
Iterative problem solving: The mapcode

approach

Venkatesh Choppella

2024-02-27 12:11:49+05:30

IIIT Hyderabad

1 / 92

Contents

Motivation

Basic Machinery: Discrete Flows

Iterative Problem Solving

Problem Specification

Mapcode Machines

Convergence

Informal Example: Multiplication machine

Invariant Functions and Correctness

Examples: Multiplication (contd) and Factorial

Conclusion

2 / 92

What are computers good at?

Computers are good at repeatedly doing a task.

1. They are fast.

2. They don’t get tired.

3. They don’t get bored.

Repeatedly doing a task is called iteration.

3 / 92

Programming: Instructing a computer what to do

Computers are used to solve problems that take an instance and

return an answer after iterating on a task.

But they need to be instructed:

1. Where to start

2. What to do

3. When to stop

4. How to report the answer

4 / 92

Anatomy of a computation: computing 3!

•

instance

3

(3,1)

ρ

•

initial state

(2,3)
F

(1,6)
F

(0,6)
F

(0,6)
F

6

π

•

answer

•

state •

fixed point

1. Where to start: ρ

2. What to do: F

3. When to stop: fixed point

4. How to report answer: π.

5 / 92

The structure of states and maps

3

(3,1)

ρ

(2,
F

3) (1,6)
F

(0,6)
F

(0,6)
F

6

π

• accumulator
• counter

• ρ: maps instances to states

• F: maps states to states

• π: maps states to answers

6 / 92

Multiplication using addition and decrement

(3, 4) 12

(3, 4, 0) (2, 4, 4) (1, 4, 8) (0, 4, 12)

ρ

F F F

π

7 / 92

What we plan to do in these slides

Our goal in these slides is to

1. Introduce a simple mathematical theory of iteration

2. Define iterative problem solving

3. Implement iterative problem solving in Python

8 / 92

Contents

Motivation

Basic Machinery: Discrete Flows

Iterative Problem Solving

Problem Specification

Mapcode Machines

Convergence

Informal Example: Multiplication machine

Invariant Functions and Correctness

Examples: Multiplication (contd) and Factorial

Conclusion

9 / 92

Discrete Flow

Definition 1 (Discrete Flow)
A discrete flow D is a pair

⟨X, F : X → X⟩

where

• X is a set called the state space of D.

• F is a function called the dynamical map of D.

10 / 92

Prime Notation

x′ denotes the ‘next’ state.

x′ = F(x)

11 / 92

Picture of a Discrete Flow

12 / 92

Exercise break: Examples & non-examples of Discrete Flow

Which of the following are discrete

flows?

1. X = N, Finc = x 7→ x + 1

2. X = N, Fsqr = x 7→ x2

3. X = R, Fcos = x 7→ cosine(x)

4. X = R, F? = x 7→ (x − 1)/x

5. X = N, Fcountdown = n 7→0 if n = 0

n − 1 otherwise

13 / 92

Closed sets

Definition 2 (F-closed sets)
Let D = (X, F : X → X) be a discrete flow. A set S of X is

F-closed if F(S) ⊆ S, i.e., for each x ∈ S, F(x) ∈ S.

14 / 92

Examples of closed subsets

Let D = (X, F : X → X) be a discrete flow. The following subsets

of X are closed:

1. X

2. ∅

15 / 92

Trajectories and Orbits

Definition 3 (Trajectory, Orbit)
Let ⟨X, F : X → X⟩ be a discrete flow.

• The trajectory of an element x ∈ X is the sequence

x, F(x), F2(x), F3(x), . . .

• The orbit of x is the set

{x, F(x), F2(x), F3(x), . . .}

16 / 92

More examples of F-closed subsets

1. orb(x) where x ∈ X

2. orb(S) = ∪x∈S orb(x) where S is any subset of X

17 / 92

Subflows

Definition 4 (Subflow)
Let D = (X, F : X → X) be a discrete flow. Let S be a subset X
that is F-closed.

Then DS = (S, F|S) is a discrete flow. 1 DS is called a subflow of

D.

1If S ⊆ A and F : A → B, then F|S : S → B is the restriction of F to S.
18 / 92

The subflow generated by an element

Definition 5 (Generated Subflow)
Let (X, F : X → X) be a flow. Let x ∈ X. Then (orb(x), F|orb(x))

is a subflow generated by x.

If S ⊆ X, then (orb(S), F|orb(S)) is the subflow generated by S.

19 / 92

Fixed Points

Definition 6 (Fixed Point)
Let D = ⟨X, F : X → X⟩ be a discrete flow.

• x ∈ X is a fixed point of F if x = F(x).

• fix(F): the set of fixed points of F.

20 / 92

Exercise: Guess Fixed Points

1. (N, Finc):

2. (N, Fsqr):

3. (R, Fcos): hint

4. (N, Fcountdown):

21 / 92

https://math.stackexchange.com/questions/46934/what-is-the-solution-of-cosx-x

More examples of closed subsets

1. {x}, where x is a fixed point of F

2. fix(F)

22 / 92

Transient Points

Definition 7 (Transient Point)
Let D = ⟨X, F : X → X⟩ be a discrete flow.

• x ∈ X is transient if x ̸= F(x).

23 / 92

Reachability

Definition 8 (Reaches)
Let (X, F : X → X) be a discrete flow.

Let x and y be states in X.

x reaches y, alternatively y is reachable from x, if, for some

i ∈ N,

y = Fi(x)

24 / 92

Convergent Points

Definition 9 (Convergent point)
Let D = ⟨X, F : X → X⟩ be a discrete flow.

• x ∈ X is a (F-) convergent point of F in X if it reaches a

fixed point.

• S ⊆ X is convergent if for each x ∈ S, x is convergent.

• con(F): the set of convergent points of F in X.

25 / 92

Exercise: Guess Convergent Points

1. (N, Finc):

2. (N, Fsqr):

3. (R, Fcos): hint

4. (N, Fcountdown):

26 / 92

https://math.stackexchange.com/questions/46934/what-is-the-solution-of-cosx-x

Fixed Point iteration in Python

Assumes x i n con (F)

r e t u r n s e l ement i n f i x (F)

xpr ime en s u r e s F(x) computed

on l y once pe r i t e r a t i o n .

def l oop (x , F) :

whi le True :

xpr ime = F(x)

i f x == xpr ime : # f i x e d po i n t !

break

e l s e :

x = xpr ime

return x

27 / 92

Limit Map

Let D = ⟨X, F : X → X⟩ be a discrete flow.

The limit map of F, F-infinity , is the function

F∞ : con(F) → fix(F)

28 / 92

Limit Map in Python

Lim i t Map

take s a f u n c t i o n F

r e t u r n s a f u n c t i o n F i n f .

F i n f t a k e s an x i n con (F)

and r e t u r n s an e l ement i n f i x (F) .

def l im i t map (F) :

def F i n f (x) : # assume : x i n con (F)

return l oop (x , F)

return F i n f

29 / 92

Contents

Motivation

Basic Machinery: Discrete Flows

Iterative Problem Solving

Problem Specification

Mapcode Machines

Convergence

Informal Example: Multiplication machine

Invariant Functions and Correctness

Examples: Multiplication (contd) and Factorial

Conclusion

30 / 92

What is Iterative Problem Solving?

Definition 10 (Iterative Problem Solving)
An instance A of computational problem solving is a pair

A = ⟨P ,M⟩ consisting of

1. A problem specification P

2. A mapcode machine specification M

In what follows, we present the Mapcode Approach to Iterative

Problem solving[?].

31 / 92

Contents

Motivation

Basic Machinery: Discrete Flows

Iterative Problem Solving

Problem Specification

Mapcode Machines

Convergence

Informal Example: Multiplication machine

Invariant Functions and Correctness

Examples: Multiplication (contd) and Factorial

Conclusion

32 / 92

IPS: Problem specification

A problem specification P = ⟨F ,R,N⟩ consists of

• Functional Requirement Specification F : What is the

function that needs to be computed?

• Resource Specification R : What are the primitive

datatypes and operations on those datatypes available to

compute the function?

• Non-functional Requirements Specification N : What are

the constraints on time, memory space, total cost, security,

performance, and usability of the computational solution?

33 / 92

Functional Specification of a problem

A functional specification F = ⟨I, A, f ⟩ consists of the following:

• Input Space I : The set of all possible inputs.

• Answer Space A : The set from which answers are drawn.

• Specification map f : I → A, the function to be computed.

34 / 92

Existence and Uniqueness of Answer for each Problem input

When constructing the specification map, one needs to be con-

vinced that each problem input is indeed associated with a unique

answer.

• Existence: For each problem input p : I, there is indeed a

answer a : A.

• Uniqueness: If a1 and a2 are answers associated with a

problem input p, then a1 = a2.

35 / 92

Example of a functional specification: GCD

Compute the Greatest Common Divisor of two natural numbers.

• Input Space: N × N

• Answer Space: N

• Specification map: gcd : N2 × N. For each pair of naturals

(a, b), gcd(a, b) is the largest number that divides both a and

b.

36 / 92

Existence and Uniqueness for GCD

Let a, b be two naturals. Then

• Existence: The gcd is an element of all the common factors

of a and b. This set is not empty, since clearly, 1 is a

common factor for both a and b.

• Uniqueness: Let r1 and r2 be two gcd’s of a and b. Then,
since r1 is the greatest common factor, r1 ≥ r2. By a similar

argument, r2 ≥ r1. Hence r1 = r2.

37 / 92

Exercise: Define Functional Specifications

1. Factorial

2. The maximum element in a list

3. Searching a given element in a list

4. Reversing a list

5. Sorting a list

38 / 92

Exercise solution: Functional Specification of Factorial

1. Input space: I = N (natural numbers)

2. Answer space: A = N (natural numbers)

3. Specification map f : I → A

4. f (n) =

1 if n = 0

∏n
i=1 i if n > 0

Clearly f is a function. For n = 0, the answer is unique. For n >

0, the answer is unique because ∏ is a total function.

39 / 92

Exercise solution: Functional Specification for List Search

1. Input space: I = a : α × s : List[α] (List of elements of type

α).

2. Answer space: A = {absent} ∪ {i : [0 .. |s|−1]}.

3. Specification map f : I → A

4. f (s) =

absent if a ̸∈ s

otherwise i, where i = min{j ∈ N | sj = a}
Clearly f is a function. For a ̸∈ s, the answer is unique. Other-

wise, the number of indices where a occurs in s is non-zero. The

answer in that case is just the minimum index, which is unique.

40 / 92

Resource Specification

• Data Types: What data types may be used in the problem

and solution specification?

• Operations: What operations on the those data types are

allowed?

• Identities: What identities hold between operations on the

data types?

41 / 92

Example: Resource specification to compute factorial

• Data types: natural numbers N

• Operations:

• decrement − : N+ → N

• multiplication ∗ : N2 → N

• comparison =, ̸=: N2 → N

42 / 92

A different resource specification to compute factorial

• Data types: integers Z

• Operations:

• decrement − : Z → Z

• multiplication ∗ : Z2 → Z

• comparison =, ̸=: Z2 → Z

This resource specification is more common in programming lan-

guages that have Z but not N as primitive datatypes.

43 / 92

Example: Resource specification to compute GCD

• Data types: natural numbers N

• Operations:

• subtraction − : N2 → N

• comparison =, ̸=: N2 → N

44 / 92

A different resource specification to compute GCD

• Data types: natural numbers N

• Operations:

• division / : N × N+ → N

• comparison =, ̸=: N2 → N

45 / 92

Standard data types and operations

• Booleans, Natural numbers, Integers, Rationals, enumerated

types

• Boolean, Arithmetic and relational operations

• Finite sets and operations on finite sets

• Lists, Stacks, Queues, Finite Trees

• Tupling and projection operations

We will assume that all the above standard data types and opera-

tions are available as resources unless specified otherwise.

46 / 92

Non-functional specification

Sometimes there are also non-functional specification , e.g.,

• Time available for computation

• Memory space available for computation

• Security, Performance and usability of the solution

Assumption: no non-functional requirements.

47 / 92

Contents

Motivation

Basic Machinery: Discrete Flows

Iterative Problem Solving

Problem Specification

Mapcode Machines

Convergence

Informal Example: Multiplication machine

Invariant Functions and Correctness

Examples: Multiplication (contd) and Factorial

Conclusion

48 / 92

Mapcode machine

Definition 11 (Mapcode Machine)
A mapcode machine is a tuple

M = ⟨I, A, X, ρ, F, π⟩

consisting of

• an input set I

• an output set A

• a state space X

• an init map ρ : I → X,

• a program map F : X → X

• an answer map π : X → A

49 / 92

Mapcode Algorithms

Definition 12 (Mapcode Algorithm)
Let

M = ⟨I, A, X, ρ, F, π⟩

be mapcode machine.

M is an algorithm if

ρ(I) ⊆ con(F)

50 / 92

Map computed by a mapcode algorithm

Definition 13 (Map computed by a mapcode algorithm)
Let

M = ⟨I, A, X, ρ, F, π⟩

be a mapcode algorithm.

The map computed by M is the function

π ◦ F∞ ◦ ρ

51 / 92

Computing a function via a Mapcode Machine

Definition 14 (Computation of a function by a mapcode

machine)
Let f : IF → AF be a specification map.

Let M = (I, A, X, ρ, F, π) be a mapcode machine.

M computes f if

• Signature: IF = I and AF = A.

• Convergence: M is an algorithm.

• Partial Correctness: Assuming M is an algorithm, the

function computed by M is f :

π ◦ F∞ ◦ ρ = f
52 / 92

Mapcode Commute Diagram

I A

con(F) f ix(F)

f

ρ

F∞

π

53 / 92

Algorithmic Problem Solving for mapcode

Definition 15 (Algorithmic Problem solving via Mapcode)
Let P = ⟨F ,R,N⟩ be a a problem with functional specification

F = ⟨IF , AF , f : IF → AF ⟩

A mapcode machine

M = (I, A, X, ρ, F, π)

is a solution to P if

• Design: M computes f .

• Implementation: I, X and A are defined using the

datatypes in R. ρ, π and F are defined using the operations

in R.

• Quality: M satisfies the non-functional requirements N .
54 / 92

Mapcode machine in Python

Mapcode

take s

rho : I−>con (F)

F : X−>X,

p i : f i x (F)−>A

r e t u r n s e l ement i n A

def mapcode (rho , F , p i) :

F i n f t y=l im i t map (F)

def f (v) :

return p i (F i n f t y (rho (v)))

return f

55 / 92

Contents

Motivation

Basic Machinery: Discrete Flows

Iterative Problem Solving

Problem Specification

Mapcode Machines

Convergence

Informal Example: Multiplication machine

Invariant Functions and Correctness

Examples: Multiplication (contd) and Factorial

Conclusion

56 / 92

Well-founded relations

Let A be a set. Let < be a binary relation on A. (A,<) is well-

founded if there are no infinite descending chains of the form:

. . . < a2 < a1 < a0

57 / 92

Bound Function

Definition 16 (Bound Function)
Let (W,<) be a well-founded relation. Let D = ⟨X, F⟩ be a

discrete flow. A function B : X → W is a bound function for D if

whenever x ∈ X is transient, B(F(x)) < B(x).

58 / 92

Bound Function implies convergence

Lemma 17 (Bound function implies convergence)

Let D = (X, F : X → X) be a discrete flow such that there exists

a well-founded relation (W,≤) and a bound function B : X → W
for D. Then X is convergent and X = con(F).

59 / 92

Proof that Bound Function implies convergence

1. Let B : X → W be a bound function for D.

2. Suppose X is not convergent. Then there is a trajectory {ai}
where each ai = Fi(a0) is transient.

3. Since B is a bound function and ai is transient,

B(F(ai)) = B(ai+1) < B(ai)

4. Hence, we have an infinite descending chain

. . . B(a2) < B(a1) < B(a0)

5. But no such chain is possible since W is well-founded.

Contradiction.

60 / 92

Convergence in mapcode

Lemma 18 (Convergence for mapcode)
Let M = (I, A, X, ρ, F, π) be a mapcode machine.

Consider the subflow generated by ρ(I):

Dorb(ρ(I)) = (orb(ρ(I)), F|orb(ρ(I))) of (X, F) .

If there is a bound function for Dorb(ρ(I)), then ρ(I) ⊆ con(F)

61 / 92

Proof of Convergence in mapcode

Proof:

1. By Lemma 17, orb(ρ(I)) is convergent, i.e.,
orb(ρ(I)) = con(F|ρ(I)).

2. But con(F|ρ(I)) ⊆ con(F)

3. From steps 1 and 2,

ρ(I) ⊆ con(F)

62 / 92

Proof Principle for Convergence

To show that M = (I, A, ρ, X, F, π) is an algorithm,

it suffices to demonstrate a bound function for the

flow generated by ρ(I).

Informally, some element of the state has to ‘decrease’ for each

iteration.

63 / 92

Contents

Motivation

Basic Machinery: Discrete Flows

Iterative Problem Solving

Problem Specification

Mapcode Machines

Convergence

Informal Example: Multiplication machine

Invariant Functions and Correctness

Examples: Multiplication (contd) and Factorial

Conclusion

64 / 92

Multiplication using addition

Informal presentation of requirement: Given two natural numbers,

compute their product using addition.

• Functional Specification

• I = N2: The input consists of two natural numbers.

• A = N: The answer is a natural number

• f∗ : I → A is the multiplication function: f (a, b) = a ∗ b

• Resource specification

• Data types: Natural Numbers

• Operations: Comparison with zero, decrement and addition

65 / 92

Solution mapcode machine

M∗ = ⟨ρ : I → X, F : X → X, π : X → A⟩

where

• State Space: (x, y, z) ∈ X = N3

• Init map: ρ(x, y) = (x, y, 0)

• Answer map: π(x, y, z) = z

• Dynamical map:

F(x, y, z) =

(x, y, z) if x = 0

(x − 1, y, z + y) if x > 0

66 / 92

Multiplication with mapcode in Python: rho and pi

computes m∗n u s i n g mapcode

by r e p e a t e d l y add ing

n to 0 , m t imes

def rho (i) :

[m, n] = i

return [m, n , 0]

def p i (x) :

[m, n , a] = x

return a

67 / 92

Multiplication with mapcode in Python: F and f

def F(x) :

[m, n , a] = x # m, n , a a r e n a t u r a l s

i f m == 0 :

return x

e l s e :

return [m−1, n , a+n]

mu l t i p l y (m, n) computes m∗n
def mu l t i p l y (m, n) : # m, n a r e n a t u r a l s

f = mapcode (rho , F , p i)

return f ([m, n])

68 / 92

Computation with M∗

Computing f (2, 3):

(2, 3) 6

(2, 3, 0) (1, 3, 3) (0, 3, 6)

ρ

F F

π

69 / 92

Convergence: Showing that M∗ is an algorithm

We wish to prove that

ρ(I) ⊆ con(F)

Proof: It is easy to verify that G : X → N where

G(x, y, z) def
= x

is a bound function for ⟨X, F⟩:

1. Let w = (x, y, z) ∈ X be transient.

2. Then x > 0 (by definition of F)

3. G(F(x, y, z)) = x − 1 < x = G(x, y, z).

70 / 92

Correctness of M∗ (Informally)

We have

(x, y, 0) F−→(x − 1, y, y) F−→(x − 2, y, 2y) F−→ . . . F−→(x − x, y, xy)

= (0, y, xy)

Hence, we may conjecture that

F∞(x, y, 0) = (0, y, xy)

Then

π(F∞(ρ(x, y))) = π(F∞(x, y, 0))

= π(0, y, xy)

= xy

71 / 92

Contents

Motivation

Basic Machinery: Discrete Flows

Iterative Problem Solving

Problem Specification

Mapcode Machines

Convergence

Informal Example: Multiplication machine

Invariant Functions and Correctness

Examples: Multiplication (contd) and Factorial

Conclusion

72 / 92

Invariant Function

Definition 19 (Invariant Function)

• Let D = (X, F : X → X) be a discrete flow.

• Let E be any set.

• A function θ : X → E is an invariant function for D if, for

each x ∈ X,

θ(x) = θ(F(x))

73 / 92

Invariant Function, iterates and limit map

Lemma 20 (Invariant function and iterates)
Let D = (X, F) be a discrete flow. Let θ : X → E be an invariant

function for D.

Then, for each x ∈ X and for each i ∈ N,

θ(x) = θ(Fn(x))

Corollary 21

If x ∈ con(F), then
θ(x) = θ(F∞(x))

74 / 92

Partial Correctness via invariant function

Theorem 22 (Partial Correctness via invariant function)

• Consider a specification map f : I → A and a mapcode

algorithm M = ⟨I, X, A, ρ : I → X, F : X → X, π : X → A⟩

• Let θ : X → A be an invariant map for (X, F). Assume

• init: θ(ρ(i)) = f (i) for each problem instance i ∈ I and

• answer: θ(x) = π(x) for each fixed point x ∈ fix(F).

• Then, π ◦ F∞ ◦ ρ = f .

75 / 92

Proof of partial correctness via invariant function (short ver-

sion)

f (i) = θ(ρ(i)) (1)

= θ(F∞(ρ(i))) (2)

= π(F∞(ρ(i))) (3)

76 / 92

Proof of partial correctness via invariant function

ρ(I) ⊆ con(F) M algorithm: Given (4)

s ∈ I assumption (5)

θ(ρ(s)) = f (s) from ‘init’: Given (6)

ρ(s) ∈ con(F) from 4 and 5 (7)

F∞(ρ(s)) ∈ fix(F) from 7 and defn of F∞ (8)

π(z) = θ(z) ∀z ∈ fix(F), ‘answer’: Given (9)

π(F∞(ρ(s))) = θ(F∞(ρ(s))) from 8 and 9 (10)

= θ(ρ(s)) since θ is invariant (11)

= f (s) from 6 (12)

77 / 92

Proof Principle for partial correctness

To prove that a mapcode algorithm M =

(I, A, X, ρ, F, π) computes a specification map,

f : I → A, it is sufficient to construct an invari-

ant function θ : X → E such that the init and answer

conditions are met:

1. θ(ρ(i)) = f (i) for each i ∈ I

2. θ(x) = π(x) for each x ∈ fix(F)

78 / 92

Contents

Motivation

Basic Machinery: Discrete Flows

Iterative Problem Solving

Problem Specification

Mapcode Machines

Convergence

Informal Example: Multiplication machine

Invariant Functions and Correctness

Examples: Multiplication (contd) and Factorial

Conclusion

79 / 92

Invariant function for M∗

For M∗, I = N2, A = N and X = N3, f∗(x, y) = xy, ρ(x, y) =
(x, y, z) and π(x, y, z) = z.

Define

θ(x, y, z) def
= xy + z

Intuition:

• z: work already done

• xy: work yet to be done (x number of y’s need to be added)

• θ(x, y, z): total work derived by combining work done and

work that needs to be done.

80 / 92

Verify that θ satisfies init condition

init: If (x, y) ∈ I, then θ(ρ(x, y)) = f∗(x, y)

• θ(ρ(x, y)) = θ(x, y, 0) = xy + 0 = xy

• f∗(x, y) = xy

81 / 92

Verify that θ satisfies answer condition

answer: If (x, y, z) ∈ fix(F), then π(x, y, z) = θ(x, y, z)

• Since (x, y, z) ∈ fix(F), x = 0

• π(x, y, z) = z

• θ(x, y, z) = θ(0, y, z) = 0 ∗ y + z = z

82 / 92

Total Correctness: M∗ computes f∗

• Convergence: ρ(I) ⊆ con(F): verified by constructing

suitable bound function in Slide 70.

• Partial Correctness: ρ(I) ⊆ con(F) =⇒ π ◦ F∞ρ = f∗:
verified by constructing suitable invariant function in Slide 80.

This proves

Total Correctness: M∗ computes f∗.

83 / 92

Example: Factorial

• The problem is P = ⟨I = N, A = N, f (n) =!n, P = {−, ∗}⟩

• Mapcode machine:

M! = ⟨ρ : I → X, F : X → X, π : X → A⟩ where
1. X = N2

2. ρ(n) = (n, 1)

3. F(i, a) =

{
(i, a) if i = 0

(i − 1, a ∗ i) otherwise

4. π(i, a) = a

84 / 92

Factorial: bound function

G : X → N, G(i, a) def
= i

is a bound function for ⟨X, F⟩. Verify:

• Let (i, a) ∈ X be transient.

• Then, i > 0, and

• G(F(i, a)) = i − 1 < i = G(i, a).

85 / 92

Factorial: invariant function

θ(i, a) def
= a ∗ i!

• Let x = (i, a) ∈ X

• case: x ∈ fix(F), then clearly θ(x) = θ(F(x)).

• If x ̸∈ fix(F), then i > 0:

• θ(i, a) = a ∗ i! = a ∗ i ∗ (i − 1)! = θ(F(i, a)).

86 / 92

init and answer conditions for θ

• Init: θ(ρ(n)) = θ(n, 1) = 1 ∗ n! = n!

• Answer: Let (i, a) ∈ fix(F). Then i = 0
• π(0, a) = a and

• θ(0, a) = a ∗ 0! = a

Partial Correctness: ρ(I) ⊆ A =⇒ π ◦ F∞ ◦ ρ =!

87 / 92

M! computes !

• Convergence: ρ(I) ⊆ con(F): Shown in Slide 85

• Partial Correctness: ρ(I) ⊆ A =⇒ π ◦ F∞ ◦ ρ =!: Shown
in Slide 87

Hence M! computes !.

88 / 92

Exercise: Invariant functions and mapcode machines

• Summation: Define an invariant

function.

• GCD: Define a mapcode machine

to compute gcd.

• max: Define a mapcode machine

to compute the maximum element

of a nonempty list of natural

numbers.

89 / 92

Contents

Motivation

Basic Machinery: Discrete Flows

Iterative Problem Solving

Problem Specification

Mapcode Machines

Convergence

Informal Example: Multiplication machine

Invariant Functions and Correctness

Examples: Multiplication (contd) and Factorial

Conclusion

90 / 92

Concepts

• Problem

• Functional Specification

• Mapcode Machine

• Convergence, Partial and Total correctness

• Computation of a function by a mapcode machine

• Invariant function

• Init and answer conditions

91 / 92

References

92 / 92

	Motivation
	Basic Machinery: Discrete Flows
	Iterative Problem Solving
	Problem Specification
	Mapcode Machines
	Convergence
	Informal Example: Multiplication machine
	Invariant Functions and Correctness
	Examples: Multiplication (contd) and Factorial
	Conclusion

