Iterative problem solving: The mapcode

approach

Venkatesh Choppella
2024-02-27 12:11:49+05:30

III'T Hyderabad

1/92

Motivation

2/92

What are computers good at?

Computers are good at repeatedly doing a task.

1. They are fast.
2. They don't get tired.

3. They don’t get bored.

Repeatedly doing a task is called iteration.

3/92

Programming: Instructing a computer what to do

Computers are used to solve problems that take an instance and
return an answer after iterating on a task.

But they need to be instructed:

1. Where to start
2. What to do
3. When to stop

4. How to report the answer

4/92

Anatomy of a computation: computing 3!

instance answer

} J
k ‘n

I6 I 15 B

T (3,1) > (2,3) > (1,6) > (0,6) » (0,6)

state
°

\

e °
initial state

1. Where to start: p 3. When to stop: fixed point
2. What to do: F 4. How to report answer: 7T.

5/92

The structure of states and maps
3 6
F F F F

(31) —— (2, 3) —— (1,6) > (0,6) > (0,6)

® accumulator
® counter

e 0: maps instances to states ® 7T maps states to answers

o F: maps states to states

6/92

Multiplication using addition and decrement

(3,4) 12
I d
(3,4,0) — (2,4,4) — (1,4,8) — (0,4,12)

7/92

What we plan to do in these slides

Our goal in these slides is to

1. Introduce a simple mathematical theory of iteration
2. Define iterative problem solving

3. Implement iterative problem solving in Python

8/92

Basic Machinery: Discrete Flows

9/92

Discrete Flow

Definition 1 (Discrete Flow)
A discrete flow D is a pair

(X,F: X = X)
where

e X is a set called the state space of D.

e F is a function called the dynamical map of D.

10/92

Prime Notation

x" denotes the ‘next’ state.

11/92

Picture of a Discrete Flow

12/92

Exercise break: Examples & non-examples of Discrete Flow

Which of the following are discrete

flows?

1. X=N, Fhe=x—x+1
2. X =N, Fyqr = x > x?
3. X =R, Feos = x > cosine(x)

4 X=R, F=x— (x—1)/x

5. X =N, Fcountdown =nt
0 ifn=20
n—1 otherwise

13/92

Closed sets

Definition 2 (F-closed sets)
Let D = (X, F : X — X) be a discrete flow. A set S of X is

F-closed if F(S) C S, i.e., for each x € S, F(x) € S.

14 /92

Examples of closed subsets

Let D = (X,F : X — X) be a discrete flow. The following subsets
of X are closed:

1. X

2. 0

15/92

Trajectories and Orbits

Definition 3 (Trajectory, Orbit)
Let (X,F: X — X) be a discrete flow.

e The trajectory of an element x € X is the sequence
x,F(x), F?(x),F3(x),. ..

e The orbit of x is the set

{x,F(x), F?(x), F*(x),...}

16 /92

More examples of F-closed subsets

1. orb(x) where x € X

2. 0rb(S) = Uyes orb(x) where S is any subset of X

17/92

Definition 4 (Subflow)
Let D = (X,F : X — X) be a discrete flow. Let S be a subset X

that is F-closed.

Then Ds = (S, Fls) is a discrete flow. ! Dys is called a subflow of
D.

LfSC Aand F: A — B, then F|s: S — B is the restriction of F to S.
18/92

The subflow generated by an element

Definition 5 (Generated Subflow)
Let (X, F: X — X) be a flow. Let x € X. Then (orb(x), Flop(x))

is a subflow generated by x.

If S C X, then (0rb(S), Flo(s)) is the subflow generated by S.

19/92

Definition 6 (Fixed Point)
Let D = (X,F: X — X) be a discrete flow.

e x € X is a fixed point of F if x = F(x).

e fix(F): the set of fixed points of F.

2092

Exercise: Guess Fixed Points

1. (N, Finc):
2. (N, Fqr):
3. (R, FCOS): hint

4. (N, Foountdown):

21/92

https://math.stackexchange.com/questions/46934/what-is-the-solution-of-cosx-x

More examples of closed subsets

1. {x}, where x is a fixed point of F

2. fix(F)

22/92

Transient Points

Definition 7 (Transient Point)
Let D = (X,F : X — X) be a discrete flow.

e x € X is transient if x # F(x).

23/92

Reachability

Definition 8 (Reaches)
Let (X, F: X — X) be a discrete flow.

Let x and y be states in X.

x reaches y, alternatively y is reachable from x, if, for some
i €N,

y=F(x)

24 /92

Convergent Points

Definition 9 (Convergent point)
Let D = (X,F: X — X) be a discrete flow.

e x € X is a (F-) convergent point of F in X if it reaches a
fixed point.

e S C X is convergent if for each x € S, x is convergent.

e con(F): the set of convergent points of F in X.

25/92

Exercise: Guess Convergent Points

1. (N, Finc):
2. (N, Fqr):
3. (R, FCOS): hint

4. (N, Foountdown):

26 /92

https://math.stackexchange.com/questions/46934/what-is-the-solution-of-cosx-x

Fixed Point iteration in Python

Assumes x in con(F)
returns element in fix(F)
xprime ensures F(x) computed
only once per iteration.
def loop(x,F):
while True:
xprime = F(x)
if x = xprime: # fixed point!
break
else:
X = Xprime

return x

2792

Let D = (X, F: X — X) be a discrete flow.

The limit map of F, F-infinity, is the function

F*® :con(F) — fix(F)

2892

Limit Map in Python

Limit Map
takes a function F
returns a function F_inf.
F_inf takes an x in con(F)
and returns an element in fix(F).
def limit_map (F):
def F_inf(x): # assume: x in con(F)
return loop(x,F)
return F_inf

29 /92

Iterative Problem Solving

30,92

What is Iterative Problem Solving?

Definition 10 (lterative Problem Solving?
An instance A of computational problem solving is a pair

A = (P, M) consisting of

1. A problem specification P

2. A mapcode machine specification M

In what follows, we present the Mapcode Approach to lterative
Problem solving[?].

31/92

Problem Specification

32/92

IPS: Problem specification

A problem specification P = (F, R, N') consists of

e Functional Requirement Specification F : What is the
function that needs to be computed?

e Resource Specification R : What are the primitive
datatypes and operations on those datatypes available to
compute the function?

¢ Non-functional Requirements Specification A/ : What are

the constraints on time, memory space, total cost, security,
performance, and usability of the computational solution?

33/92

Functional Specification of a problem

A functional specification F = (I, A, f) consists of the following:

e Input Space [: The set of all possible inputs.
e Answer Space A : The set from which answers are drawn.

e Specification map f : I — A, the function to be computed.

34/92

Existence and Uniqueness of Answer for each Problem input

When constructing the specification map, one needs to be con-
vinced that each problem input is indeed associated with a unique

answer.

o Existence: For each problem input p : I, there is indeed a
answer a : A.

e Uniqueness: If a; and a;p are answers associated with a
problem input p, then a; = a;.

35,92

Example of a functional specification: GCD

Compute the Greatest Common Divisor of two natural numbers.
e Input Space: IN x IN
e Answer Space: IN
e Specification map: gcd : IN? x IN. For each pair of naturals

(a,b), gcd(a,b) is the largest number that divides both a and
b.

36,92

Existence and Uniqueness for GCD

Let a,b be two naturals. Then

e Existence: The gcd is an element of all the common factors
of a and b. This set is not empty, since clearly, 1 is a

common factor for both a and b.
e Uniqueness: Let rq and r, be two gcd's of a and b. Then,

since rq is the greatest common factor, r{ > r,. By a similar

argument, rp > r1. Hence r; = 7.

37/92

Exercise: Define Functional Specifications

1. Factorial

2. The maximum element in a list

3. Searching a given element in a list
4. Reversing a list

5. Sorting a list

38,92

Exercise solution: Functional Specification of Factorial

1. Input space: I = IN (natural numbers)
2. Answer space: A = IN (natural numbers)
3. Specification map f: I — A

1 ifn=20
4. f(n) =
tqi ifn>0

Clearly f is a function. For n = 0, the answer is unique. For n >

0, the answer is unique because || is a total function.

39/92

Exercise solution: Functional Specification for List Search

1. Input space: I =a:a X s: List[a] (List of elements of type

).
2. Answer space: A = {absent} U{i: [0 .. [s|-1]}.

3. Specification map f: 1 — A

absent ifadgs
4. f(s) = . o
otherwise i, where i =min{j € N |s; =a}
Clearly f is a function. For a & s, the answer is unique. Other-
wise, the number of indices where a occurs in s is non-zero. The

answer in that case is just the minimum index, which is unique.

40 /92

Resource Specification

e Data Types: What data types may be used in the problem

and solution specification?

e Operations: What operations on the those data types are

allowed?

o ldentities: What identities hold between operations on the
data types?

41/92

Example: Resource specification to compute factorial

e Data types: natural numbers IN

e Operations:
e decrement — : Ny — IN

e multiplication % : N> — N

e comparison =, #: N2 — N

42/92

A different resource specification to compute factorial

e Data types: integers Z

e Operations:
e decrement —: Z — Z

e multiplication x : 7> > Z

e comparison =, #: Z> — Z

This resource specification is more common in programming lan-
guages that have Z but not IN as primitive datatypes.

43 /92

Example: Resource specification to compute GCD

e Data types: natural numbers IN

e Operations:
e subtraction — : N> — N

e comparison =, #: N? — IN

44 /92

A different resource specification to compute GCD

e Data types: natural numbers IN

e Operations:
e division / :IN x Ny — IN

e comparison =, #: N? — IN

45 /92

Standard data types and operations

Booleans, Natural numbers, Integers, Rationals, enumerated
types

Boolean, Arithmetic and relational operations

Finite sets and operations on finite sets

Lists, Stacks, Queues, Finite Trees

Tupling and projection operations

We will assume that all the above standard data types and opera-
tions are available as resources unless specified otherwise.

46 /92

Non-functional specification

Sometimes there are also non-functional specification , e.g.,

e Time available for computation
e Memory space available for computation

e Security, Performance and usability of the solution

Assumption: no non-functional requirements.

47 /92

Mapcode Machines

48 /92

Mapcode machine

Definition 11 (Mapcode Machine)
A mapcode machine is a tuple

M=(I,AX,p,F,)

consisting of

e an input set I e aninitmap p:I— X,
e an output set A e a program map F: X — X
e a state space X e an answer map m: X — A

49 /92

Mapcode Algorithms

I_Definition 12 (Mapcode Algorithm)
et

M=(I,AX,p,F,)
be mapcode machine.

M is an algorithm if

p(I) C con(F)

50 /92

Map computed by a mapcode algorithm

Definition 13 (Map computed by a mapcode algorithm)
Let

M= (I,AX,p,F,)
be a mapcode algorithm.

The map computed by M is the function

moF op

51/92

Computing a function via a Mapcode Machine

Definition 14 (Computation of a function by a mapcode

machine)
Let f : [r — Ar be a specification map.

Let M = (I, A, X,p,F,) be a mapcode machine.

M computes f if

e Signature: [r =1 and Ar = A.
e Convergence: M is an algorithm.

e Partial Correctness: Assuming M is an algorithm, the
function computed by M is f:

7TOP°°Op:f 52/92

Mapcode Commute Diagram

5392

Algorithmic Problem Solving for mapcode

Definition 15 (Algorithmic Problem solving via Mapcode)
Let P = (F,R,N) be a a problem with functional specification

F=(Ir,Ar, f:1Ir = AF)
A mapcode machine
M= (I,AX,p,F,)
is a solution to P if

e Design: M computes f.

e Implementation: I, X and A are defined using the
datatypes in R. p, 7w and F are defined using the operations
in R.

e Quality: M satisfies the non-functional requirements N . e

Mapcode machine in Python

Mapcode

takes

rho: |—=con(F)

F: X=X,

pi: fix(F)—A

returns element in A

def mapcode(rho ,F, pi):
F_infty=limit_map (F)
def f(v):

return pi(F_infty(rho(v)))

return f

55 /92

Convergence

56 /92

Well-founded relations

Let A be a set. Let < be a binary relation on A. (A4, <) is well-
founded if there are no infinite descending chains of the form:

Le<ay < ap < ag

57 /92

Bound Function

Definition 16 (Bound Function)
Let (W, <) be a well-founded relation. Let D = (X, F) be a

discrete flow. A function B : X — W is a bound function for D if
whenever x € X is transient, B(F(x)) < B(x).

58 /92

Bound Function implies convergence

Lemma 17 (Bound function implies convergence)

Let D = (X,F: X — X) be a discrete flow such that there exists
a well-founded relation (W, <) and a bound function B : X — W
for D. Then X is convergent and X = con(F).

59 /92

Proof that Bound Function implies convergence

1. Let B: X — W be a bound function for D.

2. Suppose X is not convergent. Then there is a trajectory {a;}
where each a; = Fi(ao) is transient.

3. Since B is a bound function and g; is transient,
B(F(a;)) = B(ai+1) < B(a;)

4. Hence, we have an infinite descending chain
. B(a2) < B(al) < B(ao)

5. But no such chain is possible since W is well-founded.
Contradiction.

60 /92

Convergence in mapcode

Lemma 18 (Convergence for mapcode)
Let M = (I,A,X,p,F,) be a mapcode machine.

Consider the subflow generated by p(I):

Dorp(o(ry) = (0rb(p(1)), Florp(p(ry)) of (X, F) -
If there is a bound function for D1y, then p(I) C con(F)

61,92

Proof of Convergence in mapcode

Proof:

1. By Lemma 17, orb(p(I)) is convergent, i.e.,
orb(p(1)) = con(Fly(r).

2. But con(F|yp)) € con(F)

3. From steps 1 and 2,

p(I) € con(F)

62,92

Proof Principle for Convergence

To show that M = (I, A,p, X, F,) is an algorithm,
it suffices to demonstrate a bound function for the
flow generated by p(I).

Informally, some element of the state has to ‘decrease’ for each
iteration.

63,92

Informal Example: Multiplication machine

64 /92

Multiplication using addition

Informal presentation of requirement: Given two natural numbers,
compute their product using addition.

e Functional Specification

e [=IN?: The input consists of two natural numbers.
e A = IN: The answer is a natural number
e f.: I — Ais the multiplication function: f(a,b) =axb

e Resource specification

e Data types: Natural Numbers

e Operations: Comparison with zero, decrement and addition

65 /92

Solution mapcode machine

Miy={(p: I =>X,F: X=X m:X— A)
where
e State Space: (x,y,z) € X = N3
e Init map: p(x,y) = (x,y,0)

e Answer map: 71(x,y,z) =z

e Dynamical map:

F(x,1,2) = (x,y,2) ifx=0
Y (x—1,yz+y) ifx>0

66 /92

Multiplication with mapcode in Python: rho and pi

computes mxn using mapcode
by repeatedly adding
n to 0, m times

def rho(i):
[m,n] =i
return [m, n, 0]

def pi(x):
[m, n, a] = x
return a

6792

Multiplication with mapcode in Python: F and f

def F(x):
[m,n,a] = x #m, n, a are naturals
if m—=— 0:
return x
else:

return [m—1, n, a+n]

multiply (m,n) computes mx¥n

def multiply(m,n): # m,n are naturals
f = mapcode(rho, F, pi)
return f([m,n])

68 /92

Computation with M,

Computing f(2,3):

(2,3) 6

69 /92

Convergence: Showing that M, is an algorithm

We wish to prove that
p(I) € con(F)

Proof: It is easy to verify that G : X — IN where
G(x,y,2) def

is a bound function for (X, F):

1. Let w = (x,y,z) € X be transient.
2. Then x > 0 (by definition of F)

3. G(F(x,y,2z)) =x—1<x=G(x,y,z2).

7092

Correctness of M, (Informally)

We have

(x,y,O)EQ(x-—»1,y,y)f$(x-—»2,y,2y)f$...fé(x-—»x,y,xy)
= (0, xy)
Hence, we may conjecture that
F=(x,y,0) = (0,y, xy)
Then

mt(F*(p(x,y))) = n(F*(x,y,0))
= 71(0,y, xy)
=Xy

71/92

Invariant Functions and Correctness

72/92

Invariant Function

Definition 19 (Invariant Function)

e Let D= (X,F: X — X) be a discrete flow.
e Let E be any set.

e A function 6 : X — E is an invariant function for D if, for
each x € X,

73/92

Invariant Function, iterates and limit map

Lemma 20 (Invariant function and iterates)
Let D = (X, F) be a discrete flow. Let 0 : X — E be an invariant

function for D.

Then, for each x € X and for eachi € IN,

0(x) = 6(F"(x))

Corollary 21

If x € con(F), then

74/ 92

Partial Correctness via invariant function

Theorem 22 (Partial Correctness via invariant function)

e Consider a specification map f : I — A and a mapcode
algorithm M = (I, X, A,p: I - X,F: X - X, 1: X — A)

o Let0: X — A be an invariant map for (X, F). Assume
e init: 6(p(i)) = f(i) for each problem instance i € I and

e answer: 0(x) = 7(x) for each fixed point x € fix(F).

e Then, toF®op = f.

7592

Proof of partial correctness via invariant function (short ver-

sion)

f(@) = 6(p(7)) (1)
= 0(F=(o(1))) ()
= 7t(F*(p(7))) (3)

76 /92

Proof of partial correctness via invariant function

p(I) C con(F) M algorithm: Given (4)

sel assumption (5)

B(p(s)) = f(s) from ‘init": Given (6)

o(s) € con(F) from 4 and 5 (7)
F*(p(s)) € fix(F) from 7 and defn of F* (8)
7t(z) = 6(z) Vz € fix(F), ‘answer’: Given (9)
T(F*(p(s))) = 60(F*(p(s))) from 8 and 9 (10)
=0(p(s)) since 0 is invariant (11)

= f(s) from 6 (12)

Proof Principle for partial correctness

To prove that a mapcode algorithm M =
(I,A,X,p, F,) computes a specification map,

f I = A, itis sufficient to construct an invari-
ant function 6 : X — E such that the init and answer
conditions are met:

1. 6(p(i)) = f(i) foreach i € I

2. 0(x) = m(x) for each x € fix(F)

7892

Examples: Multiplication (contd) and Factorial

79/92

Invariant function for M.,

For M., =IN?>, A=N and X = IN°, f.(x,y) = xy, p(x,y) =
(x,y,z) and 7(x,y,2) = z.

Define

0(x,y,z) aef xy+z

Intuition:

e z: work already done
e xy: work yet to be done (x number of y's need to be added)

e 0(x,y,z): total work derived by combining work done and
work that needs to be done.

80,92

Verify that 0 satisfies init condition

init: If (x,y) € I, then 6(p(x,v)) = fu(x,y)

e 0(p(x,y)) =0(x,y,0) = xy +0 = xy

o fi(x,y) =2xy

81,92

Verify that 0 satisfies answer condition

answer: If (x,y,z) € fix(F), then t(x,y,z) = 6(x,y, z)

e Since (x,y,z) € fix(F), x =0
o 1(x,y,z) =2

e 0(x,y,z) =0(0,y,z) =0xy+z=z

82,92

Total Correctness: M, computes f,

e Convergence: p(I) C con(F): verified by constructing
suitable bound function in Slide 70.

e Partial Correctness: p(I) C con(F) = moF®p = f,:
verified by constructing suitable invariant function in Slide 80.

This proves

Total Correctness: M, computes f,.

83,92

Example: Factorial

e The problem is P = (I =IN,A =N, f(n) =!n,P = {—, x})
e Mapcode machine:

Mi=(p:1—-X,F:X— X, m:X — A) where
1. X=N?

3. F(ia) (i,a) ifi=0
. F(i,a) =
(i—1,axi) otherwise

4. n(i,a) =a

8492

Factorial: bound function

G:X > N,G(i,a) & i
is a bound function for (X, F). Verify:

e Let (i,a) € X be transient.
e Then, i >0, and

o G(F(i,a)) =i—1<i=G(,a).

85,92

Factorial: invariant function

6(i,a) e sl

o Letx = (i,a) € X

case: x € fix(F), then clearly 6(x) = 6(F(x)).

If x & fix(F), then i > 0:

0(i,a) =axil=axix(i—1)! =0(F(i,a)).

86 /92

init and answer conditions for 0

e Init: O(p(n)) =0(n,1) =1xn! =n!

e Answer: Let (i,a) € fix(F). Theni =0

e 77(0,a) =a and

e 0(0,a) =ax0!'=a

Partial Correctness: p(I) CA = moF*op =!

87,92

e Convergence: p(I) C con(F): Shown in Slide 85

e Partial Correctness: p(I) C A = moF®op =!: Shown
in Slide 87

Hence M, computes !.

88,92

Exercise: Invariant functions and mapcode machines

e Summation: Define an invariant
function.

e GCD: Define a mapcode machine

to compute gcd.

e max: Define a mapcode machine
to compute the maximum element
of a nonempty list of natural
numbers.

8992

Conclusion

90/ 92

Problem

Functional Specification

Mapcode Machine

Convergence, Partial and Total correctness

Computation of a function by a mapcode machine

Invariant function

Init and answer conditions

91/92

References

92/92

	Motivation
	Basic Machinery: Discrete Flows
	Iterative Problem Solving
	Problem Specification
	Mapcode Machines
	Convergence
	Informal Example: Multiplication machine
	Invariant Functions and Correctness
	Examples: Multiplication (contd) and Factorial
	Conclusion

