Interactive Transition Systems: Definitions and Examples

Venkatesh Choppella

2024-01-08 07:11:18+05:30

IIIT Hyderabad

Contents

Motivation

Definition of a Transition System

Behaviour

Types of Transition Systems

Example: Bank ATM

Conclusion

Activity Break

The role of interaction

- An action is something that can influence to what a state changes.
- Systems in which actions drive a state are very common, e.g., user interfaces, mobile phones, etc.
- Iterative system: The rule for evolution is fixed:

x' = F(x)

- Interactive system: Set of actions U. Dynamics is now a relation $\rightarrow: X \times U \times X$.
- Our goal is to study systems in which actions play a prominent role.

Transition systems

- are useful for modelling phenomena and mechanisms.
- provide a uniform notation for thinking and expressing change that is local. (From a state to the next state.)
- are to computing what differential equations are to science and engineering: a way to express incremental change.

Motivation

Definition of a Transition System

Behaviour

Types of Transition Systems

Example: Bank ATM

Conclusion

Activity Break

Transition System: formal definition

Definition 1 (Transition System) A transition System is a tuple $(X, X^0, U, \rightarrow, Y, h)$ where

1. X is a state space, a set of states.

- 2. X^0 is a subset of X and is the set of **initial states**.
- 3. *U* is an **action space**, a set of **actions**.
- 4. Y is an observation space, a set of observations.

5. $h: X \to Y$, called the **display** maps states to observations.

6. $\rightarrow \subseteq X \times U \times X$ is called the **transition relation** or **dynamics**. The transition (x, u, x') is written $x \xrightarrow{u} x'$.

- (Labelled Transition) Systems
- State Machines
- Processes
- Automata

Transition system as a machine

- X is the set of all possible configurations of the machine's 'moving parts'.
- 2. X^0 is the set of all **initial configurations**.
- 3. \rightarrow determines how the parts move.
- 4. The moving parts are 'under the hood'. The machine comes with a dashboard.
- 5. Y is the set of all possible **observed values** on the dashboard.
- 6. *h* determines how the configuration of the moving parts is **displayed** on the dashboard.

- 1. X is the set of all possible values of the **program variables**.
- 2. X^0 is the set of all possible **initial values** of the program variables.
- 3. *F* specifies how the program variables are **updated**.
- 4. Y is the set of all **possible values displayed** by the program.
- 5. *h* determines **how** the variable values are **converted** to displayed values.

States and Actions

- 1. S: System
- 2. x: State
- 3. *u*: Action
- 4. y: Observation

States and Actions

- 1. State space $X = \{1, 2, 3, 4\}$
- 2. Initial states: $X^0 = \{1\}$
- 3. Action space: $U = \{a, b\}$
- 4. Observation space: Y = X
- 5. Display: Identity function h(x) = x

Transition relation of the NFA

Post(x, u) is the set of *u*-successors of *x*.

$$Post(x, u) = \{x' \mid x \xrightarrow{u} x'\}$$

Post(x) is the set of **successors** of *x*:

$$Post(x) = \bigcup_{u \in U} Post(x, u)$$

An action u is **enabled at** state x if $Post(x, u) \neq \emptyset$. En(x) is the set of all actions enabled at x.

Example NFA: Enabled actions and Successors

State x	En(x)	Post(x, a)	Post(x, b)	Post(x)
<i>x</i> ₁	$\{a,b\}$	${x_2}$	${x_3}$	$\{x_2, x_3\}$
<i>x</i> ₂	$\{a,b\}$	$\{x_1, x_3\}$	${x_2}$	$\{x_1, x_2, x_3\}$
<i>x</i> ₃	{}	{}	{}	{}
<i>x</i> ₄	<i>{a}</i>	${x_1, x_3}$	{}	${x_1, x_3}$

1. *x* is **terminal** if $Post(x) = \emptyset$.

2. x is a fixed point for u if

 $Post(x, u) = \{x\}$

3. x is transient for u if

3.1 u is enabled at x

3.2
$$x \notin Post(x, u)$$

- x is a fixed point if it is fixed for each u enabled at x. Note that every terminal state is a fixed point.
- 2. *x* is **transient** if
 - 2.1 it is not terminal
 - 2.2 it is transient for each u enabled at x.

Example: Light Bulb

Demo

- **States:** *X* = {on, off}
- Initial States: $X^0 = {\text{off}}.$
- Actions: $U = \{ press \}$
- **Observations:**: $Y = {bright, dark}$

• Display:
$$h(x) = \begin{cases} bright & \text{if } x = on \\ dark & \text{if } x = off \end{cases}$$

• Dynamics: $F: X, U \rightarrow X$

F(on, press) = offF(off, press) = on

Light Bulb: Transition Graph

- \rightarrow is **deterministic** if for each x, u, $x \xrightarrow{u} x_1$ and $x \xrightarrow{u} x_2$ implies $x_1 = x_2$. A state on an action goes to at most one state.
- $\bullet \ \rightarrow$ is $total \$ if every action is enabled at every state.

Exercise: Can you recall any examples of deterministic or total dynamics?

Contents

Motivation

Definition of a Transition System

Behaviour

Types of Transition Systems

Example: Bank ATM

Conclusion

Activity Break

A **run** in a transition system is a labelled path in the transition graph of the system.

- Finite Run: $x_0 \xrightarrow{u_0} x_1 \xrightarrow{u_1} x_2 \dots \xrightarrow{u_{n-1}} x_n$, $n \ge 0$. If n = 0, the run is empty. x_n is called the **destination** of the run.
- Infinite Run: $x_0 \xrightarrow{u_0} x_1 \xrightarrow{u_1} x_2 \dots$ An infinite run has no destination.
- **Origin**: x_0 is the origin of the run.

We say that a state x_0 reaches x_d if there is a run with origin x_0 and destination x_d . We also say that the run *reaches* the destination x_d . Alternatively, x_d is **reachable from** x_0 . Clearly, every state reaches itself.

A state x is **converges to** x_d if x reaches x_d and x_d is a fixed point.

- Finite Run with origin on: on $\xrightarrow{\text{press}}$ off $\xrightarrow{\text{press}}$ on $\xrightarrow{\text{press}}$ off
- Finite Run with origin off: off $\xrightarrow{\text{press}}$ on $\xrightarrow{\text{press}}$ off
- Infinite run with origin on: on $\xrightarrow{\text{press}}$ off $\xrightarrow{\text{press}}$ on $\xrightarrow{\text{press}}$

A complete run, or completion is a run that is either

- infinite, or
- finite, and the destination of the run is terminal

In the Light Bulb example, there are two completions:

off
$$\xrightarrow{\text{press}}$$
 on $\xrightarrow{\text{press}}$ off $\xrightarrow{\text{press}}$ on $\xrightarrow{\text{press}}$...

on
$$\xrightarrow{\text{press}}$$
 off $\xrightarrow{\text{press}}$ on $\xrightarrow{\text{press}}$...

An execution is a completion whose origin is an initial state.

In the Light Bulb example, there is only one execution:

off
$$\xrightarrow{\text{press}}$$
 on $\xrightarrow{\text{press}}$ off $\xrightarrow{\text{press}}$ on $\xrightarrow{\text{press}}$...

A **trajectory** is a sequence of states obtained by projecting the states of a run.

A trajectory may be finite or infinite (depending on the run).

Here are some trajectories in the Light Bulb example, trajectories of the system.

- on, off, on, off
- on, off, on, off, ...
- off, on, off, ...

A **trace** is a sequence of observations obtained by mapping the display function on the states of a trajectory.

A trace may be finite or infinite (depending on the trajectory).

In the Light Bulb example, here are some traces of the system.

- bright, dark, bright, dark
- bright, dark, bright, dark, ...
- dark, bright, dark, ...

- An **execution trace** is a trace obtained from an execution of the system.
- The **Behaviour** of a system is the set of all its execution traces.

In the Light Bulb example, the behaviour is a set consisting of just one execution trace:

dark, bright, dark, bright, ...

Contents

Motivation

Definition of a Transition System

Behaviour

Types of Transition Systems

Example: Bank ATM

Conclusion

Activity Break

Transition System Types

- Finite: X and U are finite.
- Autonomous: *U* is a singleton.
- **Controlled:** |U| > 1.
- **Transparent:** if Y = X and h is the identity map.
- Agile: $X^0 = X$.
- Deterministic: \rightarrow is deterministic.
- Total: \rightarrow is total.

- Iterative: autonomous, deterministic and total.
- Convergent: every execution reaches a fixed point.

A discrete flow is a pair $D = (X, F : X \to X)$.

It may be seen as an iterative system that is

- Agile: $X^0 = X$
- Autonomous: |U| = 1
- Deterministic and total: the transition relation is isomorphic to *F*.
- Transparent: Y = X and $h = Id_X$

Contents

Motivation

Definition of a Transition System

Behaviour

Types of Transition Systems

Example: Bank ATM

Conclusion

Activity Break

ATM Demo

Demo

- 1. **Mode**: $m : M = \{main, bal(History), dep, wth\}$
- 2. **History** : *History* = {*main*, *dep*, *wth*}
- 3. **Balance**: *b* : ℤ
- 4. **State** : $(m, b) : X = M \times \mathbb{Z}$

Modelling the ATM application: Initial States

 $X^0 = \{(main, 20000)\}$

 $U = \{show, deposit, withdraw, confirm(\mathbb{Z}), main\}$

- 1. $Button = \{show, deposit, withdraw, confirm, goto main\}$
- 2. Y = (msg : String, buttons : set[Button])

Modelling the ATM app: Transitions

	main	bal(m)	dep	wth
Action	b	b	b	b
show	bal(main)			
	b			
deposit	dep			
	b			
withdraw	wth			
	b			
confirm(v)			bal(dep)	bal(wth)
			b+v	b-v
goto-main		main	main	main
		b	b	b

State	msg	buttons
(main,b)	"Welcome"	show,
		deposit, withdraw
(bal(main), b)	"Your a/c has" + b	goto-main
(bal(dep), b)	"Deposit successful:	goto-main
	Your a/c has " $+ b$	
(bal(wth),b)	"Withdrawal successful:	goto-main
	Your a/c has " $+$ b	
(dep, b)	"Enter the amt to deposit"	confirm, goto-main
(wth, b)	"Enter the amt to withdraw"	confirm, goto-main

- 1. Modes, actions are specified using enumerated types.
- 2. The system has no fixed or terminal states.
- 3. All states are transient
- 4. Some modes and actions are parameterised.

What is an accurate statement about the correctness of the ATM app?

1.

2.

Contents

Motivation

Definition of a Transition System

Behaviour

Types of Transition Systems

Example: Bank ATM

Conclusion

Activity Break

- Transition System
- Successors of a state
- Runs, Completions, Executions
- Trajectories, Traces
- Execution Traces and Behaviour

- Transition Systems are mathematical models of machines and physical processes.
- Transition systems consists of states, actions, and observations.
- Display maps states to observations. h(x) = y
- Dynamics relates a state and an action to an action. $x \stackrel{u}{\rightarrow} x'$.
- Transition systems have behaviour.

Contents

Motivation

Definition of a Transition System

Behaviour

Types of Transition Systems

Example: Bank ATM

Conclusion

Activity Break

• Model the mechanics of the tic-tac-toe game as a system.