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Objective (of this chapter)

give some indications on general optimization techniques:
data-flow analysis
register allocation
software pipelining
etc.

describe the main data structures used:
control flow graph
Intermediate code (e.qg., 3-address code)
Static Single Assighment form (SSA)
etc.

see some concrete examples

But not a complete panorama of the whole optimization process

(e.g.: areal compiler, for a modern processor)
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Objective of the optimization phase

Improve the efficiency of the target code, while preserving the
source semantics.
efficiency — several (antagonist) criteria

execution time

Size

memory used
energy consumption
etc.

= no optimal solution, no general algorithm
=- a bunch of optimization techniques:

Inter-dependant each others
sometimes heuristic based
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Two kinds of optimizations

Independant from the target machine

“source level” or “assembly level” pgm transformations:

dead code elimination
constant propagation, constant folding
code motion
common subexpressions elimination
etc.
Dependant from the target machine
optimize the use of the hardware resources:
machine instruction
memory hierarchy (registers, cache, pipeline, etc.)
etc.

EcacT



Overview

1. Introduction
2. Some optimizations independant from the target machine
3. Some optimizations dependant from the target machine
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Some optimizations independant from the target machine
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Main principle

Input: Initial intermediate code
Output: optimized intermediate code

Several steps:
1. generation of a control flow graph (CFG)

A

analysis of the CFG
transformation of the CFG

> W

generation of the output code
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Intraprocedural 3-address code (TAC)

“high-level” assembly code:
binary logic and arithmetic operators
use of temporary memory location t i
assignments to variables, temporary locations
a label is assigned to each instruction
conditional jumps got o

Examples:
l: X =y op X
l: X :=opy
l: X =y
|: goto I’

|: 1 f x oprel y goto |’
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Basic block (BB)

A maximal instruction sequence S = ;.- - - 7, Such that:

S execution is never “broken” by a jump
= NOo got o Instruction in ¢1. -+ - 4,4

S execution cannot start somewhere in the middle
= nol abel Iniy. - 17,

= execution of a basic bloc is atomic

Partition of a 3-address code BBs:

1. computation of Basic Block heads:
1st inst., inst. target of a jump, inst. following a jump

2. computation of Basic Block talls:
last inst, inst. before a Basic Block head

= a single traversal of the TAC

ST (o o



Control Flow Graph (CFG)

A representation of how the execution may progress inside the
TAC

— a graph (V, E) such that:
V= {B;| B;is a basic block}
E = {(BiBj) |

“last inst. of B; Is a jump to 1st inst of B;" V
“1st inst of B; follows last inst of B; in the TAC”}
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Example

Give the Basic Blocks and CFG associated to the following TAC
seguence:

0. x :=1 6. z :=5

1. vy =2 7. 1f dgoto O
2. If c goto 6 8. z .= z+2

3. X = x+1 9. r =1

4. z =4 10y :=y-1

5. goto 8
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Optimizations performed on the CFG

Two levels:

Local optimizations:

computed inside each BB
BBs are transformed independent each others

Global optimizations:

computed on the CFG

transformation of the CFG:
code motion between BBs
transformation of BBs
modification of the CFG edges
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Local optimizations

algebraic simplification, strength reduction
— replace costly computations by less expensive ones

Copy propagation
— suppress useless variables
(i.e., equal to another one, or equal to a constant)

constant folding
— perform operations between constants

common subexpressions
— suppress duplicate computations
(already computed before)

dead code elimination — suppress useless instructions
(which do not influence pgm execution)
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Example of local optimizations

Initial code:
a = X **x 2
b := 3
C := X
d:=cCc * C
e := b * 2
f .= a+d
g:.=e * f
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Example of local optimizations

Copies propagation:
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Example of local optimizations

Constant folding:

O T O

x V

O T O

= a + d

f

= a + d
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Example of local optimizations

Elimination of common subexpressions:

a .= X x* X a = X * X
b := 3 b := 3
C := X C := X
d := X * X d := a
e .= 6 e .= 6
f = a+d f = a+d
g:=¢e x f g:=¢e « f
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Example of local optimizations

Copies propagation:

a = X * X a = X * X
b := 3 b := 3
C := X C := X
d := a d := a
e .= 6 e .= 6
f = a+d f = a+ a
g:=¢e x f g =6 * f
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Example of local optimizations

Dead code elimination (+ strength reduction):

a = X * X a = X * X a.= X x X
b := 3

C := X

d := a

e .= 6

f = a+ a f = a+ a f = a<<1
g :=6 * f g =6 * f g =6 « f
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Local optimization: a more concrete example

Inital source program: addition of matrices
for (1=0 ; 1 <10 ; 1 ++4)
for (j=0; J <10 ; j++)
S[t,]] = A1I,]] +BlI,]]

Basic blocks:
B1: 1:=0
B2: If 1 > 10 goto B7
B3: ]:=0
B4. If ] > 10 goto B6
B5
B6: 1:=1+1
goto B2
B7:. end
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Control Flow Graph

B1
y
ﬁ B2 & B7
B6 B3

k i4/\ BS
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Inital Block B5

B5:

t1
t2
t3
t4
t5
t6
t7

=4 %]
=40 *
=11 +t2
= A[t3]
=4 %
=40 * ]
=t5+1t6

t8 .= BJ[t7]

t9 =14 +t8
t10:=4 * |
t11:=40 * |
t12:=110 + t11
S[t12] =19
j=)+1

goto B4
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Optimization of B5 (1/4)

Be: [l =2+ t8 .= BJ[t7]

' —— t9 ;= t4 + t8
2= 407] t10:= 4 * |
t3:=tl + 2 t11-;_40*'
t4 := A[t3] i )
e t12:= t10 + t11

' . S[t12] :=t9
t6 1= 40 * | o
{7 := 5 + t6 J=ird
' goto B4

A same value Is assigned to temporary locations t1, t5, t10
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Optimization of B5 (2/4)

B5: tl:=4%*|
t2 :=40 *
t3:=t1 +12
t4 .= A[t3]
t6 :=40 *
t7 :=t1 +16

A same value is assigned to temporary locations t2, t6, t11

t8 .= B[t7]
t9 =t4 + 8
t11:=40 * |
t12:=11 +t11
S[t12] =19
j=]+1

goto B4
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Optimization of B5 (3/4)

= BJ|t7
B5: tl:=4*] :3 __ t4[t+]t8
te:=497] 2=t + 0
t3:=t1 + 2 S[t1.2_] 19
t4 := A[t3] T
ji=j+1
t7 :=tl + 12
goto B4

A same value is assigned to temporary locations t3, t7, t12
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B5:

Optimization of B5 (4/4): the final code obtained

t1 =4~
t2 .= 40 *
t3:=tl +1t2
t4 .= A[t3]
t8 = BJt3]
t9 =14 +t8
S[t3] ;=19
j=)+1
goto B4
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Global optimizations
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Global optimization: the principle

Typical examples of global optimizations:
constant propagation trough several basic blocks
elimination of global redundancies
code motion: move invariant computations outside loops

dead code elimination

How to “extrapolate” local optimizations to the whole CFG ?

1. associate (local) properties to entry/exit points of BBs
(set of active variables, set of available expressions, etc.)

2. propagate them along CFG paths
— enforce consistency w.r.t. the CFG structure

3. update each BB (and CFG edges) according to these global properties

= a possible technique: data-flow analysis
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Data-flow analysis

Static computation of data related properties of programs

(local) properties ¢, associated to some pgm locations

set of data-flow equations:
— how o, are transformed along pgm execution
RKs:

forward vs backward propagation (depending on ;)
cycles inside the control flow = fix-point equations !

a solution of this equation system:
— assigns “globaly consistent” values to each ¢;
Rk: such a solution may not exist ...

decidability may require abstractions and/or approximations
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Example: elimination of redundant computations

An expression e Is redundant at location i iff
It Is computed at location ¢

this expression is computed on every path going from the
Initial location to location ¢
Rk: we consider here syntactic equality

on each of these paths: operands of e are not modified
between the last computation of e and location ¢

Optimization is performed as follows:
1. computation of available expressions (data-flow analysis)
2. x := els redundant at loc : If e Is available at ;

3. x:=elsreplaced by x .=t
(where t is a temp. memory containing the value of ¢)

ST (o o



Elimination of redundant computation: an example

X: a+b

y:=y+l
L]

/

X

a+bt X

/

y:=y+l

N

o o X
|i '||' i

N

\/'\

Z:=x+1
v = atb

end

r:=atb

x

T Q

Z:=x+1
vi=ath;t:=v

end
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Data-flow equations for available expressions (1/2)

For a basic block b, we note:
In(b) : available expressions when entering b

Kill(b): expressions made non available by b
(because an operand of e is modified by b)

Gen(b): expressions made available by block b
(computed in b, operands not modified afterwards)

Out(b) : available expressions when exiting b

Out(b) = (In(d) \ Kill(b)) U Gen(b) = Fy(In(b))

Iy, = transfer function of block b
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Data-flow equations for available expressions (2/2)

How to compute In(b) ?
If b is the initial block:
In(b) =1

If b is not the initial block:
An expression e is available at its entry point iff it is available
at the exit point of each predecessor of b in the CFG

Inb)= () Out(®)

b’€Pre(b)

= forward data-flow analysis along the CFG paths

Q: cycles inside the CFG = fix-points computations

greatest vd least solutions ?
[SERTi | | o



Solving the data-flow equations (1/2)

Let (E, <) a partial order.

For X C E,a € E:
a 1S an upper boundof X if vz € X. x < a
aisalower boundof X ifVxr € X. a <z

The least upper bound (lub, L) is the smallest upper bound
The great lower bound (glb, M) is the largest lower bound
(F, <) is alattice if every subset of £ admits a lub and a glb.

A function f : 2¥ — 2¥ is monotonic if:
VX,YCE X<Y = f(X)<f(Y)

X ={xp,21,...2pn,...} C Eis an (increasing) chain if
To<x1 < ... < ...

A function f : 2% — 2% is (L-)continuous if V increasing
chain X, f(UX) = Uf(X)
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Solving the data-flow equations (2/2)

Fix-point equation: solution ?

properties are finite sets of expressions £

(2¢, C) is a complete lattice
1: least element, T: greatest element
1. greatest lower bound, LI: least upper bound

data-flow equations are defined on monotonic and
continuous operators (U, N) on (2%, C)
Kleene and Tarski theorems:

the set of solution is a complete lattice

the greatest (resp. least) solution can be obtained by
successive iterations w.r.t. the greatest (resp. least)

element of 2¢

Ifo(f) = L{f'(L)lie N}  dfp(f) =1{f(T)li € N}
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Back to the example

In=0
X =
L e
X —a+b Z . =x+1
=C v :=atb
/ Out = {a+b} Out = {a+b}
In = {a+b}
y:=y+l
1 out= {a+b} In = {a+b}
r:=atb
end
Out = {a+b}
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Generalization

Data-flow properties are expressed as finite sets associated
to entry/exit points of basic blocs: | n(b), Qut (b)

For a forward analysis:
property is “false” (L) at entry of initial block
Out(b) = Fp(In(b))
| n(b) depends on Qut (b’), where b’ € Pred(b)
(m for “V paths”, U for “d path”)

For a backward analysis:
property is “false” (_L) at exit of final block
In(b) = Fp(0ut(d))
Cut (b) depends on | n(b’), where v’ € Suce(b)
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Data-flow equations: forward analysis

(| if bis initial
Forward In(b) = « | | out(¥)otherwise.
analysis, \ b'ePre(b)
least fix-point

Out(b) = Fp(In(bh))

(1 ifbis initial
Forward In(b) = A« |_| Out (b )otherwise.
analysis, ( b'€Pre(b)

greatest fix-point

out(h) = Fy(In(b))
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Data-flow equations: backward analysis

1 ifbis final
Backward Out(b) = A« | | In(b')otherwise.
analysis, | beSuce(b')
least fix-point
In(b) = Fp(Out(d))
(1 ifbis final
Backward Out(b) = A ] In(b')otherwise.
analysis, \ b'€Suce(d)
greatest fix-point
In(b) = Fp(0ut(h))
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Active Variable

A variable x is inactive at location i If it is not used in every
CFG-path going fromi toj , where| is:

either a final instruction

or an assignement to x.

An instruction x : = e atlocationi is useless if x Is Inactive
at location i .

= useless instuctions can be removed ...

Rk: used means

“In a right-hand side assignment or in a branch condition”.
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Data-flow analysis for inactive variables

We compute the set of active variables ...

Local analysis

Gen(b) is the set of variables x s.t. x is used in block b, and,
In this block, any assignement to x happens after the
(first) use of x.

Kill(z) is the set of variables x assigned in block b.

Global analysis : backward analysis, 4 a CFG-path (least

solution)
Out(b) = L) 1n®¥)
b’ €Suce(d)
In(b) = (Out(b)\Kill(b)) U Gen(d)

Out(b) = 0 if b is final.
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Computation of function&en andK:ill

Recursively defined on the syntax of a basic bloc B:
Bi:=¢|B;x:=a|B; ifbgotol|B; gotol

Gen(B) = Geny(B,0)

Kill(B) = Kill;(B,0)

Geniy(B; x:=a, X) = Geny(B, X \ {x} UUsed(a))
Geny(B; if bgoto1l,X) = Geny(B,X UUsed(b))
Geni(B; goto 1, X) = Geny(B, X)

Gen(e, X) = X

Kill;(B; x:=a, X) = Kill;(B, X U {x})

Kill;(B; if bgoto 1, X) = Kill;(B,X)

Kill;(B; goto 1, X) = Kill;(B, X)

Killy(¢, X) ~- X

Used(e): set of variables appearing in expression e
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Removal of useless instructions

1. Compute the sets In(B) and Out(B) of active variables at
entry and exit points of each blocks.

2. Let F': Code x 2V — Code

F(b, X) is the code obtained when removing useless assignments inside b,
assuming that variables of X are active at the end of b execution.

F(B, X) if o ¢ X
FB;x :=a,X) = .
F(B,(X\{z})UUsed(a));z:=a ifzeX
F(B; ifbgotol,X) = F(B,X UUsed(b));if bgotol
F(B; goto 1, X) = F(B,X);gotol
F(e, X) = €

3. Replace each block B by F (B, Out(B)).

Rk: this transformation may produce new inactive variables ...
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Constant propagation

Example:
Bl j:=2 =
j =i+l J =
M
B3 254

B2

9

| =2

T~

t:=i+

A variable is constant at location | If its value at this location

can be computed at compilation time.

At exit point of B1 and B2, i and | are constants

At entry point of B3, i is not constant, | is constant.

ST (o o



Constant propagation: the lattice

Each variable takes its value in D =N U {T, L}, where:
T means “non constant value”
1 means “no information”

Partial order relation <:
fve Dthen L <vandv < T.

The least upper bound LI:
forx €¢ D and vi,v9 € N

U T =T |zU L ==z vluvngifm;&vg v1 v = v

Rk: relations < is extended to functions Var — D

flr< f2iffve. f1(z) < f2(x)
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Constant propagation: data-flow equations

property at location | is a function Var — D.
Forward analysis:

( Azl if b is initial,
In(b) =1 | | Out(t) otherwise
. b’€Pred(b)
Out(b) = Fy(In(b))

Transfer function Fp ?
a basic block = sequence of assignements

b = e€e|x:i=e;b
Fy, defined by syntactic induction:
FXZ —e b(f) = Fb(f[aj — f(e)]) (assuming variable initialization)
Fe(f) = f
Pgm transformation:
V block b, f € In(b), f(e) = v = X: =e replaced by x: =v
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Exercise

Constant propagation can be viewed as abstraction of the
standard semantics where expressions values are interpreted
other domain D

1. Write this abstract semantics for the whi | e language in an
operational style (relation — )

2. Define a program transformation which removes useless
computations (i.e., computations between constant
operands)

3. Give the equations which express the correctness of this
transformation
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Another example of data-flow analysis

A computation of an expression e can be anticipated at loc. p iff:
all paths from p contains a location p; s.t. e Is computed at p;
e operands are not modified between p and p;

Example:
if (x>0)
X =1 +];
el se
repeat y = (i +j) » 2; x :=x+1 ; until x>10
can be changed to
tnmp =1 + j;
if (x>0)

X = tnp;
el se
repeat y =tnp * 2; x :=x+ 1 ; until x>10

Application: moving invariants outside loops
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Interprocedural analysis

mai n()
{
int i,j ;
void f(){
int X,y ;
y =14 ; X

I
<

a dedicated basic block B.,;; for the cal | instruction
In(Bcall) = In(Bfin)’ OUt(Bcall) = OUt(Bfout)

RKs:
static binding is be assumed
parameters ?

Exercice: Computation of active variables
ST | )



Control-flow analysis

— retrieve program control structures from the CFG ?
Application: loop identification

= use of graph-theoretic notions:
dominator, dominance relation
strongly connected components

Rk1: most loops are easier to identify at syntactic level, but:
use of got o instruction still allowed in high-level languages

optimization performed on intermediate representations
(e.g., CFG)

Rk2: other approaches can be used to identify loops ...
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Loop identification

Node B; is a dominator of By (Be < By) iff every path from the
entry block to B, goes through B,. Dom(B) = {B;|B; < B}.

An edge (B1, B2) is a loop back edge iff By < B;

To find “natural loops™:
1. find a back edge (B1, Bs)
2. find Dom(Bs)
3. find blocks B; € Dom/(B-) s.t. there is a path from B; to B-

not containing B;.

BO[=---~ B2 ™ B1
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Some machine level optimization techniques
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Register Allocation

Pb:

expression operands are much efficiently accessed when
liying In registers (instead of RAM)

the “real” number of registers is finite (and usually small)

= register allocation techniques:

assigns a register to each operand (variable, temporary
location)

performs the memory exchange (LD, ST) when necessary
optimality ?

Several existing techniques:
optimal code generation for arithmetic expressions
graph-coloring techniques (more general case)

etc. S o o



Code generation for arithmetic expressions: example

code generation for (a+b) - (c - (d+e))
with 2 registers, and instruction format=0P Ri, R, X (where X=Ri or X=M X] )

Solution 1: one register needs to be saved

LD RO, M a]

ADD RO, RO, M Db]

LD R1, M d]

ADD R1, R1, M €]

ST R1, Mt1] l register RL needs to be saved ...
LD R1, M c]

SUB R1, R1, Mt1]

SUB RO, RO, R1

Solution 2: no register to save

LD RO, M c]

LD R1, M d]

ADD R1, R1, Me€]
SUB RO, RO, R1
LD R1, M a]

ADD, R1, Rl, M b]

SUB, R1, R1l, RO
S



Code generation for arithmetic expressions: principle

Evaluation of el op e2 , assuming:

r registers are available, evaluation of ei requires r; registers

intsruction format is “op reg, reg, ad” where “ad” is a register or a memory location

Several cases:

1 > T9.

after evaluation of el, r; — 1 registers available

r1 — 1 > ro = r1 — 1 registers are enough for e2

=

r1 — r | register allocations are required

1T =T2.

after evaluation of el, r; — 1 registers available

r1 — 1 < rg, = ro (=r1) registers required for e2

=

rm+1—r

r1 < Tro.

register allocations are required

after evaluation of el, r; — 1 registers available

r1 — 1 < rq, = ro (> r1) registers required for e2

= r9 + 1 — r register allocations are required

ro — r allocations are enough if e2 is evaluated first !
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A two-phase algorithm

Step 1. each AST node is labeled with the number of registers required for its evaluation

Nb : Aexp — N (rNb(e) is the number of registers required to evaluate e)

rNb(e)

Nb(el op e2 )

1 ife Is aleftleaf

0 ife isarightleaf

max(rNb(e1),rNb(ez)) if rNb(e1) # rNb(ez)

Nb(e1) +1 ifrNb(e1) = rNb(ez)

Step 2: “optimal” code generation using these labels (exercice)
— for a binary node el op e2:

evaluate the more register demanding sub-expression first

write the result in a register R: (save one if necessary)

evaluate the other sub-expression, write the result in a register Rj

generate OP, Ri,

R
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A more general technique

1. Intermediate code is generated assuming co numbers of “symbolic” registers S;

2. Assign a real register R; to each symbolic register s.t.
if R; is assigned to .S;, R; is assigned to .S;
then Lifetime(.S;) N lifetime(S,;) # 0 = R; # R;
where Lifetime(.S;): sequences of pgm location where S; is active

How to ensure this condition ?

Collision graph G¢:
Nodes denote lifetime symbolic registers: N; = (S;, Lifetime(.S;))
Edges are the set {((S1, L1),(S2, L2) | L1 and Lo overlap}

= register allocation with k real register = k-coloring problem of G

(i.e., assign a distinct colour to each pair of adjacent nodes)
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Example 1

S1 :=¢e€el
S2 = e?
.. S2 .. S2 used
S3 = S1+S2 S1 and S2 used
S4 = S1*5 S1 used
4 ... S4 used
S3 ... S3 used

Collision Graph:

S1 S2
O @
53. O54

Can be colored with 2 colors = 2 real registers are enough. .c=——



k-coloring in practice ? (1)

When k£ > 2, this problem is NP-complete ...
An efficient heuristic:

Repeat:

if exists a node N of G¢ such that degree(N) < k
(N can receive a distinct colour from all its neighbours)
remove N (and corresponding edges) from G~ and push it on a stack S

else (G¢ is assumed to be non k-colourable)
choose anode N (1)
remove N from G¢ (2

until G is empty
While S is not empty

pop a node from S

add it to GG, give it a colour not used by one of its neighbours

Rk: this algo may sometimes miss k-colorable graphs ...
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k-coloring in practice ? (2)
What happens when there is no node of degree < k£ ?

(1) choose a node N to remove:

— high degree in G¢, not corresponding to an inner loop, etc.
(2) remove node N:

— save a register into memory before (register spilling)

Several attempts to improve this algorithm:

node coalescing:
S1 : = S2, Lifetime(S1) N Lifetime(S52) = ()
= nodes associated to S1 and S2 could be merged
pb: it increases the graph degree ...

lifetime splitting:
long lifetime increases the graph degree

= split it into several parts ...
pb: where to split ?

ST (o o



Instruction scheduling

Motivation: exploit the instruction parallelism provided in many target architectures
(e.g., VLIW processors, instruction pipeline, etc.)

Pbs:

possible data dependancies between consecutive instructions
(e.g.,x := 3 ; y = x+l)

possible resource conflicts between consecutive instructions
(ALU, co-processors, bus, etc.)

consecutive instructions may require various execution cycles

etc.

= Main technique: change the initial instruction sequence (instruction scheduling)
preserve the initial pgm semantics

better exploit the hardware resources

Rks: “loop unrolling” and “expression tree reduction” may help ...
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Dependency Graph

Data dependencies:
— execution order of 2 instructions should be preserved in the following situation:

Read After Write (RAW) : inst. 2 read a data written by inst. 1
Write After Read (WAR) : inst. 2 write a data read by inst. 1

Write After Write (WAW) : inst. 2 write a data written by inst. 1

Dependency graph G p
nodes = { instructions }
edges = {(i1,d, i2) | there is a dependency d from iy to is }

Rk: if we consider a basic block, G p is a directed acyclic graph.

Any topological sort of Gp leads to a valid result (w.r.t. pgm semantics).
This sort can be influenced by several factors:

the resources used by the instruction (d a static reservation table)
the number of cycles it requires (latency)

etc.
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Example

program

< < T X 9

. Give a topological sort of Gp
. Rewrite this program with a “maximal” parallelism

Xx+1
2+y
z+1
a*b
axC
3+t

. Draw the dependency graph Gp associated to the following
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Software pipelining (overview .. .)

Idea: exploit the parallelism between instrutions of distinct loop iterations

for kin 1 .. NIoop

r .= T[k] ; - inst. A

X =X +r1 ; - inst. B

T[K] = x ; - inst. C
end | oop

Assumptions: 3 cycles per instruction, 1 cycle delay when no dependencies
Initial exec. sequence: A(1), B(1), C(1), A(2), B(2), C(2), ...A(k), B(k), C(k)
= 7 cycles / iteration

“Pipelined exec. sequence”: A(1), A(2), A(3), B(1), B(2), B(3), C(1), C(2), C(3), ...
= 3 cycles / iteration !

(real life) pbs:

N not always divisible by the number of instruction in the loop body
for kinl1lto N2 step 3 loop A(k) ; A(k+l) ; A(k+2)

high latency instruction in the loop body

possible overhead when k is not “large enough”
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Code Generation
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Overview

. Introduction

. The “M” Machine

. Code generation for basic whi | e

. Extension 1: blocks and procedures

. Extension 2: some OO features
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Main issues for code generation

iInput : (well-typed) source pgm AST
output : machine level code

Expected properties for the output:

compliance with the target machine
Instruction set, architecture, memory access, OS, ...

correctness of the generated code
semantically equivalent to the source pgm

optimality w.r.t. non-functional criteria
execution time, memory size, energy comsumption, ...
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A pragmatic approach

AST

!

Intermediate code generation

!

Intermediate Representation 1

1
Intermediate Representation n

!

(final) code generation

!

target machine code

[l

[

optimization(s)

optimization(s)
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Intermediate Representations

Abstractions of a real target machine
generic code level instruction set
simple addressing modes
simple memory hierarchy

Examples
a “stack machine”
a “register machine”
etc.

Rk: other intermediate representations are used in the
optimization phases ...
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The “M” Machine

Machine with (unlimited) registers Ri
special registers: program counter PC, frame pointer FP,
stack pointer SP, register RO (contains always 0)

Instructions, addresses, and integers take 4 bytes in
memory
Address of variable x is E - of f x where:
E = address of the environment definition of x
of f x = offset of x within this environment
(staticaly computed, stored in the symbol table)
Addressing modes:
Ri ,val (immediate), Ri +/- R ,R +/- offset
usual arithmetic instructions OPER: ADD, SUB, AND, etc.

usual (conditional) branch instructions BRANCH: BA, BEQ,
BGT, etc.

ST (o o



Instruction Set

Instruction Informal semantics

OPER Ri, R, Rk | Ri+ RjoperRk

OPER R, Rk, val | Ri+ Rjoperval

CMP R, R Ri-R] (set cond flags)

LD R, [adr] Ri + Mem|[adr]

ST R, [adr] Meml[adr] «+ Ri

BRANCH | abel If cond then PC + | abel
else PC +— PC +4

CALL | abel branch to the procedure
labelled with | abel

RET end of procedure
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Thewhi | e language

= d;c

= varx|d;d
X:=a|s;s|ifbthenselses|whilebs
= n|x|a+ala*a]..
a=al|bandb|notb|..

O 9 O O T
1

Rk: terms are well-typed
— distinction between boolean and arithmetic expr.

Exo: Give the “M Machine” code for the following terms:
1.y := x+42 = (3+y)

2. 1f (not x=1) then x := x+1
else x :=x-1; vy =X ;
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Functions for Code Generation

GCSt m: Stm — Code*
GCSt n(s) computes the code C corresponding to
statement s.

GCAEXp : Exp — Code* x Reg
GCAExp( e) returns a pair (C, i ) where Cis the code
allowing to 1. compute the value of e, 2. storeitin R .

GCBEXxp : BExpx Labelx Label — Code*
GCBExp(b, Itrue, |fal se) produces code C allowing
to compute the value of b and branch to label | t r ue when

this value iIs “true” and to | f al se otherwise.
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Auxilliary functions

Al l ocRegi ster . — Reg
allocate a new register Ri

newLabel . — Labels
produce a new | abel

GCet O f set . Var - N
returns the offset
corresponding to the specified name

| denotes concatenation for Code sequences.
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GCStm

CCStm(x :=e) = Let (C,)=GCAEXp(e),
k=Get O f set (X)
in C| ST Ri, [FP-K]
GCStm(cy ; co) = Let Cy=GCCStnc),
Co = GCSt m(cg)
in C;| Co
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GCStm (2)

CCSt m(while e ¢)

Let

lb=newLabel (),
ltrue=newLabel (),
Ifalse=newLabel ()
Ib:||
GCBExp(e,ltrue,lfalse)||
Iltrue: ||

GCSt m(c)|

BAIb||

Ifalse:
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GCStm (3)

CStm(if e then c; else cy) = Let Inext=newLabel (),
ltrue=newLabel (),
Ifalse=newLabel ()

In  GCBExp(e,ltrue,lfalse)||

ltrue:
GCSt n(c1)|
BA Inext ||
Ifalse: ||
GCSt n(cy)|
Inext:
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GCAexp

GCAEXp(X) Let I=All ocReqgister()
k=CGet O f set (x)
in  ((LDRI,[FP-K]),D)
GCAEXxp(n) Let i=All ocReqgister()
in  ((ADD RIi,RO,n),i)
GCAExp(e; + e3) Let (Cy,i1)=GCAEXp(e1),
(Co,12)=CCAEXp(€e2),
k=Al | ocReqgi st er ()
in  ((C1]/Cq|| ADDRK, Riy,Riz),k)
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GCBexp

GCCBExp (e1 = ey,ltrue,lfalse) = Let (Cq,I1)=CGCAEXp(e;),
(Ca,12)=GCAEXp(e2),
in GGy
CMVP RIiy, Ris
BEQ Itrue
BA Ifalse
GCCBExp (e; et es,ltrue,lfalse) = Let I|=newlLabel ()
In  GCBExp(ey,l lfalse)|

2|
GCBExp(es,ltrue,lfalse)

GCBEXp(NOT e, ltrue,lfalse)

GCBEx p(e,lfalse,ltrue)
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Exercises

code obtained for
y = X+42 * (3+y)
1 f (not x=1) then x := x+1
else x :=x-1; vy :=Xx;

add new statements (e.g, r epeat )
add new operators (e.g,b ? el : e2)
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Extension 1: blocks
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Blocks

Syntax

S = ... |begin Dy ; S end
Dy == varx| Dy ; Dy

Rk: variables are unitialized and assumed to be of type Int

Problems raised for code generation
— to preserve scoping rules:

local variables should be visible inside the block
their lifetime should be limited to block execution

Possible locations to store local variables

— registers vs memory
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Storing local variables in memory - Example 1

begi n

valr X , var y , var Z

end

FP —

l offy

<X

a memory environment is associated to each declaration Dv
register FP contains the address of the current environment
(static) offsets are associated to each local variables
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Storing local variables in memory - Example 2

begi n
var x ; var y ; <sl>
begi n
var X ; var z ; <s2>
end ;
<s3>
end
<si> <s2> <s3>
FP— - FPp —»
X X X
y y y

FP—

entering/leaving a block — allocate/de-allocate a mem. env.
nested block env. have to be linked together: “Ariane link”

= a stack of memory environments ... (~ operational semantics)
ST | ) [



Structure of the memory

code data

1: global variables
2: execution stack, SP = last occupied address
3: heap (for dynamic allocation)

ST (o o



Code generation for variable declarations

Si zeDecl : Dy — N
Si zeDecl (d) computes the size of declarations d

Si zeDecl (var x)

4 (x oftype I nt)

Si zeDecl (d; ; dy) = Let vy = Si zeDecl (dy),
Vo = Si zeDecl (do)
I N Vi + Vo
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Code Generation for blocks

CCSt m(begin d ; s ; end) = Let size=Si zeDecl (d),

C=CCSt m(s)
in ADD, SP, SP, -4 ||

ST FPR, [SP] |
ADD FP, SP, 0 ||
ADD SP, SP, size ||
C|
ADD SP, FP, 0 ||
LDFP, [SP] |
ADD SP, SP, 4 ||
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With the help of some auxilliary functions . ..

prol ogue(si ze) epi | ogue push register(Ri)
ADD SP, SP, -4
ADD SP, FP, O
ST FP, [ SP] ADD SP, SP, -4
LD FP, [ SP] _
ADD FP, SP, 0 ST R, [SP]

ADD SP, SP, +4
ADD SP, SP, size

CStm(begin d ; s ; end) = Let size=Si zeDecl (d),
C=GCSt m(s)
in Prologue(size) ||
Cl
Epilogue
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Access to variables from a block ?

begi n
var ...
X 1= ...
end

What is the memory address of x ?

If X Is a local variable (w.r.t the current block)
= adr(x) = FP + GetOffset(x)

If X Is a non local variable

= It Is defined in a “nesting” memory env. E

= adr(x) = adr(F) + GetOffset(x)

adr(E) can be accessed through the “Ariane link” . ..
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Access tanon localvariables

The number n of indirections to perform on the “Ariane link”
depends on the “distance” between:

the nesting level of the current block : p
the nesting level of the target environment : r

More precisely:
r<p

n=p-—r

= n can be staticaly computed ...
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Example

begi n
var X ; /* env. E1l, nesting level =1 */
begi n
var y ; /* env. E2, nesting level = 2 */
begi n
var z ; /* env. E3, nesting level = 3 x/
X :=y +2z [+ s, nesting level = 3 «/
end
end
end

From statement s:
no indirection to access to z
1 indirection to access toy

2 indirections to access to x
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Code generation for variable access

1. the nesting level r of each identifier x is computed during type-checking;

2. Itis associated to each occurrence of x in the AST
(via the symbol table)

3. function GCStm keeps track of the current nesting level p
(incremented/decremented at each block entry/exit)

adr(x) is obtained by executing the following code:
if r = p:
FP + GetOffset(x)

if r < p:

LD Ri, [FP]
IDR, [R]} (p—r—1) times
Ri + GetOffset(x)
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Example (ctn'd)

begi n
var X ; /* env. E1l, nesting level =1 */
begi n
var y ; /* env. E2, nesting level = 2 */
begi n
var z ; /* env. E3, nesting level = 3 x/
X :=y +2z [+ s, nesting level = 3 «/
end
end
end

LD R1,[FP] !R1 = adr(E2)

X LD R2, [R1 + offy] IR2 =y

LD R3, [FP +offzZ] I!R3=z2

—y ADD R4,R2,R3 R4 =vy+z
LD RS5, [FP]

FP —»

LD R5,[R5] !R5 =adr(E1)

Code generated for statement s

ST R4, [R5 + offx] IX=y+:
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Extension 2: Procedures
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Syntax

Procedure declarations:

Dp == procp (FPp) isS; Dp|e
FP;, == x, FPp |e
Statements:
S == ---|begin Dy ;Dp; Send|calp(EPr)
EP;, == AFEzp, EP; |¢

F Pr. formal parameters list ; £ P;,. effective parameters list

Rk: we assume here value-passing of integer parameters ...
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Example

var 2z ;

proc pl () iIs

begi n
proc p2(x, y) IS z =X +vy,;
z .= 0 ;
call p2(z+1, 3)

end

proc p3 (X) IS
begi n
var z ;
call pli() ; z :
end

Z+X

call p3(42) ;
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Main issues for code generation

Procedure P is calling procedure Q...

Before the call:

set up the memory environment of Q

evaluate and “transmit” the effective parameters
switch to the memory environment of Q

branch to first intruction of Q

During the call:

access to local/non local procedures and variables
access to parameter values

After the call:

switch back to the memory environment of P
resume execution to the P instruction following the call
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Access to non-local variables

proc main is

begi n [+ definition env. of p */
var X ;
proc p() is x:=3 ;
proc g() is
begi n
var X ;
proc r() is call p()
call r() ;
end ;
call q() ;
end

Static binding = when p is executed:

acces to the memory env. of mai n =
definition environment of the callee, static link

acces to the memory env. of r
memory environment of the caller, dynamic link

Eacaca



Information exchanged betweeallersandcallees?

parameter values

return address

address of the caller memory environment (dynamic link)
address of the callee environment definition (static link)

This information should be stored in a memory zone:

dynamically allocated
(exact number of procedure calls cannot be foreseen at compile time)

accessible from both parties
(those address could be computed by the caller and the callee)

=

Inside the execution stack, at well defined offsets w.r.t FP
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A possible “protocol” between the two parties

Before the call, the caller:

evaluates the effective parameters

pushes their values

pushes the static link of the callee

pushes the return address, and branch to the callee’s 1st instruction

when it begins, the callee:

pushes FP (dynamic link)
assigns SP to FP (memory env. address)
allocates its local variables on the stack

when it ends, the callee:

de-allocates its local variables
restores FP to caller’'s memory env. (dynamic link)
branch to the return address, and pops it from the stack

After the call, the caller

de-allocates the static link and parameters
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Organization of the execution stack

low addresses

SP Addresses, from the callee:
—_—
?nevri]:gmnent loc. variables: FP+d, d<0
local variabl .
ocal variables of the callee dynamic link: FP
return address: FP+4
FP T ]
—— | dynamic link —* .
return address static link: FP+8
r‘ static link parameters: FP+d, d>=12
parameters
memory
environment
of the caller
high addresses
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Memory environment of the callee

0
Loc. var,, +SP, FP- 4*n

Loc. vary +FP
Dynamic link | «FP
Return address | < FP+4
Static link +—FP+8
Param,, +—FP+12

Param; +—FP+8+4*n
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Code generation for a procedure declaration

GCProc : Dp — Code*
GCSt n(dp) computes the code C corresponding to procedure declaration dp.

GCProc (proc p (FPr) is send) = Let
C=GCSt m(s)
in Prologue(0) ||
C|
Epilogue
GCProc (proc p (FPr) is begindv;dp;send ) = Let size=Si zeDecl (dv),
C=GCSt m(s)
in Prologue(size) ||
c|
Epilogue

Rk: this function is applied to each procedure declaration

Eacaca



Prologue & Epilogue

Prologue (size):
push (FP)
ADD FP, SP, O

ADD SP, SP, -size

Epilogue:
ADD SP, FP, O
LD FP, [ SP]

ADD SP, SP, +4
RET

RET:
LD PC, [SP] /!

dynam c |ink
FP := SP

| oc. vari ables all ocation

SP := FP, |oc. var.

restore FP

return to caller

ADD SP, SP, +4

de-al |l ocati on
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Code Generation for a procedure call

Four steps:

1.

evaluate and push each effective parameter

2. push the static link of the callee
3.
4

. de-allocate the parameter zone

push the return address and branch to the callee

GCSt m(call p (ep)) = Let (C, size) = GCPar an(ep)
i n
C|
Push (StaticLink(p)) ||
CALL p |

ADD SP, SP, size+4

CALL p:

ADD R1, PC, +4//Push (Rl)//BA
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Parameters evaluation

GCPar am: FP; — Code* xIN
GCSt m( ep) =( ¢, n) where c Is the code to evaluate and “push”
each effective parameter of ep and n is the size of pushed data.

GCPar am(e) = (5,0
GCParam(a ; ep) = Let
(Ca, 1) = GCAexp (a),
(C, size) = GCPar am(ep)
I N

(Ca || Push (R;) || C, 4 + size)
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Static link and non local variable access ?

A global (unigue) name is given to each identifier:

proc Main is
proc P1 (...) is

proc Pn (...) is
begi n

var x ...
end

— X isnamed Main.Py. -+ .Py.x

This notation induces a partial order:
(Main.Py -+ .Pp < Main.P{--- .P!,) < (n <n' and Vk < n.P, = P})

For an identifier x = Main.Py --- .P,,.x,
z® = Main.Py - -- .P,, 1S the definition environment of =

For any identifier z (variable or procedure), procedure P can access x iff x® < P.
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Examples

A variable x declared in P can be accessed from P since
x®* = P (hence z* < P).

If g and = are declared in f, then x can be accessed from g
since z* = fand f < g.

If z and f; are declared in Main, f5 is declared in fi, then x
can be accessed from f5 since z®* = Main, fo = Main.f1.fo

(z°* < f2)

If p; and py are both declared in Main, = is declared in pq,
then x cannot be accessed from py, since x* = Main.py
and Main.py £ Main.ps
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Code Generation for accessing (non-) local identifiers

d. . offset of x (variables or parameters) in its definition environment (x*)

P: current procedure

Condition x = variable or parameter x = procedure
z® =P adr(x) = FP+d,, SL(X) = FP
x® < P n-k-1 indirections n-k-1 indirections

t=M.Py-- P,

P=M.P --P,--

P,

LD R, [ FP+8]
LD R[Rt8] } x (n—k—1)
adr(x) = R+d,

LD R, [ FP+8]
LD R[Rt8] } x (n—k—1)
SL(x)=R
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Back to the 1st example

var 27

proc pl () is
begi n
proc p2(x, y) is z :=Xx +Yy ;
z =0 ;
call p2(z+1, 3) ;
end

proc p3 (x) is
begi n
var z ;
call pl() ; z := z+x ;
end

call p3(42) ;

Exercice:
give the execution stack when p2 is executed
give the code for procedures pl and p2 =



Exercice

Consider the following extensions
functions
other parameter modes (by reference, by result)
dynamic binding for variables and procedures ?
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Procedures used as variables or parameters

var z1 ;

var p proc (int) ; /+* pis a procedure variable =/
proc pl (x : int) is z1 := X ;

proc p2 (q : proc (int)) is call qg(2)

proc gl is
begi n
var z1 ;
proc g2 (y int) is z1 := x ;
p =092 ;
call p ;
end
p:=pl;
call p ;
call p2 (pl)
Q: what code to produce forp := ... ?forcall p2(pl) ?forcall p?
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Information associated to a procedure at code level

p =02
call p
To translate a procedure call, we need:

the address of its 1st instruction
the address of its environment definition

= Variable p should store both information
= At code level, a procedure type Is a pair

(address of code, address of memory environment)

Exercice: code produced for the previous example ?
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