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Decomposition of Sequential Behavior Using
Interface Specification and Complementation
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Decomposition of system behavior along functional boundaries into interacting sequential components is a key step in
top-down system design. In this paper, we present sequential decomposition, a method for factoring sequential components
from a system specification based on interface specifications of the components. The resulting components can be
independently synthesized, or realized using off-the-shelf components. We introduce interface specification language (ISL),
based on finite-state machine semantics, to specify the input/output behavior of synchronous sub-systems. A component is
factored from a system by embedding an implementation of the complement of its interface into the system description. The
composition of a machine with its complement is shown to be isomorphic to the machine, and the composition of a machine
with an implementation of its component is shown to be a safe interaction. We apply sequential decomposition to a
non-trivial example, a special-purpose computer with Scheme programming language primitives as its instructions.
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1. INTRODUCTION

ecomposition of system specifications for com-
puter-aided system design is an active topic in

synthesis research. As Gajski points out, system synthe-
sis by design partitioning and interface synthesis must be
explored to make synthesis viable for large designs ].
Synthesis of systems with complex control structures
into designs with "monolithic" control units can result in
unwieldy implementations. A design tool should have the
flexibility to let a designer decompose a system into
suitable components with explicit synchronization and
value communication. Synthesis of these decomposed
components with register transfer level specifications can
then be accomplished by high-level synthesis techniques.

Derivation is a formalization of synthesis with more
emphasis on "correct construction" than on design auto-
mation. Our tools constitute a set of transformations that
are used to engineer an implementation from a specifi-
cation, with each transformation accumulating informa-
tion about the implementation. In a functional frame-
work, a transformation called system factorization [2]
was used earlier to extract functional components having
naive interactions with the surrounding system. As a
generalization of system factorization, we have devel-
oped sequential decomposition which uses a finite state
machine model to decompose system descriptions into

interacting sequential machines [3, 4].
We introduce Interface specification language (ISL),

to describe the interaction of a machine with its environ-
ment, orthogonal to its functional behavior. An extensive
presentation of the language is given in [3]. The comple-
ment of a machine specifies the behavior of its environ-
ment. We define implementation relations over ma-
chines. Decomposition is accomplished by encapsulating
parts of a system at the algorithm, process, or operation
level of granularity into an abstract component with a
specified interface. An implementation of its complement
is then embedded as the interface "stub" in the original
system description.
A composition operation is defined on the machines to

model the synchronous interaction between machines. It
is shown that a machine composed with its complement
results is a closed machine that is isomorphic to the
original. It is also shown that a machine composed with
an implementation of its complement results in a safe
interaction, meaning that the machines can complete an
interaction protocol and reach their respective final
states.

1.1 Related Research

Several researchers have looked at the interface issues
involved in system synthesis. Bordello uses timing
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diagrams to specify the interface of a circuit and synthe-
sis tools to generate the interface automatically [5].
While Boriello develops these external interface specifi-
cations as a means to guide synthesis, our goal is to use
them to guide design decomposition. Yajnik and Ciesiel-
ski [6] perform top-down machine decomposition by
partitioning outputs and states in state graphs with the
objective of performance and area optimization of syn-
thesized PLA circuits. Specification at different levels of
abstraction and partitioning of control and data flow
graphs for synthesis have been considered by Kuehl-
mann and Bergamaschi [7] to obtain smaller layouts. Our
approach is to enable designers to decompose systems
into logically and functionally distinct components and
not to use heuristics to partition a design based on layout
constraints.
J6wiak et.al [8, 9] have developed heuristic methods

for simultaneous decompositions of sequential machines
into component machines by partitioning the state space,
inputs and outputs. The inter-connections between the
components are also determined heuristically by analyz-
ing the machine structure. This method can be used to
decompose a machine into sub-machines based on vari-
ous area and speed constraints, but it does not take into
account timing and protocol constraints in a design.

System-level decomposition in the System Architect’ s
Workbench is accomplished by behavioral transforma-
tions 10]. Walker and Thomas show transformations on
the controller and selector to partition a design into
processes. The processes created using their method have
a very simple interaction scheme to transfer data values
and control signals using message passing. Their ap-
proach cannot synthesize components using complex
protocols for data transfers and synchronization.

SpecPart [11] partitions algorithm/process grained
computations from the SpecChart behavioral specifica-
tions. Default protocols are used for interaction between
components. The CHOP system-level design partitioner
[12] uses task graphs to specify the protocol between
every partition. Special purpose hardware units called
data-transfer modules are used on both sides of each
interaction. Although this method allows for complex
protocols and use of off-the-shelf components, the inter-
face has to be designed manually and may be expensive
in terms of area and performance because of the special
purpose modules.

In our approach, parts of a system can be abstracted
and the protocol between the components can be incor-
porated into the components without using any special-
purpose modules and without restrictions on the proto-
cols. Components of a system can be independently
synthesized, or mapped to off-the-shelf components such
as dynamic RAMs and floating-point units by specifying
their interface from timing diagrams.

In related formal methods research, Kurshan [13]
verifies reactive systems by stepwise reduction and
refinement using L-automata with language and process
homomorphism. Gopalakrishnan et.al. 14] have used an
annotated state machine model for bottom-up hardware
specification and synthesis in HOP. Drusinsky and Harel
have used state-charts for bottom-up hierarchical speci-
fication [15] by embedding simpler state machines at a
lower level of specification into states at a higher level of
specification. The tree of state machines is then synthe-
sized into a network of PLAs. Levin [16] uses a
hierarchical automata model for system specification
targeted towards a network of PLAs with memory. This
method only supports naive interactions between con-
stituent automata where one of the automaton is in
"operation" and all the others are "waiting for its
response".

Clarke et.al [17, 18, 19] have used a compositional
finite state machine model to verify temporal properties
of systems using computational tree logic and binary
decision diagram based methods. Davie and Milne [20,
21] have used constraints on the target architecture and
the context of a design in CIRCAL to reduce the
complexity of verification. Dill et.al [22] have looked at
asynchronous hardware verification using the Murq
HDL and verifier to test for deadlocks and invariants. As
an alternative to bottom-up verification techniques, our
approach facilitates top-down design by factoring se-
quential components from designs using transformations.

1.2 Outline

The rest of this paper develops a theoretical basis for
decomposition of sequential components from system
specifications. Section 2 gives a brief introduction to

Interface Specification Langage and a finite state ma-
chine based semantic model for it. Section 3 describes
the environment in which a machine operates, its
complement machine. Section 4 gives a construction for
composition of machines. The composition operation
formalizes the synchronous interaction of machines for
given port connections. We define a machine isomor-
phism property and prove that a machine composed with
its complement results in a closed machine isomorphic to
the original. Section 5 defines the implementation and
path implementation relations by extending the inclusion
relation over port values in machine transitions to states
and machines. We also show that a machine composed
with a path implementatiori of its complement results in
a safe interaction, i.e. the final states of the constituent
machines are reachable.
As an example, a scheme machine is used to illustrate

the ideas in the paper. The Scheme machine is a
special-purpose computer providing the symbolic pro-
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cessing primitives of the Scheme programming lan-
guage. The system includes a processor and a heap with
a stop-and-copy garbage collector, an allocator, and a
dynamic RAM based memory subsystem. We will use
sequential decomposition on a high-level system descrip-
tion to derive the interactions between the CPU, alloca-
tor, and garbage collector in the system organization
shown in Figure 1.

2. INTERFACE SPECIFICATION
LANGUAGE

A definition in Interface Specification Language (ISL) is
used to specify the input/output interaction of a machine
with its environment. Communication between machines
is modeled as values over connected ports. Other forms
of communication, such as using buffers or shared
storage, must be modeled explicitly. The interface is
defined over input and output control ports (CI, CO) and
input and output data ports (DL DO). The ports can range
over a set of values (V) which includes the don’t care
value (#).

ISL is built on three kinds of synchronization primi-
tives, lock-step, 1-way and 2-way synchronization. The
operators sequence (;), choice (!]), interleave (X) and
repetition (*) are used to form expressions in the lan-
guage. The complement (M) and composition (M IM2)/v
operations are discussed in sections 3 and 4. A detailed
discussion of ISL syntax is presented in [3].
The BNF-style syntax description of the language is

given in Figure 2. A machine is parametrized by the port
names occurring in its defining expression. An action
consists of a set of values on data ports guarded by
certain truth values on control ports. Input actions A
denote a set of control inputs guarding data actions.
Similarly, output actions Ao denote a set of control
outputs guarding data actions. The internal behavior of a
machine can be annotated in any expression in the
interface description.

2.1 Machine Model

The semantics of ISL is based on a finite-state machine
model. A machine is a sextuple M (S, T, r, f, P, R, V),
where S is the set of states, T is a non-empty set of
transitions, r is the reset/start state, f is the final state, P
is the set of ports, R is a set of internal registers and V is
the domain of values. The set of ports is a union of the
sets of control inputs, control outputs, data inputs, and
data outputs (P CI t.J CO t.J DI t.J DO). A machine with
no input ports is called a closed machine.
The final state of a machine indicates the completion

of protocols associated with the machine; it does not
indicate termination. There are two kinds of states,
transit states and wait states. A transit state has no
transitions from the state to itself. A wait state has at least
one transition from the state to itself. In state diagrams,
wait states are indicated by (D and transit states are
identified as ..

Transitions are indicated as" S s2, where S is the
source state, s2 is the target state, and2 is a label. A label. is an assignment function P O R ---> V.

Definition 2.1: The care set for a label . is defined as"

care
2

{ p Ip P A . (p) :/: #}. It denotes the set of
ports not assigned don’t care values by the label
The semantics of a definition in ISL is the finite state

machine it constructs. A detailed discussion of ISL is
presented in [3].

2.2 Example--Garbage Collector

In the system shown in Figure 1, consider the interface of
the garbage collector. It follows a simple protocol where
it waits for collect to be asserted and then after a finite
interval asserts gc-active.

gc(collect,gc-active)(M)-[; await collect/T; compute gc-active/F,M=
garbage-collect(M)]*

Scheme CPU

Allocator Garbage
Collector

FIGURE Scheme Machine System Organization.

Memory
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Interaction A"= C D where C, Cl/VI, .., Cn/Vn

ei 6. U dl, DI U DO

Expression ’:=;AIs;tlssIxs
..= s s" (u II M) where.A[ "--port connectivity netlist

FIGURE 2 ISL Syntax.

The ISL specification for the garbage collector is given
above. Figure 3 shows the state machine for the garbage
collector interface.

3. COMPLEMENTATION

In a system of interacting sequential components, no
single component should be considered in isolation. A
component must be specified in relation to its interaction
with its surroundings. This interaction is typically speci-
fied by control and data signal interfaces. When isolating
the single component, it is useful to view this isolation as
an interaction between the component and a complement
machine that abstracts the behavior of the environment.
Notice then that the complement of a machine should be
identical to itself, except with its input and output ports
reversed and the internal registers hidden. This might
suggest that the notion of complementation is a trivial
one, since the interaction of a machine and its comple-
ment is already ’fixed’. However, by generalizing the
connectivity of input and output ports, or by considering
an implementation of the complement machine, the

resultant composed machine may exhibit other interest-
ing kinds of behavior.
We define a function "gensym" that generates a new

input(output) port name for an output(input) port name.

Definition 3.2: Given a machine M (S, T, r, f, P, R, V)
where P CI UCO UDI UDO, the complement machine

(S, , r,f, , tb, V where is a set of new port names,
one for each port in P. The set of transitions

T {s _ s21s s2 T and. Rename(2)}

where 2(p’) Rename (_P)(p’) .(p) where p’ P is
the new port corresponding to p P. The "Rename"
function creates an assignment function.g corresponding
to . such that the corresponding complementary ports
have the same value.
The complement machine is constructed by creating a

complementary set of ports with the same value on
corresponding ports. It retains the sets of values, states,
reset and final states, but its internal behavior is unspeci-
fied. The complement of the garbage collector is shown
in Figure 3.

/Qc-act:ivo
/!,

o

a) gc b) g-

FIGURE 3 Garbage collector (a) and its complement (b).
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4. COMPOSITION

The composition operation creates a restricted product
machine for a given set of port connections. The com-
position operation on machines with respect to a particu-
lar connection of their ports is used to construct a
machine that behaves as the constituent machines ex-
ecuting synchronously. The construction of the com-
posed machine is similar to "lock-step cartesian product"
in HOP[14]. Composition only creates reachable states
and transitions starting inductively from the start state. In
each inductive step, the transitions in each machine that
can "occur synchronously", are used to form a transition
in the composed machine. The states that the machines
reach after taking these transitions make up a state in the
composed machine. This state is then used to compose
transitions in the next inductive step of the construction.

Given machines M (S1, T1, r1, fl, P1, R1, V1) and

M2 ($2, T2, r2, f2, P2, R2, V2)with ports

P1 CI1 to CO1 to DI1 tO DO and P2 CI2 tO C02 tO
DI2 tO DOz, we define the equivaience relation/1/ on

P1 tO P2, as follows:

Definition 4.3: plA/P2 iff Pl, P2 are either both control or
both data ports and Pl,P2 are connected.

Each equivalence class of/I/is called a net. Connecting
input ports together creates an input net. All other
combinations of port connections create output nets.

Definition 4.4: Given machines M (S1, T1, r1, fl, P1,
R1, V) and ME ($2, T2, r2, f2, P2, RE, V2)and the net-list
A/between P1 and P, the composed machine (M Mz)/v
is constructively defined by (S, T, r, f, P, V) where P
CI tO CO tO DI tO DO.
Each equivalence class N of/1/ forms a port in the

composed machine. It is represented as [p] where p N.

CI {N N contains no control output ports }
CO {NI N contains at least one control output port }
DI {N N contains no data output ports }
DO (N N contains at least one data output port }

Let-Pl2(P) =-Pl (P) if p P1
72 (P) if p P2

The set of states S and transitions T are constructed by
the following inductive schema:

1. The start state of the composed machine r is
(rl, r2).

2. The transition (q,s) (q’,s’) T and (q’,s’) S is
reachable iff: ,

Si. qq’ Tlands-4 T2
ii. (q, s) S is reachable
iii. _#,-P2 are composable, that is, these exists

Jl.J2... Jk such that
a) care_,tO care_, C U [pj,]

i=l tok

b) Vp, p’
_

[Pji] fll2(P) -’12(P’)

where the transition label for the composed machine
is"
([fl]) =212(/9 if p care, t.J care_, # otherwise

3. (q, s) is a transit state if either q or s are transit
states, otherwise it is a wait state.

If the final states of two interacting machines are
reachable then we say that the composition of the two
machines is safe. Both the machines must follow a
correct protocol to reach their final states. The safety of
the composed machine implies that there is some inter-
action sequence between its constituent machines that
leads to the final state of the composed machine. It does
not imply that all possible interactions between the
machines will reach the final state.

Definition 4.5: The composed machine (M Mz)/v is
considered safe if the state .(f, f2)is reachable, unsafe
otherwise.

4.1 Machine Isomorphism

Definition 4.6: Two machines Mt and M2 are isomorphic
if M and M2 have isomorphic sets of states and
transitions.
We will prove that the composition of a machine M

with its complement in which each port connected to its
corresponding renamed port, results in a closed machine
isomorphic to M.

Theorem 4.1 Given a minimal deterministic machine
M (S, T, r, f, P, R, where P CI t3 CO tO DI to DO
and its complement machine (S, , r, f, , qb, and
A/o is the port map obtained by connecting every port
p P with its complementary port p’ P. Let Mo

Then Mo is a closed machine isomorphic to
M. []

Proof: The proof follows by induction on the length of
the derivation of states and transitions in the construction
of Mo. The proof is given in the Appendix.
We have shown that a machine composed with its

complement results in a closed machine isomorphic to
itself. There is a one-to-one mapping between the states
and transitions in M and Mo. There is not state space
explosion in the composed machine. The observable
temporal behavior of the composed machine Mo is the
same as M. The composed machine is closed and self
contained. Figure 4 shows the construction of the ma-
chine composed using the garbage collector and its
complement with every port connected with its com-
plementary port. We can see that the composed machine
(gc --)/vo is isomorphic to the original machine, and
has no input ports.



352 K. RATH, V. CHOPPELLA, AND S. JOHNSON

5. IMPLEMENTATION

We would now like to explore relations over machines
based on their input/output behavior. The sequence of
transitions of a machine and the values associated with
the ports in the machine for each transition are key to the
implementation relations described in this section. Rela-
tions over the reset/start states of the machines and the
intermediate states along the sequence of transitions are
used to describe a strong implementation (if_) relation and
a weak path implementation (_Up) relation.
A one-to-one mapping of the ports in M and Ms is the

basis for the inclusion relation over transition labels. Let
Pl and Pe be ports in Mx and Ms respectively. A map
P Pe means Pl corresponds to p_ and the values on
these ports can be compared.

Definition 5.7: The inclusion relation over transition
labels with respect to a port map is defined as:

"if1 ’2 =for allp care.e ,, Pe care.e,_ Pl Pe and
"l(Pl)- "/72(P2)

The binary relation "simulated by" (r-) is a maximal
relation over states, S C_ $1 Se, where S, Se are the sets
of states in M, M2.
Definition 5.8: A relation over states is a simulation
relation if sl(r-)se implies:

for all S "1 S l, there exists
and s’ s’[-

2

$2 "if2 S’ 2 such that_P <- f12

A machine M is implemented by (_) machine M2 if
every state in M is simulated by some state in Ms, and
the start state of M1 is simulated by the start state of M2.
Let r1, re be the start states of M1, Mz.
Definition 5.9: The relation M implemented by ME

(M ME) holds iff:

r l"r2 and for all s S there exists an s2 S2 such
that s E s2.

5.1 Path Implementation

Each path from the start state to the final state in the
complement machine represents a valid sequence of
interactions to complete a protocol. A machine can
interact with an implementation of any interaction path
of its complement machine. Decomposition of a compo-
nent from a system is accomplished by incorporating the
appropriate path implementation of the complement of
the component into the description of the rest of the
system.
A path implementation of a machine implements one

of many protocols of the machine. It is a weaker relation
than implementation which implements all protocols in a
machine. Consider for example an arithmetic unit which
employs different protocols for different operations (e.g.
plus and divide). Such a device would have distinct
complements for distinct protocols--we call these partial
complements path complements because they character-
ize different paths through the component’s machine.
To define the path implementation relation we must

first define the relation path simulates over states. The
binary relation path simulates is a maximal relation over
states, Sp S $2, where S1, S2 are the sets of states in
the two machines. S Up s2 implies four conditions
(Definition 5.10). The intuition behind the first condition
is that there are some transitions from both S and s2 that
can interact and lead towards completion of the protocol.
The second condition states that all transitions from s
and s2 that can interact lead to states in the path
simulation relation. This assures us that the machines
will always reach states in the path simulation relation.
The third condition states that for all transitions with
active control inputs from Sl, there is a corresponding
transition from sz, with which it can interact and these
transitions lead to states in the path simulation relation.
The intuition behind the third condition is that all
outgoing transitions with valid control inputs from a state
must be preserved so that all expected inputs in the state
can be captured. Condition four states that, if s is a wait

/v

II oo"

(

FIGURE 4 Composition of the garbage collector and its complement.
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state for a control input, then s2 must also be a wait state
for the same control input, or s2 must lead to a wait state
for the same control input.

Definition 5.10: A maximal relation over states (Sp C
S1 $2) is a path simulation relation if Sl r-p s2 implies:

1. T(s) 4: d implies that there exist transitions

s, sz sz such that_# < _P_ and s] ffp sz
1 S 2 22. For all transitions s 1, s2 s2, (

implies s s)
3. For all transitions Sl s (carez, CI)

implies, there exists a transition s2 22 such$2
that1 22 and s’ p s

212 ’such11 S1 S1 S14. If there exist transitions s
that s s’ and (care,: CI1) then (there
exists sz 222 such that s2 and21 222$2 S2

Up s) and ((there exists sz__ s2 such thatand s

11 21) or (there exists s2 3 Sk such that

211 223 and s Ep Sk)

Definition 5.11: A machine M is path implemented by
machine M2 (M p M2) if:

1. The reset state ofM is path simulated by the reset
state of M2 (r Up r2).

2. The final state ofM is path simulated by the final
state of Me Up f2).

We use a simple example to illustrate path implemen-
tation. The complement of a garbage collector cycle is
transfoed into a path implementation. As shown in
Figure 5, the wait loop labeled is removed from the
st state. In the resulting machine, the st state has a
transition, coesponding to a transition in , and the
tget states for the transitions e also in the path
simulation relation. Note that the wait transition in the
tget state can not be removed because it has an
outgoing transition with an active control input.
We will now show that the interaction between a

machine and a path implementation of its complement is
safe. This means the machines can complete a protocol

from the respective start states to the respective final
states, with valid control synchronization and data com-
munication at each interaction step. Sequential decom-
position involves embedding a path implementation of
the complement of a component into the machine from
which it is extracted. The theorems in this section
provide a formal basis for sequential decomposition.
To prove the above mentioned result we must prove

the composability of transition labels in the sequence of
interactions between a machine and a path implementa-
tion of its complement.
Lemma 5.1 lf_Pi, _j are transition labels and _# < .,
then "ffi’ "ffj are composable. []

Proof: See Appendix
We now prove a general result about the reachability

of states in the composition of a machine with a path
implementation of its complement.

Theorem 5.1 Given a machine M and M2 that is path
implemented by the complement ofM1, and a port map A/
obtained by connecting every port p P1 with its
complementary port P2 P2" Let M (M M2)/v" Then
for every state (s 1, s2} M,

{s 1, s2} is reachable iff

11 I-’p $2/ S "/71 "fiE
._..) $1’ $2 ....) $2 (11 ’ "/72 =: _-TS1 I-’p $2

(S1, $2) ---) (S’I, S) T)

where S M, s2 M2 and M1 is the comple-
mentary state for s.
Proof: Proof by induction on the length of the derivation
of states in the construction of M (see Appendix). []

Using theorem 5.1, we can prove that a machine M
composed with a path implementation of its complement
M2 will result in a safe machine. Since the initial and
final states of M M= correspond to initial and final
states in M and M2 separately, we can infer from this
theorem that a machine and a path implementation of its
complement can complete a protocol. We have the
following corollary:

Theorem 5.2 Given a machine Mx and M2 that is path
implemented by the complement ofM1, and a port map/1/

FIGURE 5 Path implementation of complement of gc.
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FIGURE 6 Fragment from Scheme Machine Specification

obtained by connecting every port Pl P1 with its
eomplementary port P2 Pz, then M (M M2)A, is

safe.
Proof: From the definition of path implementation and
complementation, fl if-t, fz implies (fl, fz) is reachable in
M, and from the definition ofpath simulation, M is safe. []

6. EXAMPLE--SCHEME MACHINE
DECOMPOSITION

The Scheme Machine is a special-purpose computer for
the Scheme programming language [23]. Its instructions
provide base primitives that are used by a run-time
system to provide scheme primitives. We now consider
the decomposition of a high-level behavioral specifica-
tion of the Scheme machine into a scheme CPU, an
allocator, and a garbage collector (as shown in Figure 1),
by sequential decomposition of the scheme machine.
A fragment of the state diagram from the behavioral

specification of the Scheme machine is shown in Figure
6. State diagrams provide a graphical representation for
abstract behavioral specifications [24].
Our first task will be to decompose the allocator from

the scheme machine based on its interface specification.
The garbage collection procedure is embedded within the

allocator interaction (Figure 6) and we factor it into the
allocator as an internal procedure.
The ISL specification for the allocator is shown below:
Allocator(alloc?, tag, size, avail, read-avail,
gc-needed)(M)
[await alloc?/T tag/obj-tag, size/obj-size;
((read-avail/T until alloc?/F avail/allocate(obj-tag
obj-size M)

fl (gc-needed/T until alloc?/F M/gc(M) ))]*

gc(M)_ "ava1/fr-P//
FIGURE 7 Allocator State Diagram.
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FIGURE 8 Embedding path implementation of complement of Allocator in Scheme Machine.

The state diagram for the allocator is shown in Figure
7. An implementation of an interaction path of the
complement of the allocator can be embedded in the
scheme machine, in place of the sequence of transitions
for allocation interaction in the scheme machine speci-
fication (Figure 6). Since the garbage collection proce-
dure is factored into the allocator as an internal proce-
dure, it is not considered in the complement. The source
state of the replaced sequence of transitions is merged
with the start state of the path implementation [3].
Similarly the target state for the sequence of transitions
for allocator interaction is merged with the final state.
Figure 8 shows the embedding of a path implementation
of the allocator replacing one of the sequence of transi-
tions for allocator interaction shown in Figure 6. Assum-
ing that there is a path from the target state to the source
state of the replaced sequence of transitions, the resulting
scheme machine description is a path implementation of
Allocator, since all transitions in the path can be folded
into the target state by hiding all names that are not
connected with the allocator. The ports in Allocator
(alloc?, tag, size, avail, read-avail, gc-needed) are added
to the scheme CPU.
The next step in the derivation is to factor the garbage

collector from the allocator. The path implementation of
the garbage collector cycle (Figure 5) is then embedded
into the allocator by replacing the transition labeled
go(M) (Figure 9). The source state and target state of the
replaced sequence of transitions are respectively merged
with the start state and final state of the path implemen-

tation. The ports in gc (collect, gc-active) are added to
the allocator.
We decomposed the Scheme machine into a Scheme

CPU and an allocator, and then factored a garbage
collector from the allocator. Embedding an implementa-
tion of a component into another introduces control
synchronization and data communication mechanism
between the components for correct interactions between
them. The decomposed components cin now be synthe-
sized independently.

7. CONCLUSION

Design of a hardware system involves both top-down
and bottom-up reasoning. Our emphasis here has been on
top-down derivation to promote it as an alternative to the

go(x

merge

FIGURE 9 Embedding path implementation of complement of gc in
Allocator.
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bottom-up verification techniques. Compared to system
synthesis methods, derivation allows a designer greater
control over system decomposition and the realization of
the components, without the use of special-purpose
hardware or restrictions on interactions. We start from an
initial abstract description of the system and add details
to the description in decomposition steps. Decomposition
is accomplished by factoring a procedure to a sequential
machine that performs the procedure. With each such
transformation step the designer extracts a sequential
component from the system and incorporates an imple-
mentation of the complement of that component’s inter-
face description into the system. Communication be-
tween components is modeled as values over connected
ports. Other forms of communication, such as using
buffers, shared storage, bidirectionality, must be modeled
explicitly. The components in the system can be synthe-
sized independently.
The Scheme machine provided a real example for our

decomposition method. We use sequential decomposi-
tion to decompose a scheme system into a scheme CPU,
an allocator, and a garbage collector with non-trivial
interactions between the components. We show that a
machine interacting with its complement results is a
closed machine that is isomorphic to the original ma-
chine, and that a machine interacting with an implemen-
tation of its complement results in a safe interaction.
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APPENDIX

Proof for Theorem 4.1

Each net of A/o is obtained by connecting an input
(alternatively output) port c of M with an output (alter-
natively input) port gensym(c) of M. From the definition
of composition each net in A/o is a port in Mo. Therefore
Mo consists of only output ports and is closed.
The composed machine Mo (M )/Vo has the

following structure:

Mo (So, To, ro, fo, Po, Vo)where,
Vo V

ro (r, r)

Po CIo t.J COO 1,3 DIo U DOo

Co {}

COo {(c, gensym(c)) c (E CI LJ
co}

DIo {}
DOo (d, gensym(d)) d DI

DO}

M and M have the same
value sets V
from the definition of com-
position

from definition of composi-
tion and/1/0

We prove the following two conditions which together
imply that M and Mo are isomorphic:

For si, sj, si, s) S

1. (si, Sj) S0 = s sj

2. (si, sj) .o_ S;, S) TO

.ffi(Si, Sj) So ^ S Sj ^ S S) ^ Si...> Si ^
s4
2j Rename (2i) ^2o ([P]) =-q(P)
ifp care, U care, # otherwise.

We will prove the above conditions by induction on
the length of the derivation of states and transitions in the
constction of Mo.

Base Case: (r) So, by the definition of composition.

Inductive Step:

Assume that the above condition is true for all states and
transitions derived by n or fewer steps of the construc-
tion. Given

 So^s, sj^s; s ^s ._> s (. T A s/-. ,;
T ^_Pj Rename (i) ^2o([P])
2 q(p) ifp care. t.J care.j, # otherwise.

By choosing every port
Pi care.,, care_, t.J care2 i =to k [Pi]

Each net [Pi] consists of two ports pi and pj
gensym(pi) and -ffij(P) -ffij(Pi) -ffij(Pj)

Vp, p’ [p]. 2ij(p) =- 2ij(p’)
=/si, 5j/_.,/si, 5/ TO and/si, 5)/ So for every derivation
of length n + 1.
To show the converse, assume that

(Si, Sj)"o_, (S, S) TO is derived in n + 1 steps.
From the antecedents of the rule for composition
_. S T and sf._,.% s) ’and (Si, Sj) S0
Since (si, sj) SO would have been derived in n steps,

by induction hypothesis si sj.
2o([P]) _/7/j(p) ifp care2i t.J carej, # otherwise.
Vp, p’ [pj]. -ffij(P) "ffij(P’) and since A/o guarantees

that [pj] {pj, gensym(p)}. Pij(Pj) _Pij(gensym(pj))
We have sf s T, sj s__l’,.j

Rename(.i), and s sj. Since M and M are determin-
istic and minimal, Sj S j T; hence s s). []

Proof for Lemma 5.1

Choosing every port Pi car%; =lpj care.ej ^ pj
gensym(pi) carez, U carezj C_ i=tok [Pi]

Each net [Pd consists of two ports p and pj. From the
definition of complementation and inclusion, Vp
care_ -i(Pi) -i(Pi) -j(Pj).

"ff’ij(P) "ffij(Pi) -ffij(Pj) Vp,p’ [Pi]" ij) ij(P’)
Therefore, i, j e composable, u

Proof for Theorem 5.1

We want to prove the following condition by induction
on the length of the derivation of states in the construc-
tion of M.

Base Case

r Ep r, from the definition of complement and path
implementation.

From the definition of path simulation,

"" "’1 < "2 ["pr l’-p r2 == r .1_ "1, r2 - $2 S $2

Since, for every transition --.1r._, _-rs -, there is a tran-
sition r "1 _-’r "1 2,_

s M, Vr _
s, r2 -4 s2 .- 22 ==

511"p52

Using lemma 5.1, -1 - (rl, r2) /Sl, s2
T
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Inductive Step

Assume that the above condition is true for all states
derived by n or fewer composition steps. Given (s, s2)
is reachable, by the rule that constructs (s, s2), we
know that there is (s0, $2o) "’-4’ (Sl, s2), for some (So, S2o),
such that, (So, S2o M is reachable So, s M and
S2o’ Sz M2 and-Pxo, 22o are composable.
s fit, s2, from induction hypothesis
From the definition of path simulation,

s- % s Vs-Z ,
._.> S1, S2 .S> S2..ff ’’2 ::::} Sl I’-p $2

Since, for every transition 112,sl_-v , there is a
transition S

-p’
-.> S -- MI, S1-.> S1, S2.S> S2 . << .2 ::

S11--pS2
Using lemma 5.1,
T

To show the converse, (s, s2)--> (s’1, s)implies (s, s2)
is reachable in M, from the definition of composition.
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