Iterative problem solving: The mapcode approach

Venkatesh Choppella

2024-02-27 12:11:49+05:30

IIIT Hyderabad

Contents

[Motivation](#page-1-0)

[Basic Machinery: Discrete Flows](#page-8-0)

[Iterative Problem Solving](#page-29-0)

[Problem Specification](#page-31-0)

[Mapcode Machines](#page-47-0)

[Convergence](#page-55-0)

[Informal Example: Multiplication machine](#page-63-0)

[Invariant Functions and Correctness](#page-71-0)

[Examples: Multiplication \(contd\) and Factorial](#page-78-0)

[Conclusion](#page-89-0)

Computers are good at **repeatedly** doing a task.

- 1. They are fast.
- 2. They don't get tired.
- 3. They don't get bored.

Repeatedly doing a task is called **iteration**.

Computers are used to solve problems that take an instance and return an answer after iterating on a task.

But they need to be **instructed**:

- 1. Where to start
- 2. What to do
- 3. When to stop
- 4. How to report the answer

Anatomy of a computation: computing 3!

1. Where to start: *ρ*

2. What to do: *F*

- 3. When to stop: fixed point
- 4. How to report answer: *π*.

The structure of states and maps

- *ρ*: maps instances to states *π*: maps states to answers
- *F*: maps states to states

Multiplication using addition and decrement

$$
(3,4) \qquad \qquad 12
$$
\n
$$
\downarrow \rho \qquad \qquad \pi \uparrow
$$
\n
$$
(3,4,0) \xrightarrow{F} (2,4,4) \xrightarrow{F} (1,4,8) \xrightarrow{F} (0,4,12)
$$

Our goal in these slides is to

- 1. Introduce a simple mathematical theory of iteration
- 2. Define iterative problem solving
- 3. Implement iterative problem solving in Python

Contents

[Motivation](#page-1-0)

[Basic Machinery: Discrete Flows](#page-8-0)

- [Iterative Problem Solving](#page-29-0)
- [Problem Specification](#page-31-0)
- [Mapcode Machines](#page-47-0)
- **[Convergence](#page-55-0)**
- [Informal Example: Multiplication machine](#page-63-0)
- [Invariant Functions and Correctness](#page-71-0)
- [Examples: Multiplication \(contd\) and Factorial](#page-78-0)
- [Conclusion](#page-89-0)

Definition 1 (Discrete Flow) A discrete flow *D* is a pair

$$
\langle X, F : X \to X \rangle
$$

where

- *X* is a set called the state space of *D*.
- *F* is a function called the dynamical map of *D*.

x ′ denotes the 'next' state.

$$
x' = F(x)
$$

Picture of a Discrete Flow

Exercise break: Examples & non-examples of Discrete Flow

Which of the following are discrete flows?

1.
$$
X = \mathbb{N}
$$
, $F_{\text{inc}} = x \mapsto x + 1$

2.
$$
X = \mathbb{N}
$$
, $F_{\text{sqr}} = x \mapsto x^2$

3.
$$
X = \mathbb{R}
$$
, $F_{\cos} = x \mapsto \text{cosine}(x)$

4.
$$
X = \mathbb{R}, F_? = x \mapsto (x - 1) / x
$$

5.
$$
X = N
$$
, $F_{countdown} = n \mapsto$
\n
$$
\begin{cases}\n0 & \text{if } n = 0 \\
n - 1 & \text{otherwise}\n\end{cases}
$$

Definition 2 (F-closed sets) Let $D = (X, \vec{F} : X \to X)$ be a discrete flow. A set *S* of *X* is *F*-closed if $F(S) \subseteq S$, i.e., for each $x \in S$, $F(x) \in S$.

Let $D = (X, F : X \to X)$ be a discrete flow. The following subsets of *X* are closed:

1. *X*

2. ∅

Definition 3 (Trajectory, Orbit) Let $\langle X, F : X \to X \rangle$ be a discrete flow.

• The **trajectory** of an element $x \in X$ is the sequence

$$
x, F(x), F2(x), F3(x), \ldots
$$

• The orbit of *x* is the set

$$
\{x, F(x), F^2(x), F^3(x), \ldots\}
$$

1. *orb*(*x*) where $x \in X$

2. $orb(S) = \bigcup_{x \in S} orb(x)$ where *S* is any subset of *X*

Definition 4 (Subflow) Let $D = (X, \vec{F} : X \to \vec{X})$ be a discrete flow. Let *S* be a subset *X* that is *F*-closed.

Then $D_S = (S, F|_S)$ is a discrete flow. ¹ D_S is called a **subflow of** *D*.

¹If *S* ⊆ *A* and *F* : *A* → *B*, then $F|_S$: *S* → *B* is the restriction of *F* to *S*.

Definition 5 (Generated Subflow) Let $(X, F: X \to X)$ be a flow. Let $x \in X$. Then $(\text{orb}(x), F|_{\text{orb}(x)})$ is a subflow generated by *x*.

If $S \subseteq X$, then $(\text{orb}(S), F|_{\text{orb}(S)})$ is the subflow **generated** by *S*.

Definition 6 (Fixed Point) Let $D = \langle X, \vec{F} : X \to X \rangle$ be a discrete flow.

- $x \in X$ is a fixed point of *F* if $x = F(x)$.
- $fix(F)$: the set of fixed points of F .
- 1. (**N**, *F*inc):
- 2. (**N**, *F*sqr):
- 3. (\mathbb{R} , F_{\cos}): [hint](https://math.stackexchange.com/questions/46934/what-is-the-solution-of-cosx-x)
- 4. (**N**, *Fcountdown*):

1. $\{x\}$, where *x* is a fixed point of *F*

2. *fix*(*F*)

Definition 7 (Transient Point) Let $D = \langle X, \vec{F} : X \to X \rangle$ be a discrete flow.

• $x \in X$ is transient if $x \neq F(x)$.

Definition 8 (Reaches) Let $(X, F: X \rightarrow X)$ be a discrete flow.

Let *x* and *y* be states in *X*.

x reaches *y*, alternatively *y* is reachable from *x*, if, for some $i \in \mathbb{N}$.

$$
y = F^i(x)
$$

Definition 9 (Convergent point) Let $D = \langle X, \vec{F} : X \to \overline{X} \rangle$ be a discrete flow.

- $x \in X$ is a (*F*-) convergent point of *F* in *X* if it reaches a fixed point.
- $S \subseteq X$ is **convergent** if for each $x \in S$, x is convergent.
- **con**(**F**): the set of convergent points of *F* in *X*.
- 1. (**N**, *F*inc):
- 2. (N, F_{sar}) :
- 3. (\mathbb{R} , F_{\cos}): [hint](https://math.stackexchange.com/questions/46934/what-is-the-solution-of-cosx-x)
- 4. (**N**, *Fcountdown*):

```
\# Assumes x in con(F)
# returns element in fix(F)# xprime ensures F(x) computed
# only once per iteration.
def loop(x, F):
    while True:
        x p r im e = F(x)if x = x prime: # fixed point!
             break
         e l s e :
            x = x prime
    return x
```
Let $D = \langle X, F : X \to X \rangle$ be a discrete flow. The limit map of *F*, F-infinity, is the function

 F^{∞} : *con*(*F*) \rightarrow *fix*(*F*)

```
# Limit Map
# takes a function F# returns a function F\_inf.\# F_inf takes an x in con(F)
# and returns an element in fix(F).
def limit_map(F):
    def F_{-}inf(x): # assume: x in con(F)
        return loop(x, F)return Finf
```
Contents

[Motivation](#page-1-0)

[Basic Machinery: Discrete Flows](#page-8-0)

- [Iterative Problem Solving](#page-29-0)
- [Problem Specification](#page-31-0)
- [Mapcode Machines](#page-47-0)

[Convergence](#page-55-0)

[Informal Example: Multiplication machine](#page-63-0)

[Invariant Functions and Correctness](#page-71-0)

[Examples: Multiplication \(contd\) and Factorial](#page-78-0)

[Conclusion](#page-89-0)

Definition 10 (Iterative Problem Solving) An instance \overline{A} of computational problem solving is a pair $\mathcal{A} = \langle \mathcal{P}, \mathcal{M} \rangle$ consisting of

1. A **problem** specification \mathcal{P}

2. A mapcode machine specification M

In what follows, we present the Mapcode Approach to Iterative Problem solving[?].

Contents

[Motivation](#page-1-0)

[Basic Machinery: Discrete Flows](#page-8-0)

- [Iterative Problem Solving](#page-29-0)
- [Problem Specification](#page-31-0)
- [Mapcode Machines](#page-47-0)
- **[Convergence](#page-55-0)**
- [Informal Example: Multiplication machine](#page-63-0)
- [Invariant Functions and Correctness](#page-71-0)
- [Examples: Multiplication \(contd\) and Factorial](#page-78-0)
- [Conclusion](#page-89-0)

A problem specification $P = \langle F, R, \mathcal{N} \rangle$ consists of

- Functional Requirement Specification $\mathcal F$: What is the function that needs to be computed?
- Resource Specification \mathcal{R} : What are the primitive datatypes and operations on those datatypes available to compute the function?
- Non-functional Requirements Specification \mathcal{N} : What are the constraints on time, memory space, total cost, security, performance, and usability of the computational solution?

A functional specification $\mathcal{F} = \langle I, A, f \rangle$ consists of the following:

- Input Space *I* : The set of all possible inputs.
- Answer Space *A* : The set from which answers are drawn.
- **Specification map** $f : I \rightarrow A$, the function to be computed.

When constructing the specification map, one needs to be convinced that each problem input is indeed associated with a unique answer.

- Existence: For each problem input *p* : *I*, there is indeed a answer *a* : *A*.
- Uniqueness: If a_1 and a_2 are answers associated with a problem input p, then $a_1 = a_2$.

Compute the Greatest Common Divisor of two natural numbers.

- Input Space: $\mathbb{N} \times \mathbb{N}$
- Answer Space: **N**
- Specification map: $\gcd : \mathbb{N}^2 \times \mathbb{N}$. For each pair of naturals (a, b) , $gcd(a, b)$ is the largest number that divides both *a* and *b*.
Let *a*, *b* be two naturals. Then

- Existence: The gcd is an element of all the common factors of *a* and *b*. This set is not empty, since clearly, 1 is a common factor for both *a* and *b*.
- Uniqueness: Let r_1 and r_2 be two gcd's of *a* and *b*. Then, since r_1 is the greatest common factor, $r_1 > r_2$. By a similar argument, $r_2 \geq r_1$. Hence $r_1 = r_2$.

1. Factorial

- 2. The maximum element in a list
- 3. Searching a given element in a list
- 4. Reversing a list
- 5. Sorting a list
- 1. Input space: $I = \mathbb{N}$ (natural numbers)
- 2. Answer space: $A = \mathbb{N}$ (natural numbers)
- 3. Specification map $f: I \rightarrow A$

4.
$$
f(n) = \begin{cases} 1 & \text{if } n = 0 \\ \prod_{i=1}^{n} i & \text{if } n > 0 \end{cases}
$$

Clearly *f* is a function. For $n = 0$, the answer is unique. For $n > 0$ 0, the answer is unique because Π is a total function.

Exercise solution: Functional Specification for List Search

- 1. Input space: $I = a : \alpha \times s : \text{List}[\alpha]$ (List of elements of type *α*).
- 2. Answer space: $A = \{\text{absent}\}\cup \{i : [0 \dots |s|-1]\}.$
- 3. Specification map $f: I \rightarrow A$

4. $f(s) =$ $\sqrt{ }$ $\left\vert \right\vert$ \mathcal{L} absent if *a* ∉ <u>s</u> $\text{otherwise } i$, where $i = \min\{j \in \mathbb{N} \mid s_j = a\}$ Clearly *f* is a function. For $a \notin \underline{s}$, the answer is unique. Otherwise, the number of indices where *a* occurs in *s* is non-zero. The answer in that case is just the minimum index, which is unique.

- Data Types: What data types may be used in the problem and solution specification?
- Operations: What operations on the those data types are allowed?
- Identities: What identities hold between operations on the data types?
- Data types: natural numbers **N**
- Operations:
	- decrement $: \mathbb{N}_+ \to \mathbb{N}$
	- multiplication $* : \mathbb{N}^2 \to \mathbb{N}$
	- comparison $=$, \neq : $\mathbb{N}^2 \to \mathbb{N}$
- Data types: integers **Z**
- Operations:
	- decrement $-:\mathbb{Z}\to\mathbb{Z}$
	- multiplication $* : \mathbb{Z}^2 \to \mathbb{Z}$
	- comparison $=$, \neq : $\mathbb{Z}^2 \to \mathbb{Z}$

This resource specification is more common in programming languages that have $\mathbb Z$ but not $\mathbb N$ as primitive datatypes.

- Data types: natural numbers **N**
- Operations:
	- subtraction $\cdot N^2 \rightarrow N$
	- comparison $=$, \neq : $\mathbb{N}^2 \to \mathbb{N}$
- Data types: natural numbers **N**
- Operations:
	- division $/ : \mathbb{N} \times \mathbb{N}_+ \to \mathbb{N}$
	- comparison $=$, \neq : $\mathbb{N}^2 \to \mathbb{N}$

Standard data types and operations

- Booleans, Natural numbers, Integers, Rationals, enumerated types
- Boolean, Arithmetic and relational operations
- Finite sets and operations on finite sets
- Lists, Stacks, Queues, Finite Trees
- Tupling and projection operations

We will assume that all the above standard data types and operations are available as resources unless specified otherwise.

Sometimes there are also non-functional specification , e.g.,

- Time available for computation
- Memory space available for computation
- Security, Performance and usability of the solution

Assumption: no non-functional requirements.

Contents

[Motivation](#page-1-0)

[Basic Machinery: Discrete Flows](#page-8-0)

- [Iterative Problem Solving](#page-29-0)
- [Problem Specification](#page-31-0)

[Mapcode Machines](#page-47-0)

[Convergence](#page-55-0)

[Informal Example: Multiplication machine](#page-63-0)

[Invariant Functions and Correctness](#page-71-0)

[Examples: Multiplication \(contd\) and Factorial](#page-78-0)

[Conclusion](#page-89-0)

Definition 11 (Mapcode Machine) A mapcode machine is a tuple

$$
\mathcal{M} = \langle I, A, X, \rho, F, \pi \rangle
$$

consisting of

- an input set *I* • an *init map* $\rho: I \to X$,
- an output set *A* • a program map $F: X \to X$
- a state space *X*

• an *answer map* $\pi: X \to A$

Definition 12 (Mapcode Algorithm) Let

$$
\mathcal{M} = \langle I, A, X, \rho, F, \pi \rangle
$$

be mapcode machine.

 M is an algorithm if

 $\rho(I) \subseteq con(F)$

Definition 13 (Map computed by a mapcode algorithm) Let

$$
\mathcal{M} = \langle I, A, X, \rho, F, \pi \rangle
$$

be a mapcode algorithm.

The map computed by M is the function

π ◦ *F* [∞] ◦ *ρ*

Computing a function via a Mapcode Machine

Definition 14 (Computation of a function by a mapcode machine) Let $f: I_F \to A_F$ be a specification map.

Let $\mathcal{M} = (I, A, X, \rho, F, \pi)$ be a mapcode machine.

M computes *f* if

- Signature: $I_{\mathcal{F}} = I$ and $A_{\mathcal{F}} = A$.
- Convergence: M is an algorithm.
- Partial Correctness: Assuming M is an algorithm, the function computed by M is f :

$$
\pi\circ F^\infty\circ \rho=f
$$

Mapcode Commute Diagram

Algorithmic Problem Solving for mapcode

Definition 15 (Algorithmic Problem solving via Mapcode) Let $\mathcal{P} = \langle \mathcal{F}, \mathcal{R}, \mathcal{N} \rangle$ be a a problem with functional specification

$$
\mathcal{F} = \langle I_{\mathcal{F}}, A_{\mathcal{F}}, f : I_{\mathcal{F}} \to A_{\mathcal{F}} \rangle
$$

A mapcode machine

$$
\mathcal{M} = (I, A, X, \rho, F, \pi)
$$

is a **solution** to \mathcal{P} if

- Design: M computes *f* .
- Implementation: *I*, *X* and *A* are defined using the datatypes in \mathcal{R} . ρ , π and F are defined using the operations in R.
- Quality: $\mathcal M$ satisfies the non-functional requirements $\mathcal N$.

```
# Mapcode
# takes
\# rho: I \rightarrow con(F)# F : X−>X,
\# pi: fix (F)–>A
# returns element in Adef mapcode (rho, F, pi):
     F_{in} fty=limit_map(F)
     def f(v):
         return pi(F_{\text{infty}}(rho(v)))return f
```
Contents

[Motivation](#page-1-0)

[Basic Machinery: Discrete Flows](#page-8-0)

- [Iterative Problem Solving](#page-29-0)
- [Problem Specification](#page-31-0)
- [Mapcode Machines](#page-47-0)

[Convergence](#page-55-0)

[Informal Example: Multiplication machine](#page-63-0)

[Invariant Functions and Correctness](#page-71-0)

[Examples: Multiplication \(contd\) and Factorial](#page-78-0)

[Conclusion](#page-89-0)

Let *A* be a set. Let \lt be a binary relation on *A*. (A, \lt) is wellfounded if there are no infinite descending chains of the form:

... $< a_2 < a_1 < a_0$

Definition 16 (Bound Function) Let $(W, <)$ be a well-founded relation. Let $D = \langle X, F \rangle$ be a discrete flow. A function $B: X \to W$ is a **bound function** for D if whenever $x \in X$ is transient, $B(F(x)) < B(x)$.

Lemma 17 (Bound function implies convergence)

Let $D = (X, F : X \to X)$ be a discrete flow such that there exists a well-founded relation (W, \leq) and a bound function $B: X \to W$ for *D*. Then *X* is convergent and $X = con(F)$.

- 1. Let $B: X \rightarrow W$ be a bound function for *D*.
- 2. Suppose X is not convergent. Then there is a trajectory $\{a_i\}$ where each $a_i = F^i(a_0)$ is transient.
- 3. Since B is a bound function and a_i is transient, $B(F(a_i)) = B(a_{i+1}) < B(a_i)$
- 4. Hence, we have an infinite descending chain

$$
\ldots \, B(a_2) < B(a_1) < B(a_0)
$$

5. But no such chain is possible since *W* is well-founded. Contradiction.

Lemma 18 (Convergence for mapcode) Let $M = (I, A, X, \rho, F, \pi)$ be a mapcode machine.

Consider the subflow generated by *ρ*(*I*):

$$
D_{orb(\rho(I))} = (orb(\rho(I)), F|_{orb(\rho(I))}) \text{ of } (X, F) .
$$

If there is a bound function for $D_{orb(\rho(I))}$, then $\rho(I) \subseteq con(F)$

Proof:

- 1. By Lemma [17,](#page-58-0) $orb(\rho(I))$ is convergent, i.e., $orb(\rho(I)) = con(F|_{\rho(I)})$.
- 2. But $con(F|_{\rho(I)}) \subseteq con(F)$
- 3. From steps [1](#page-61-0) and [2,](#page-61-1)

 $\rho(I) \subseteq con(F)$

To show that $M = (I, A, \rho, X, F, \pi)$ is an algorithm, it suffices to demonstrate a bound function for the flow generated by $\rho(I)$.

Informally, some element of the state has to 'decrease' for each iteration.

Contents

[Motivation](#page-1-0)

- [Basic Machinery: Discrete Flows](#page-8-0)
- [Iterative Problem Solving](#page-29-0)
- [Problem Specification](#page-31-0)
- [Mapcode Machines](#page-47-0)
- **[Convergence](#page-55-0)**
- [Informal Example: Multiplication machine](#page-63-0)
- [Invariant Functions and Correctness](#page-71-0)
- [Examples: Multiplication \(contd\) and Factorial](#page-78-0)
- [Conclusion](#page-89-0)

Informal presentation of requirement: Given two natural numbers, compute their product using addition.

- Functional Specification
	- $I = \mathbb{N}^2$: The input consists of two natural numbers.
	- $A = N$: The answer is a natural number
	- $f_*: I \to A$ is the multiplication function: $f(a, b) = a * b$
- Resource specification
	- Data types: Natural Numbers
	- Operations: Comparison with zero, decrement and addition

$$
\mathcal{M}_* = \langle \rho : I \to X, F : X \to X, \pi : X \to A \rangle
$$

where

- State Space: $(x, y, z) \in X = \mathbb{N}^3$
- Init map: $\rho(x,y) = (x, y, 0)$
- Answer map: $\pi(x, y, z) = z$
- Dynamical map:

$$
F(x, y, z) = \begin{cases} (x, y, z) & \text{if } x = 0\\ (x - 1, y, z + y) & \text{if } x > 0 \end{cases}
$$

```
# computes m*n using mapcode
# by repeatedly adding
# n to 0, m times
```

```
def rho(i):
    [m, n] = ireturn [m, n, 0]
```

```
def pi(x):
    [m, n, a] = xreturn a
```
Multiplication with mapcode in Python: F and f

def $F(x)$: $[m, n, a] = x \# m$, n, a are naturals if $m = 0$: $return x$ e l s e : return $[m-1, n, a+n]$

 $#$ multiply (m, n) computes m*n def multiply (m, n) : $\# m, n$ are naturals $f =$ mapcode(rho, F, pi) return $f([m,n])$

Computing $f(2, 3)$:

$$
(2,3)
$$
\n
$$
\downarrow \rho
$$
\n
$$
(2,3,0) \xrightarrow{F} (1,3,3) \xrightarrow{F} (0,3,6)
$$

We wish to prove that

 $\rho(I) \subset con(F)$

Proof: It is easy to verify that $G: X \to \mathbb{N}$ where

$$
G(x,y,z) \stackrel{\text{def}}{=} x
$$

is a bound function for (X, F) :

1. Let $w = (x, y, z) \in X$ be transient.

2. Then $x > 0$ (by definition of F)

3.
$$
G(F(x, y, z)) = x - 1 < x = G(x, y, z)
$$
.

Correctness of \mathcal{M}_* (Informally)

We have

$$
(x,y,0) \xrightarrow{F} (x-1,y,y) \xrightarrow{F} (x-2,y,2y) \xrightarrow{F} \dots \xrightarrow{F} (x-x,y,xy)
$$

$$
= (0,y,xy)
$$

Hence, we may conjecture that

$$
F^{\infty}(x,y,0)=(0,y,xy)
$$

Then

$$
\pi(F^{\infty}(\rho(x,y))) = \pi(F^{\infty}(x,y,0))
$$

= $\pi(0,y,xy)$
= xy

Contents

[Motivation](#page-1-0)

- [Basic Machinery: Discrete Flows](#page-8-0)
- [Iterative Problem Solving](#page-29-0)
- [Problem Specification](#page-31-0)
- [Mapcode Machines](#page-47-0)
- **[Convergence](#page-55-0)**
- [Informal Example: Multiplication machine](#page-63-0)
- [Invariant Functions and Correctness](#page-71-0)
- [Examples: Multiplication \(contd\) and Factorial](#page-78-0)
- [Conclusion](#page-89-0)
Definition 19 (Invariant Function)

- Let $D = (X, F : X \to X)$ be a discrete flow.
- Let *E* be any set.
- A function θ : $X \to E$ is an **invariant function** for D if, for each $x \in X$,

$$
\theta(x) = \theta(F(x))
$$

Lemma 20 (Invariant function and iterates) Let $D = (X, F)$ be a discrete flow. Let $\theta : X \to E$ be an invariant function for *D*.

Then, for each $x \in X$ and for each $i \in \mathbb{N}$,

$$
\theta(x) = \theta(F^n(x))
$$

Corollary 21

If $x \in con(F)$, then

$$
\theta(x) = \theta(F^{\infty}(x))
$$

Theorem 22 (Partial Correctness via invariant function)

- Consider a specification map $f: I \rightarrow A$ and a mapcode algorithm $\mathcal{M} = \langle I, X, A, \rho : I \to X, F : X \to X, \pi : X \to A \rangle$
- Let θ : $X \to A$ be an invariant map for (X, F) . Assume
	- init: $\theta(\rho(i)) = f(i)$ for each problem instance $i \in I$ and
	- answer: $\theta(x) = \pi(x)$ for each fixed point $x \in fix(F)$.
- Then, $\pi \circ F^{\infty} \circ \rho = f$.

Proof of partial correctness via invariant function (short version)

$$
f(i) = \theta(\rho(i))
$$

\n
$$
= \theta(F^{\infty}(\rho(i)))
$$

\n
$$
= \pi(F^{\infty}(\rho(i)))
$$

\n(3)

- $\rho(I) \subset con(F)$ *M* algorithm: Given (4)
	-
	- -
	- from [7](#page-76-2) and defn of F^{∞} [∞] (8)
- $\pi(z) = \theta(z)$ $\forall z \in fix(F)$, 'answer': Given (9)
	- from [8](#page-76-3) and [9](#page-76-4) (10)
	- $= \theta(\rho(s))$ since θ is invariant (11)
		-

 $s \in I$ assumption (5) $\theta(\rho(s)) = f(s)$ from 'init': Given (6) $\rho(s) \in con(F)$ from [4](#page-76-0) and [5](#page-76-1) (7) $F^{\infty}(\rho(s)) \in \text{fix}(F)$ $\pi(F^{\infty}(\rho(s))) = \theta(F)$ $= f(s)$ from [6](#page-76-5) (12) To prove that a mapcode algorithm \mathcal{M} = (I, A, X, ρ, F, π) computes a specification map, $f: I \rightarrow A$, it is sufficient to construct an invariant function θ : $X \to E$ such that the init and answer conditions are met:

1.
$$
\theta(\rho(i)) = f(i)
$$
 for each $i \in I$

2. $\theta(x) = \pi(x)$ for each $x \in fix(F)$

Contents

[Motivation](#page-1-0)

- [Basic Machinery: Discrete Flows](#page-8-0)
- [Iterative Problem Solving](#page-29-0)
- [Problem Specification](#page-31-0)
- [Mapcode Machines](#page-47-0)
- **[Convergence](#page-55-0)**
- [Informal Example: Multiplication machine](#page-63-0)
- [Invariant Functions and Correctness](#page-71-0)

[Examples: Multiplication \(contd\) and Factorial](#page-78-0)

[Conclusion](#page-89-0)

For \mathcal{M}_* , $I = \mathbb{N}^2$, $A = \mathbb{N}$ and $X = \mathbb{N}^3$, $f_*(x, y) = xy$, $\rho(x, y) =$ (x, y, z) and $\pi(x, y, z) = z$.

Define

$$
\theta(x,y,z) \stackrel{\text{def}}{=} xy + z
$$

Intuition:

- *z*: work already done
- *xy*: work yet to be done (*x* number of *y*'s need to be added)
- $\theta(x, y, z)$: total work derived by combining work done and work that needs to be done.

init: If $(x, y) \in I$, then $\theta(\rho(x, y)) = f_*(x, y)$

•
$$
\theta(\rho(x,y)) = \theta(x,y,0) = xy + 0 = xy
$$

$$
\bullet \, f_*(x,y) = xy
$$

answer: If $(x, y, z) \in fix(F)$, then $\pi(x, y, z) = \theta(x, y, z)$

• Since $(x, y, z) \in fix(F)$, $x = 0$

$$
\bullet \ \pi(x,y,z)=z
$$

• $\theta(x, y, z) = \theta(0, y, z) = 0 * y + z = z$

- **Convergence:** $\rho(I) \subseteq con(F)$: verified by constructing suitable bound function in Slide [70.](#page-69-0)
- Partial Correctness: $\rho(I) \subseteq con(F) \implies \pi \circ F^{\infty} \rho = f_*$: verified by constructing suitable invariant function in Slide [80.](#page-79-0)

This proves

Total Correctness: M[∗] computes *f*∗.

Example: Factorial

- The problem is $\mathcal{P} = \langle I = \mathbb{N}, A = \mathbb{N}, f(n) = \{n, P = \{-, *\}\rangle$
- Mapcode machine:

$$
\mathcal{M}_! = \langle \rho : I \to X, F : X \to X, \pi : X \to A \rangle \text{ where}
$$

1. $X = \mathbb{N}^2$

$$
2. \ \rho(n) = (n,1)
$$

3.
$$
F(i, a) = \begin{cases} (i, a) & \text{if } i = 0\\ (i - 1, a * i) & \text{otherwise} \end{cases}
$$

4. $\pi(i, a) = a$

$$
G: X \to \mathbb{N}, G(i, a) \stackrel{\text{def}}{=} i
$$

is a bound function for $\langle X, F \rangle$. Verify:

- Let $(i, a) \in X$ be transient.
- Then, $i > 0$, and
- $G(F(i, a)) = i 1 < i = G(i, a)$.

$$
\theta(i,a) \stackrel{\text{def}}{=} a * i!
$$

• Let
$$
x = (i, a) \in X
$$

• case: $x \in fix(F)$, then clearly $\theta(x) = \theta(F(x))$.

• If
$$
x \notin fix(F)
$$
, then $i > 0$:

•
$$
\theta(i, a) = a * i! = a * i * (i - 1)! = \theta(F(i, a)).
$$

• Init:
$$
\theta(\rho(n)) = \theta(n, 1) = 1 * n! = n!
$$

- Answer: Let $(i, a) \in fix(F)$. Then $i = 0$
	- $\pi(0, a) = a$ and
	- $\theta(0, a) = a * 0! = a$

Partial Correctness: $\rho(I) \subseteq A \implies \pi \circ F^{\infty} \circ \rho =!$

- Convergence: $\rho(I) \subseteq con(F)$: Shown in Slide [85](#page-84-0)
- Partial Correctness: $ρ(I) ⊆ A \implies π ∘ F[∞] ∘ ρ =!$: Shown in Slide [87](#page-86-0)

Hence \mathcal{M}_1 computes !.

Exercise: Invariant functions and mapcode machines

- Summation: Define an invariant function.
- GCD: Define a mapcode machine to compute gcd.
- *max*: Define a mapcode machine to compute the maximum element of a nonempty list of natural numbers.

Contents

[Motivation](#page-1-0)

- [Basic Machinery: Discrete Flows](#page-8-0)
- [Iterative Problem Solving](#page-29-0)
- [Problem Specification](#page-31-0)
- [Mapcode Machines](#page-47-0)
- **[Convergence](#page-55-0)**
- [Informal Example: Multiplication machine](#page-63-0)
- [Invariant Functions and Correctness](#page-71-0)
- [Examples: Multiplication \(contd\) and Factorial](#page-78-0)

[Conclusion](#page-89-0)

- Problem
- Functional Specification
- Mapcode Machine
- Convergence, Partial and Total correctness
- Computation of a function by a mapcode machine
- Invariant function
- Init and answer conditions

References