason, Ed., Elsevier Science Publishers
(North Holland), pp. 909–914.

9. Cox, P. T. Finding backtrack points for intelligent backtracking. In Prolog Im-
plementation, J. Campbell, Ed. 1984, pp. 216–233.

10. Dinesh, T., and Tip, F. A case-study of slicing-based approach for locating
type errors. In Proc. 2nd International Conference on the Theory and Practice of
Algebraic Specifications (ASF+SDF’97) (September 1997).

11. Duggan, D., and Bent, F. Explaining type inference. Science of Computer
Programming 27, 1 (July 1996), 37–83.

12. Harrison, M. A. Introduction to Formal Language Theory. Addison-Wesley,
1978.

13. Johnson, G. F., and Walz, J. A. A maximum-flow approach to anomaly isolation
in unification-based incremental type inference. In Proceedings of the 13th ACM
Symposium on Programming Languages (1986), pp. 44–57.

472 Venkatesh Choppella and Christopher T. Haynes

14. Lassez, J., Maher, M. J., and Marriot, K. Unification revisited. In Deductive
Databases and Logic Programming, J. Minker, Ed. Morgan Kaufmann, 1988, ch. 15,
pp. 587–625.

15. Le Chenadec, P. On the logic of unification. Journal of Symbolic computation
8, 1 (July 1989), 141–199.

16. Lee, O., and Yi, K. Proofs about a folklore let-polymorphic type inference algo-
rithm. ACM Transactions on Programming Languages 20, 4 (July 1998), 707–723.

17. Marathe, M. personal communication, May 2002.
18. Martelli, A., and Montanari, U. An efficient unification algorithm. ACM

Trans. Program. Lang. Syst. 4, 2 (April 1982), 258–282.
19. Melski, D., and Reps, T. Interconvertibility of a class of set constraints and

context-free-language reachability. Theoretical Computer Science 248, 1-2 (Nov
2000), 29–98.

20. Milner, R. A theory of type polymorphism in programming. Journal of Computer
and System Sciences 17 (1978), 348–375.

21. Paterson, M., and Wegman, M. Linear unification. J. Comput. Syst. Sci. 16,
2 (1978), 158–167.

22. Peterson, G. E., and Stickel, M. E. Complete sets of reductions for some
equational theories. Journal for the ACM 28, 2 (April 1981), 233–264.

23. Port, G. S. A simple approach to finding the cause of non-unifiability. In Logic
Programming: Proceedings of the Fifth International Conference and Symposium
(1988), R. A. Kowalski and K. A. Bowen, Eds., MIT Press, pp. 651–665.

24. Reps, T. Program analysis via graph reachability. In International Symposium
on Logic Programming (1997), J. Maluszynski, Ed., MIT Press, pp. 5–19.

25. Tip, F. Generation of Program Analysis Tools. PhD thesis, Institute for Logic,
Language and Computation, CWI, Amsterdam, 1995.

26. van Deursen, A., Klint, P., and Tip, F. Origin Tracking. Journal of Symbolic
Computation 15 (1993), 523–545. Special issue on automatic programming.

27. Walz, J. A. Extending Attribute Grammars and Type Inference Algorithms. PhD
thesis, Cornell University, February 1989. TR 89-968.

28. Wand, M. Finding the source of type errors. In 13th Annual ACM Symp. on
Principles of Prog. Languages. (January 1986), pp. 38–43.

29. Yang, J., Trinder, P., Michaelson, G., and Wells, J. Improved type error
reporting. In Proceeding of Implementation of Functional Languages, 12th Inter-
national Workshop (September 2000), pp. 71–86.

	1 Introduction
	2 Motivating Example
	2.1 Program Slices from Paths

	3 Notation and Basic Definitions
	3.1 Dyck and Semi-Dyck Sets

	4 Source-Tracking
	4.1 Computation of Shortest Unification Paths

	5 Unification Path Expressions
	6 Unification Algorithm with Source-Tracking
	7 Simplification of Unification Path Expressions
	7.1 Efficiency Considerations

	8 Related Research
	8.1 Diagnosis of Type Inference
	8.2 Logic Programming and Unification-Based Systems

	9 Conclusions and Future Work
	References

