\( % Latex Preamble definitions here (mostly usepackage) \usepackage% %[dvipsnames] {xcolor} % make sure this is before the loading font packages \newcommand\hmmax{0} \newcommand\bmmax{0} \usepackage{amssymb} \usepackage{amsmath} \usepackage{mathtools} \usepackage %[dvipsnames] {graphicx} \usepackage{float} %\usepackage[numbers]{natbib} \usepackage[document]{ragged2e} % % enumitem doesn't seem to work with beamer %\usepackage[inline]{enumitem} \usepackage{wrapfig} \usepackage{stackrel} % extensible arrows \usepackage{extpfeil} % \usepackage{trfrac} \usepackage{amsthm} \usepackage{tikz} \usepackage{tikz-cd} \usepackage{tikz} \usepackage{tikz-qtree} \usetikzlibrary{automata, positioning, arrows, shapes.geometric} \usepackage{turnstile} \usepackage{comment} %https://tex.stackexchange.com/questions/21334/is-there-a-package-that-has-the-clockwise-gapped-circle-arrow-in-it % \usepackage{mathbx} \usepackage{datetime} \usepackage{datetime2} %% Also See %% http://u.cs.biu.ac.il/~tsaban/Pdf/LaTeXCommonErrs.pdf %% for general tips \usepackage{listings} \usepackage{subfigure} \usepackage{bm} \usepackage{amsfonts} %% - also included by amssymb \usepackage{mathpazo} %% - because the OP uses mathpazo, optional %\usepackage{tufte-latex} \usepackage{comment} \usepackage{mathtools} \usepackage{bussproofs} \usepackage{hyperref} %\usepackage{cleveref} \)
\( %% Your math definitions here % \newcommand{\alphaequiv}{{\underset{\raise 0.7em\alpha}{=}}} \newcommand{\yields}{\Rightarrow} \newcommand{\derives}{\overset{*}{\yields}} \newcommand{\alphaequiv}{=_{\alpha}} \newcommand{\tto}[2]{{\overset{#1}{\underset{#2}{\longrightarrow}}}} \newcommand{\transitsto}[2]{{\overset{#1}{\underset{#2}{\longrightarrow}}}} \newcommand{\xtransitsto}[2]{{\underset{#2}{\xrightarrow{#1}}}} \newcommand{\xtransitsfrom}[2]{{\underset{#2}{\xleftarrow{#1}}}} \newcommand{\xto}[2]{{\xtransitsto{#1}{#2}}} \newcommand{\xfrom}[2]{{\xtransitsfrom{#1}{#2}}} \newcommand{\xreaches}[2]{{\underset{#2}{\xtwoheadrightarrow{#1}}}} \newcommand{\reaches}[2]{{\underset{#2}{\xtwoheadrightarrow{#1}}}} %\newcommand{\reaches}[2]{{\overset{#1}{\underset{#2}{\twoheadrightarrow}}}} %\newcommand{\goesto}[2]{\transitsto{#1}{#2}} %\newcommand{\betareducesto}{{\underset{\beta}{\rightarrow}}} \newcommand{\betareducesto}{\rightarrow_{\beta}} %\newcommand{\etareducesto}{{\underset{\eta}{\rightarrow}}} \newcommand{\etareducesto}{\rightarrow_{\eta}} %\newcommand{\betaetareducesto}{{\underset{\beta\ \eta}{\rightarrow}}} \newcommand{\betaetareducesto}{\rightarrow_{\beta\eta}} \newcommand{\preducesto}{\rhd} \newcommand{\psimplifiesto}{\stackrel{\scriptstyle{*}}{\rhd}} \newcommand{\lreducesto}{\rightsquigarrow} \newcommand{\lsimplifiesto}{\stackrel{\scriptstyle{*}}{\lreducesto}} \newcommand{\rewritesto}{\hookrightarrow} \newcommand{\goesto}[1]{\stackrel{#1}{\rightarrow}} \newcommand{\xgoesto}[1]{\xrightarrow{#1}} \newcommand{\reducesto}{\stackrel{}{\rightarrow}} \newcommand{\simplifiesto}{\stackrel{\scriptstyle{*}}{\rightarrow}} \newcommand{\connected}[1]{\stackrel{#1}{\leftrightarrow}} \newcommand{\joins}{\downarrow} \newcommand{\evaluatesto}{\Longrightarrow} %\newcommand{\lit}[1]{\hbox{\sf{#1}}} \newcommand{\lit}[1]{{\sf{#1}}} \newcommand{\true}{\lit{true}} \newcommand{\false}{\lit{false}} \def\Z{\mbox{${\mathbb Z}$}} \def\N{\mbox{${\mathbb N}$}} \def\P{\mbox{${\mathbb P}$}} \def\R{\mbox{${\mathbb R}$}} \def\T{\mbox{${\mathbb T}$}} \newcommand{\Rp}{{\mathbb{R}}^+} \def\Bool{\mbox{${\mathbb B}$}} \def\Q{\mbox{${\mathbb Q}$}} \def\sA{\mbox{${\cal A}$}} \def\sB{\mbox{${\cal B}$}} \def\sC{\mbox{${\cal C}$}} \def\sD{\mbox{${\cal D}$}} \def\sF{\mbox{${\cal F}$}} \def\sG{\mbox{${\cal G}$}} \def\sL{\mbox{${\cal L}$}} \def\sP{\mbox{${\cal P}$}} \def\sM{\mbox{${\cal M}$}} \def\sN{\mbox{${\cal N}$}} \def\sR{\mbox{${\cal R}$}} \def\sS{\mbox{${\cal S}$}} \def\sO{\mbox{${\cal O}$}} \def\sT{\mbox{${\cal T}$}} \def\sU{\mbox{${\cal U}$}} \def\th{\mbox{$\widetilde{h}$}} \def\tg{\mbox{$\widetilde{g}$}} \def\tP{\mbox{$\widetilde{P}$}} \def\norm{\mbox{$\parallel$}} \def\osum{${{\bigcirc}}\!\!\!\!{\rm s}~$} \def\pf{\noindent {\bf Proof}~~} \def\exec{\mathit{exec}} \def\Act{\mathit{A\!ct}} \def\Traces{\mathit{Traces}} \def\Spec{\mathit{Spec}} \def\uns{\mathit{unless}} \def\ens{\mathit{ensures}} \def\lto{\mathit{leads\!\!-\!\!to}} \def\a{\alpha} \def\b{\beta} \def\c{\gamma} \def\d{\delta} \def\sP{\mbox{${\cal P}$}} \def\sM{\mbox{${\cal M}$}} \def\sA{\mbox{${\cal A}$}} \def\sB{\mbox{${\cal B}$}} \def\sC{\mbox{${\cal C}$}} \def\sI{\mbox{${\cal I}$}} \def\sS{\mbox{${\cal S}$}} \def\sD{\mbox{${\cal D}$}} \def\sF{\mbox{${\cal F}$}} \def\sG{\mbox{${\cal G}$}} \def\sR{\mbox{${\cal R}$}} \def\tg{\mbox{$\widetilde{g}$}} \def\ta{\mbox{$\widetilde{a}$}} \def\tb{\mbox{$\widetilde{b}$}} \def\tc{\mbox{$\widetilde{c}$}} \def\tx{\mbox{$\widetilde{x}$}} \def\ty{\mbox{$\widetilde{y}$}} \def\tz{\mbox{$\widetilde{z}$}} \def\tI{\mbox{$\widetilde{I}$}} \def\norm{\mbox{$\parallel$}} \def\sL{\mbox{${\cal L}$}} \def\sM{\mbox{${\cal M}$}} \def\sN{\mbox{${\cal N}$}} \def\th{\mbox{$\widetilde{h}$}} \def\tg{\mbox{$\widetilde{g}$}} \def\tP{\mbox{$\widetilde{P}$}} \def\norm{\mbox{$\parallel$}} \def\to{\rightarrow} \def\ov{\overline} \def\gets{\leftarrow} \def\too{\longrightarrow} \def\To{\Rightarrow} %\def\points{\mapsto} %\def\yields{\mapsto^{*}} \def\un{\underline} \def\vep{$\varepsilon$} \def\ep{$\epsilon$} \def\tri{$\bigtriangleup$} \def\Fi{$F^{\infty}$} \def\Di{\Delta^{\infty}} \def\ebox\Box \def\emp{\emptyset} \def\leadsto{\rightharpoondown^{*}} \newcommand{\benum}{\begin{enumerate}} \newcommand{\eenum}{\end{enumerate}} \newcommand{\bdes}{\begin{description}} \newcommand{\edes}{\end{description}} \newcommand{\bt}{\begin{theorem}} \newcommand{\et}{\end{theorem}} \newcommand{\bl}{\begin{lemma}} \newcommand{\el}{\end{lemma}} % \newcommand{\bp}{\begin{prop}} % \newcommand{\ep}{\end{prop}} \newcommand{\bd}{\begin{defn}} \newcommand{\ed}{\end{defn}} \newcommand{\brem}{\begin{remark}} \newcommand{\erem}{\end{remark}} \newcommand{\bxr}{\begin{exercise}} \newcommand{\exr}{\end{exercise}} \newcommand{\bxm}{\begin{example}} \newcommand{\exm}{\end{example}} \newcommand{\beqa}{\begin{eqnarray*}} \newcommand{\eeqa}{\end{eqnarray*}} \newcommand{\bc}{\begin{center}} \newcommand{\ec}{\end{center}} \newcommand{\bcent}{\begin{center}} \newcommand{\ecent}{\end{center}} \newcommand{\la}{\langle} \newcommand{\ra}{\rangle} \newcommand{\bcor}{\begin{corollary}} \newcommand{\ecor}{\end{corollary}} \newcommand{\bds}{\begin{defns}} \newcommand{\eds}{\end{defns}} \newcommand{\brems}{\begin{remarks}} \newcommand{\erems}{\end{remarks}} \newcommand{\bxrs}{\begin{exercises}} \newcommand{\exrs}{\end{exercises}} \newcommand{\bxms}{\begin{examples}} \newcommand{\exms}{\end{examples}} \newcommand{\bfig}{\begin{figure}} \newcommand{\efig}{\end{figure}} \newcommand{\set}[1]{\{#1\}} \newcommand{\pair}[1]{\langle #1\rangle} \newcommand{\tuple}[1]{\langle #1\rangle} \newcommand{\size}[1]{| #1 |} \newcommand{\union}{\cup} \newcommand{\Union}{\bigcup} \newcommand{\intersection}{\cap} \newcommand{\Intersection}{\bigcap} \newcommand{\B}{\textbf{B}} %\newcommand{\be}[2]{\begin{equation} \label{#1} \tag{#2} \end{equation}} \newcommand{\abs}[1]{{\lvert}#1{\rvert}} \newcommand{\id}[1]{\mathit{#1}} \newcommand{\pfun}{\rightharpoonup} %\newcommand{\ra}[1]{\kern-1.5ex\xrightarrow{\ \ #1\ \ }\phantom{}\kern-1.5ex} %\newcommand{\ras}[1]{\kern-1.5ex\xrightarrow{\ \ \smash{#1}\ \ }\phantom{}\kern-1.5ex} \newcommand{\da}[1]{\bigg\downarrow\raise.5ex\rlap{\scriptstyle#1}} \newcommand{\ua}[1]{\bigg\uparrow\raise.5ex\rlap{\scriptstyle#1}} % \newcommand{\lift}[1]{#1_{\bot}} \newcommand{\signal}[1]{\tilde{#1}} \newcommand{\ida}{\stackrel{{\sf def}}{=}} \newcommand{\eqn}{\doteq} \newcommand{\deduce}[1]{\sststile{#1}{}} %% These don't sit very well with MathJax %% so we don't plan to use theorem like environments %% in org documents. %% instead we plan to use headings with %% 1. property drawers with a CLASS property identifying %% the environment %% 2. A tag with the same name as the CLASS property %% In LaTeX export, these turn into (sub)sections. %% See http://u.cs.biu.ac.il/~tsaban/Pdf/LaTeXCommonErrs.pdf %% \newtheorem{prop}[thm]{Proposition} %% \theoremstyle{plain}%default %% \newtheorem{theorem}{Theorem}[section] %% \newtheorem{lemma}{Lemma}[section] %% \newtheorem{corollary}{Corollary}[section] %% \newtheorem{definition}{Definition}[section] %% \newtheorem{remark}{Remark}[section] %% \newtheorem{example}{Example}[section] %% \newtheorem{exercise}{Exercise}[section] \newcommand{\less}[1]{#1_{<}} \newcommand{\pfn}{\rightharpoonup} \newcommand{\ffn}{\stackrel{{\sf fin}}{\rightharpoonup}} \newcommand{\stkout}[1]{\ifmmode\text{\sout{\ensuremath{#1}}}\else\sout{#1}\fi} % Caution: Not supported by MathJax! % ---------------------------------- % \DeclareMathSymbol{\shortminus}{\mathbin}{AMSa}{"39} % \usepackage{amsfonts} %% <- also included by amssymb % \DeclareMathSymbol{\shortminus}{\mathbin}{AMSa}{"39} \usepackage{mathpazo} %% <- because the OP uses mathpazo, optional \newcommand{\mbf}[1]{\mathbf{#1}} \newcommand{\floor}[1]{\left\lfloor #1 \right\rfloor} \newcommand{\ceil}[1]{\left\lceil #1 \right\rceil} \newcommand{\rel}{\twoheadrightarrow} \newcommand{\map}{\rightarrow} %\newcommand{\fixed}{\boldsymbol{\circlearrowleft}} \newcommand{\terminal}{\not\xto{}{}} \newcommand{\fixed}{\bm\circlearrowleft} \newcommand{\imp}{\rightarrow} \newcommand{\dimp}{\leftrightarrow} % double implication \newcommand{\lequiv}{\Longleftrightarrow} % logical equivalence \newcommand{\limplies}{\Rightarrow} \newcommand{\lxor}{\veebar} \)
UP | HOME

POPL Lecture notes: Embedding Javascript objects in Scheme

Table of Contents

1 Introduction

The goal of this section is to build a Scheme model of how Javascript's object system works.

Until now, we have approached the problem of modelling a language by defining an abstract syntax for the language and then building an interpreter that evaluates expressions in that abstract syntax.

Sometimes, however, it is easier to embed the language to be modelled (the object language) into another (host) language by implementing the main features of the object language (here, Javascript) as a library, i.e., a set of functions in the host language (here, Scheme). By embedding the object language into the host language, we have at our disposal the entire host language and the simulated object language via the library. However, there are disadvantages as well. Sometimes, the embedding approach doesn't give us complete flexibility in simulating the language and things turn out slightly different in the embedding than the original language.

2 Javascript Embedded in Scheme: Syntax

The abstract syntax for Javascript constructs and entities and their mapping to Scheme is given below:

Javascript                         => Scheme
{x: 4, y: 3}                       => (js-obj '(x 4) '(y 3))
a.x                                => (a 'x)
a.x = exp                          => (a 'x exp)
a.m(arg ...)                       => (call a 'm arg ...) 

function (formal ...) {            => (js-fn (lambda (formal ...)
     body                                body))
}                                    
new exp(arg ...)                   => (js-new exp arg ...)
Function                           => *js-fn*
Object                             => *js-obj*

3 Javascript Semantics Recap

The latest authoritative document on Javascript is the Ecma-262 Language Specification, 14th Edition, 2023. Here, we briefly recall the key ideas behind the Javascript Object model as we understand it. Note that the terminology we use differs from that used in the official specification. For example, what we call parent, the official spec calls prototype.

3.1 Function objects and Regular objects

There are two kinds of objects: function objects (fo, pronounced like "foe") and regular objects (ro, pronounced like "row"). Function objects have in them a closure, regular objects do not.

3.2 Every object is constructed from a unique function object

Every object is constructed from a unique function object, which is referred to as the former object's constructor.

3.3 Function is the primordial fo

Function is the constructor of itself.

3.4 function creates function objects

The invocation function(p ...){body} constructs a fo.

3.5 Every function object owns the field prototype

This field is initially bound to a ro, but there are two exceptions. The prototype field of Function is a fo. The prototype field of Function.prototype is non-existent.

3.6 Object is a fo

Object is a distinguished function object constructed Function.

3.7 new constructs objects

new <e> (<e'> ...) constructs a new object. The assumption is that <e> evaluates to a fo f. First, an object o is constructed from f. The list (<e'> ...) is evaluated to a list of values (<v> ...). Then the closure of f is applied to the list (o <v> ...). The object o is returned.

Two things to note:

  • 1. If <e> evaluates Function, then the new object is a fo, otherwise it is a ro.
  • 2. If <e> evaluates to the initial value of Function.prototype, then it is an error.

3.8 Recap of the Javacsript Ontology graph

javascript.png

4 Javascript Embedded in Scheme: Implementation

The Javascript object model is implemented as a module js.rkt that publishes the following bindings:

js-fn, js-new, js-obj, *js-fn* and *js-obj*.

4.1 Creating function objects

In the embedding we implement an object is defined to be a Javascript function object (fo) if it has a field called closure. The predicate js-fn? tests if its argument is a fo.

(require "obj.rkt")

(define js-fn?
  (lambda (o)
    (call o 'owns? 'closure)))

The Scheme function make-fo is the internal mechanism to create a javascript function object. (make-fo c parent proto) creates a function object with closure c, parent and prototype proto.

(define (make-fo c parent proto)
  (let ([binds (make-hash)])
    (let ([set (make-setter binds)])
      (let ([fo 
	      (basic-make-obj
		parent binds
		(lambda ()                     (set 'closure c)))])
	(when (obj? proto) ;; proto is  obj? instead of #f
	  (begin
	    (set 'prototype proto)
	    (proto 'constructor fo)))
	fo))))

Notice that the process of creating a function object fo involves creating an object with basic-make-obj and setting its closure and prototype fields (if a prototype was specified to make-fo). In the latter case, the prototype's constructor field is set to fo.

4.2 Prototype of *js-obj*

With make-obj and make-fo available, we have all the mechanisms to create objects, but we haven't created any Javascript objects yet.

Now we are ready to do so. We set up the initial Javascript runtime by systematically reconstructing the Javascript Ontology diagram (keep this handy in another window).

The first object created is the ground object js-obj-proto destined to be the prototype of the yet to be constructed *js-obj*.

(define js-obj-proto (make-obj))

4.3 Prototype of the function object

The second object created is the function object js-fn-proto destined to be the prototype of the yet to be defined *js-fn* object. js-fn-proto has a void closure, a parent that is js-obj-proto and no prototype field.

;;; js-fn-proto : fo?
(define js-fn-proto
  (make-fo
    void          ; closure
    js-obj-proto  ; parent
    #f            ; no prototype
    ))

4.4 Creating *js-fn*

The top-level *js-fn* function object corresponds to Function in Javascript. It is created using make-fo. js-fn-proto is both the parent and prototype of *js-fn*. The constructor of *js-fn* is itself.

;;; *js-fn* : fo?
(define *js-fn*
  (let ([f (make-fo
	     void         ; closure
	     js-fn-proto  ; parent
	     js-fn-proto  ; prototype
	     )])
    (f 'constructor f)
    f))

4.5 Creating *js-obj*

The function object *js-obj* corresponds to Object in Javascript. It is a function object built with a closure that is void, a parent that is js-fn-proto and a prototype that is js-obj-proto.

;;; *js-obj* : fo?
(define *js-obj*
  (make-fo
    void           ; closure
    js-fn-proto    ; parent
    js-obj-proto   ; prototype
    ))

4.6 Implementing function

The function keyword takes a list of formal parameters and a body and returns a function object. The Scheme implementation of function is the function js-fn that takes a closure and returns a function object.

;;; function (<arg> ...) { <body> } 
;;;   ===> (fn (lambda (arg ...)) <body>)

js-fn is make-fo invoked with a closure, js-fn-proto as the parent, a brand new object as the prototype. The prototype's parent is js-obj-proto.

;;; js-fn : closure? -> fo?
(define js-fn
  (lambda (c)
    (make-fo
      c                       ; closure
      js-fn-proto             ; parent
      (make-obj js-obj-proto) ; prototype
      )))

4.7 Implementing new

The javascript constructor new <fo> <args> is implemented using function js-new. js-new takes a function object fo and a (possibly empty) list args and returns an object.

;;; js-new : (fo?  . (listof any/c)) -> obj?
(define js-new
  (lambda (fo . args)
    (let* ([a (make-obj (fo 'prototype))]
	   [c (fo 'closure)]
	   [ignore (apply c (cons a args))])
      a)))

4.8 Implementing Literal objects

A literal object is constructed from *js-obj* and populated with a set of bindings bind.

;;; js-obj : (listof (list symbol? any/c)) -> obj?
(define js-obj
  (lambda binds
    (let ([a (js-new *js-obj*)])
      (for-each (lambda (bind)
		  (a (first bind) (second bind)))
	binds)
      a)))

5 Unit testing

(require rackunit)
(require rackunit/text-ui)

(define (check-err thunk)
  (check-exn exn:fail? thunk))

(define check-eq check-eq?)

(define check-owns
  (lambda (o x)
    (check-true (call o 'owns? x))))

(define check-not-owns
  (lambda (o x)
    (check-false (call o 'owns? x))))

(define literal-ts
  (test-case
    "object tests"
    (let ()

      ;;; *js-fn* tests
      (check-true (obj? *js-fn*))
      (check-true (js-fn? *js-fn*))

      (check-owns  *js-fn* 'prototype)

      ;;; js-fn-proto 
      (define js-fn-proto (*js-fn* 'prototype))
      (check-true (js-fn? js-fn-proto))
      (check-not-owns  js-fn-proto 'prototype)


      ;;; *js-obj*
      (check-true (obj? *js-obj*))
      (check-true (js-fn? *js-obj*))
      (check-owns *js-obj* 'prototype)

      ;;; js-obj-proto
      (define js-obj-proto (*js-obj* 'prototype))
      (check-false (js-fn? js-obj-proto))
      (check-not-owns js-obj-proto  'prototype)


      (define a (js-obj '(x 3)))
      (check-eq (a 'x) 3)
      (check-owns a 'x)
      (check-not-owns  a  'y)
      (check-err (lambda () (a 'y)))

      (define Point (js-fn (lambda (this y)
			     (this 'y y))))

      (check-true (js-fn? Point))
      (check-eq (Point 'constructor) *js-fn*)
      (check-owns  Point  'closure)
      (check-eq (: Point 'constructor 'prototype) js-fn-proto)

      (define p (js-new Point 5))

      (check-eq (p 'constructor) Point)

      (check-owns p 'y)
      (check-eq (p 'y) 5)

      ;; set a field in Point's prototype.  It should be inherited by p

      ((Point 'prototype) 'z 2)
      (check-eq (p 'z) 2)


      ;; set a field in js-obj-proto.   All other objects should inherit this.

      (js-obj-proto 'w 10)

      (check-eq (*js-fn* 'w) 10)
      (check-eq (*js-obj* 'w) 10)
      (check-eq (Point 'w) 10)
      (check-eq (p 'w) 10)
      (check-eq (a 'w) 10))))

6 Comparing Javascript with its Scheme embedding

6.1 Differences

closure
In Javascript, a function's closure is itself an object. In the Scheme embedding that we have designed, the closure is not an object but a method. In Javascript, the function object does not have a field called closure; in our implementation of Javascript objects, the closure is available through the closure field.
apply
In Javascript, the apply method on a function object allows the object's closure to be applied to an arbitrary object and additional arguments. In the embedding, apply is not available. Instead, the closure is directly available as a method. The effect of apply is instead achieved in the implementation using the already available apply function of Scheme.
hasOwnProperty
This method allows one to query an object to find out if a particular field is owned by that object. In Javascript, this field is typically inherited. In our embedding every javascript object has its own field called owns?.
undefined behaviour for missing fields
Javascript returns undefined if a field is not found during lookup. The scheme embedding raises an error. The error-obj in the Scheme implementation can be easily changed to return undefined. But raising an error seems the more sensible thing to do. The undefined primitive data is not implemented.
typeof
Javascript has a primitive function called tyypeof that returns the type of its argument. In the embedding no such function is provided. However, the function js-fn? is available for use to query if an object is a function object.

6.2 Other observations

The nice thing about this embedding is that there is no difference in the interface between javascript objects and objects created using make-obj. This is because javascript objects and scheme objects are created from the same primitive basic-make-obj. This allows us to mix javascript, the simple Scheme object model and the rest of Scheme, all in the same program.

7 Testing the implementation

:CUSTOMID: comparison

 1: // Javascript Node.js
 2: // $ node --version
 3: // v0.10.19
 4: 
 5: // Function
 6: > typeof(Function)
 7: 'function'
 8: > Function.hasOwnProperty("prototype")
 9: true
10: > var FunctionProto = Function.prototype
11: undefined
12: > typeof(FunctionProto)
13: 'function'
14: > FunctionProto.hasOwnProperty("prototype")
15: false
16: 
17: // Object
18: > typeof(Object)
19: 'function'
20: > Object.hasOwnProperty("prototype")
21: true
22: 
23: // ObjProto
24: > var ObjProto = Object.prototype;
25: undefined
26: > typeof(ObjProto)
27: 'object'
28: > ObjProto.hasOwnProperty("prototype")
29: false
30: 
31: > var a = {x:3};
32: undefined
33: > a.x
34: 3
35: > a.hasOwnProperty("prototype")
36: false
37: > a.hasOwnProperty("x");
38: true
39: > a.hasOwnProperty("y");
40: false
41: > a.y
42: undefined
43: 
44: > var Point = function(y) {this.y = y;};
45: undefined
46: 
47: 
48: > typeof(Point)
49: 'function'
50: > Point.constructor === Function
51: true
52: > Point.constructor.prototype === FunctionProto
53: true
54: > var p = new Point(5)
55: undefined
56: > p.constructor === Point
57: true
58: > p.hasOwnProperty("y")
59: true
60: > p.y
61: 5
62: 
63: // set a field in Point's prototype.
64: // It should be inherited by p
65: 
66: > Point.prototype.z = 2
67: 2
68: > p.z
69: 2
70: 
71: //  set a field in ObjProto
72: // All other objects should inherit this.
73: > ObjProto.w = 10
74: 10
75: > Function.w
76: 10
77: > Object.w
78: 10
79: > Point.w
80: 10
81: > p.w
82: 10
83: > a.w
84: 10
 1: Welcome to Racket v5.1.3.
 2: > (require "js.rkt")
 3: > (obj? *js-fn*)
 4: #t
 5: ;; Function tests
 6: > (js-fn? *js-fn*)
 7: #t
 8: > (call *js-fn* 'owns? 'prototype)
 9: #t
10: > (define js-fn-proto (*js-fn* 'prototype))
11: 
12: > (js-fn? js-fn-proto)
13: #t
14: > (call js-fn-proto 'owns? 'prototype)
15: #f
16: 
17: ;; *js-obj*
18: > (js-fn? *js-obj*)
19: #t
20: > (call *js-obj* 'owns? 'prototype)
21: #t
22: 
23: ;; js-obj-proto
24: > (define js-obj-proto (*js-obj* 'prototype))
25: 
26: > (js-fn? js-obj-proto)
27: #f
28: > (call js-obj-proto 'owns? 'prototype)
29: #f
30: 
31: > (define a (js-obj '(x 3)))
32: 
33: > (a 'x)
34: 3
35: > (call a 'owns? 'prototype)
36: #f
37: > (call a 'owns? 'x)
38: #t
39: > (call a 'owns? 'y)
40: #f
41: > (a 'y)
42: error-obj: no field y
43: 
44: > (define Point 
45:     (js-fn (lambda (this y)
46: 	     (this 'y y))))
47: 
48: > (js-fn? Point)
49: #t
50: > (eq? (Point 'constructor) *js-fn*)
51: #t
52: >  (eq? (: Point 'constructor 'prototype) js-fn-proto)
53: #t
54: > (define p (js-new Point 5))
55: 
56: >  (eq? (p 'constructor) Point)
57: #t
58: > (call p 'owns? 'y) 
59: #t
60: > (p 'y)
61: 5
62: 
63: > ;; set a field in Point's prototype.
64:   ;;   It should be inherited by p
65: 
66: ((Point 'prototype) 'z 2)
67: 
68: > (p 'z) 
69: 2
70: 
71: > ;; set a field in js-obj-proto.
72:   ;; All other objects should inherit this.
73:  (js-obj-proto 'w 10)
74: 
75: >  (*js-fn* 'w)
76: 10
77: > (*js-obj* 'w)
78: 10
79: >  (Point 'w)
80: 10
81: >   (p 'w)
82: 10
83: >  (a 'w)
84: 10

8 Sources

./js.rkt
An embedding of Javascript objects in Scheme. Javascript objects are implemented using the basic-make-obj mechanism.

9 Conclusion

We have embedded the object mechanism of Javascript in Scheme. The embedding is strikingly simple. Both Scheme objects and Javascript objects spring from the same basic object construction mechanism basic-make-obj.

The implementation of Javascript in Scheme gives us a chance to understand, model and experiment with how Javascript's objects, functions and their construction works. It gives us a opportunity to explore alternatives to some design decisions in Javascript. Some of these are worth reporting to the official Javascript designers.

Author: Venkatesh Choppella

Created: 2024-08-29 Thu 12:23

Validate