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Abstract—Fuzz testing consists of automatically generating
and sending malicious inputs to an application in order to
hopefully trigger a vulnerability. In order to be efficient, the
fuzzing should answer questions such as: Where to send a
malicious value? Where to observe its effects? How to position
the system in such states? Answering such questions is a matter
of understanding precisely enough the application. Reverse-
engineering is a possible way to gain this knowledge, especially in
a black-box harness. In fact, given the complexity of modern web
applications, automated black-box scanners alternatively reverse-
engineer and fuzz web applications to detect vulnerabilities.

We present an approach, named as LigRE, which improves
the reverse engineering to guide the fuzzing. We adapt a method
to automatically learn a control flow model of web applications,
and annotate this model with inferred data flows. Afterwards,
we generate slices of the model for guiding the scope of a fuzzer.

Empirical experiments show that LigRE increases detection
capabilities of Cross Site Scripting (XSS), a particular case of
web command injection vulnerabilities.

Index Terms—Control Flow Inference, Data-Flow Inference,
XSS, Web Application, Reverse-Engineering, Penetration Testing

I. INTRODUCTION

A. Context

XSS is one of the most dangerous web attacks: it ranks third
in the OWASP Top 10 vulnerabilities[1]. Criminals use XSS to
spam social networks, spread malwares and steal money[2]. In
2013, XSS were found in Paypal, Facebook, and eBay[3, 4, 5].

Automatically detecting XSS is an open problem. In case
of access to the source code, white-box techniques range from
static analysis to dynamic monitoring of instrumented code. If
the binary or the code are inaccessible, black-box approaches
generate inputs and observe responses. Such approaches are
independent of the language used to create the application, and
avoid a harness setup. As they mimic the behaviors of external
attackers, they are useful for offensive security purposes, and
may test defenses such as web application firewalls.

Automated black-box security testing tools for web applica-
tions have long been around. However, even in 2012, the fault
detection capability of such tools is low: the best ones only
detect 40% of non-filtered Type-2 XSS, and 1/3 do not detect
any[6, 7]. This is due to an imprecise learned knowledge,
imprecise test verdicts, and limited sets of attack values[8].

The automatic black-box detection of web vulnerabilities
generally consists of two steps: “crawling” infers the control

flow of the application, then “fuzzing” generates malicious
inputs to exhibit vulnerabilities. Doupé et al. showed that
precisely inferring the control flow increases vulnerability
detection capabilities[9]. XSS involve both control and data
flows, as they rely on an input value being partly copied to
a transition output. Therefore we propose an approach that
learns both flows, and uses them by driving the fuzzing.

B. High Level Overview

LigRE is a reverse-engineering approach which guides the
fuzzing towards detecting XSS vulnerabilities. As illustrated
in Figure 1, it first learns a data plus control flow model, and
then generates slices of this model to guide the fuzzing.
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Fig. 1. High Level View of the LigRE Approach

1) Control and Data Flow Inference: Step A of Figure 1
learns the control flow of the application, using a state aware
crawler, to maximize coverage. Step B annotates the inferred
model with observable data flows of input values into outputs
to produce a control plus data flow model. Annotations flow
from a source tsrc to a potential sink tdst. A heuristic driven
substring matching avoids false negatives.

2) Slicing and Fuzzing: The most promising annotations
are prioritized. For each of them, we produce a slice of the
model. Our particular slices are pruned models. They permit
to drive the application to tsrc origin, for sending a malicious
value xsrc, and then to guide the fuzzer to navigate towards
tdst, for observing the effects of xsrc.

The paper is organized as follows. Section II provides a
walk-through of LigRE over an example. Section III details
the control flow inference. Section IV describes the data flows
annotations. Section V describes how slices are generated
and used to guide the fuzzing. Section VII measures the
effectiveness of LigRE on typical applications. Finally, we
discuss our approach in Section VIII, survey related work in
Section IX, and conclude in Section X.
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II. ILLUSTRATING EXAMPLE

A. P0wnMe and XSS

P0wnMe is a voluntarily vulnerable web application
containing several XSS. Once authenticated, a user can
save a new message, view the saved ones, or logout.
She saves a note, e.g., “egassem ”, by filling and sub-
mitting the form, i.e., sending the abstract input POST
/?action=save_message&msg=egassem_ (transition
7→ 17) to the application. Later on, she lists the saved notes,
by sending GET /?action=get_messages (transition
18 → 21). An extract of corresponding output is represented
in Listing 1. Various server languages can produce this output.

1<H2>list of saved messages</H2>
2 egassem_<A href="./?action=delete&id=1">[X]</A>

Listing 1. Excerpt of P0wnMe Output for the Transition 18→ 21

The value of the input parameter msg, sent in the transition
7→ 17, is reflected in 18→ 21: we observe it in the output.

In this precise example, this reflection is not filtered:
the exact value sent in 7 → 17 is copied in the output of
18 → 21. An attacker would attempt to send a malicious
msg value to escape the confinement[10] (e.g., in Listing 1,
one reflection is confined outside tags, before the <A>
tag). An example of malicious input is 7 → 17(POST
/?action=save_message&msg=egassem_
<script> alert(1337)</script>). An exert of
the corresponding output for the subsequent transition
18 → 21 is ...of saved messages</h2>
egassem_ <script> alert(1337)</script><a
href="./?action=delete....
When the victim’s browser parses this output, it executes the
code introduced by the attacker.

B. Limitations of Black-Box XSS Scanners

Most of considered open-source black box web scanners
fail at detecting this XSS. The main reasons are imprecise
application behavior awareness (some scanners do not navigate
properly, and do not observe the reflections), imprecise test
verdict (e.g., Skipfish considers a page model change to be a
sufficient condition for XSS), and limited set of fuzzed values
(unaware of the output structure or the filters). Our approach
overcomes the first limitation using a combination of control
flow inference, data flow inference and a guided fuzzing.

C. LigRE Execution on P0wnMe

LigRE infers a Control Flow Model (CFM) in the form of a
colored automaton (nodes and continuous arrows of Figure 2),
up to a tester defined precision. Then it walks through the
model by generating HTTP requests and submitting them to
the application. The corresponding responses (HTTP replies)
are recorded. Data flows of sent input parameter values are
inferred on the outputs, and annotated on the model (blue
dashed lines on Figure 2).

Model slices are computed (see Figure 3), and prioritized.
Each slice is composed of a prefix and a suffix. For instance,
the prefix [0 → 2, 2 → 7] and the suffix [7 → 17, 17 →

0 GET /

2

GET /?action=auth&

POST /? {} 

7

POST /? {' login': 'yoda' ,
 'password': 'DoOrDoNot'}

GET /? 
 POST /? {'message2': ' /'}

GET
/?action=
logout&

33

POST /? 
 {'message2': 

'2_e_g_a_s_sem'}

17

POST /? 
{'action': 'save_message'

'msg': 'egassem_'}

9

GET /?action=
view_messages GET /

GET /?action=
view_messages

GET / 
 GET /?action=

message&

GET /?action=
view_messages&

18 GET /?

21

GET /?action=
view_messages

GET /?

GET /?action=delete
_message&id=1

start

GET /

Fig. 2. Extract of the Control + Data Flow Model for the P0wnMe application

18, 18→ 21]. LigRE sends the prefix to the application, then
pass the authentication credentials (e.g., cookie) to the w3af
fuzzer1[11] and limits its scope to the suffix.

0 GET /

2

GET /?action=auth&

POST /? {} 

7

POST /? {' login' : 'yoda' ,
 'password': 'DoOrDoNot'}

GET /? 
 POST /? {'message2': ' /'}

start

GET /

7
GET /? 

 POST /? {'message2': ' /'}

17

POST /? 
{'action': 'save_message'

'msg': 'egassem_'}

18 GET /?

21

GET /?action=
view_messages

GET /?

Fig. 3. A Slice produced by LigRE for the P0wnMe application (prefix on
the left part, and suffix on the right)

When the fuzzing terminates, LigRE reports on the found
XSS, if any, along with the corresponding HTTP requests.

1We use w3af as the fuzzer. Other configurable ones can also be used.
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III. HEURISTIC BASED CONTROL FLOW INFERENCE

Step A in Figure 1 takes as inputs parameters to interact
with a remote web application (e.g., interface, authentication
credentials), and outputs a control flow model (CFM). A CFM
formalizes the observable behavior of a web application in
a black-box harness. It is an Extended Finite-State-Machine
(EFSM)[12] in which nodes (states) represent webpages and
transitions represent requests and associated responses. As in
[9], we color its nodes according to the macro-state of the
application(e.g., logged-in, logged-out). A CFM is illustrated
in Figure 2, if omitting the dashed blue lines. We formally
define macro-state and CFM in Definition 1 and Definition 2.

The control flow inference step uses heuristics to identify
which request changed the macro-state (Section III-C), choose
the next request to be performed (Section III-D), and assess the
degree of certainty in the model (Section III-E1). The model
is iteratively built. In case of a non-coherent observation w.r.t.
the model, backtracking undoes the recently built parts.

A. Abstraction Level

We define concretize(i) which produces an HTTP
request req from a spiderlink i, and abstract(resp)
which abstracts an HTTP response resp into a page model
p, as shown in Figure 4. The inferred CFM (regular lines and
nodes in Figure 2) corresponds to inputs and outputs at the
abstract level. Those are defined as follows:

spiderlink i page model p

HTTP request
req

HTTP reply
resp

abstract level

concrete level

Website

concretize abstract

Fig. 4. Abstraction and Concretization Functions for Web Applications

1) Input, concretize(Spiderlink i): A spiderlink is a
list of parameters (name, value,method), s.t. method ∈ {GET,
POST, COOKIE, HEADER}. Spiderlinks are built from links and
forms. A path from the root to a leaf in Figure 5 is a spiderlink.

In the process of abstraction, some parameters are
omitted: Non Deterministic Values (NDV), or nonces[13], i.e.,
parameters whose values differ when sending twice an input
sequence (and resetting the system in between). Examples of
NDV include: anti-CSRF tokens, session id, view states. In
the presence of NDV, crawlers achieve a limited coverage. We
address this problem by requiring the user to identify NDV.
NDV can be automatically detected[14].

2) Output, Abstraction to Page Model p: the website out-
put, an HTTP Reply resp, is abstracted to a page model
p(resp). The left side of Figure 5 represents the browser
rendering of resp, while the right side represents the corre-
sponding page model, which is a prefix tree. We build it by
iteratively constructing a vector for each link or form in resp,
and adding them to the tree. Each vector consists of:

• dompath is the shortest path in the Document Object
Model from the root to the node

• action contains each part of the path split by /
• params is the list of par parameter names
• values are the par parameters values
• methods are the par parameters methods

page

/html/body/div/span/a

/

()

()

()

/login

()

()

()

/newaccount

()

()

()

/html/body/div/form

/login

(uid,pw,submit)

(∅,∅,’Login’)

(GET,GET,GET)

Fig. 5. Abstraction: the output resp and the corresponding Page Model p

Once a page model is built, spiderlinks can be generated by
traversing it via a shortest path from the root to a leaf.

B. Vocabulary and Definitions

The history of inputs and outputs serves to build a naviga-
tion graph, which is used to build a CFM. Both are colored.
Their coloration evolves to characterize the macro-states.

1) Macro-State: This important notion to understand the
control flow of a web application designates “anything that
influences the executed code at server side”. Both nodes and
macro-states represent the current execution context of the
web application. They differ in their granularity. A node
is characterized by a page (i.e., the last output). Whereas
a macro-state is a set of nodes, i.e., at a higher level of
abstraction, and is characterized by a common behavior of
these nodes. For clarity, we refer to (micro-)states as nodes.
Definition 1 formalizes this notion.

Definition 1 Macro-State
Let M = (S ,T ) be a deterministic consistent Extended Finite-
State-Machine (EFSM)[12]. A set of nodes S c = (sα, ..., sγ, γ ≥
1) ⊆ S is a macro-state of color c ∈ C ⊂ N ⇐⇒
• ∀ input i ∈ X, ∃! (output oi ∈ Y , node si ∈ S ), ∀β ∈ [α...γ],

(sβ, i) → (si, oi) i.e., the execution of i from the node sβ
produces the same output oi and drives the system in the
node si which only depends on i.

• S C is a maximal connected component in M: i.e., either
S c has only one node, or ∀sβ ∈ S c,∃sζ ∈ S c, sζ , sβ,∃t ∈
T, sβ t
−→

sζ or sζ t
−→

sβ.

2) Navigation Graph: This prefix tree contains the traces
denoted as history in Listing 2. Figure 6 shows the evolu-
tion of nodes colors during the inference.

3) Control Flow Model: The notion of Control Flow Model
(CFM) is formally defined in Definition 2. A CFM is illus-
trated by the nodes and continuous arrows of Figure 2.
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Definition 2 Control Flow Model (CFM)
A CFM M = (S ,T,C), is a consistent, deterministic, colored
EFSM, s.t. :
• macro-states partition S :

– each node n ∈ S has a color c ∈ C, i.e., the color of
a node is a context variable in V ;

– for each color c ∈ C, let S c be the set of nodes in
S having this color. Either S c is empty, or S c is a
macro-state (Definition 1) ;

• transitions map to spiderlinks: for each transition t ∈ T ,
– the only operators used in guards are the equality (=)

and the logical and (∧) ;
– inputs are in { req0(method,action),

req1(method,action,param1name,param1value), . . .}
• outputs are in {page model(num), num ∈ N}

The inferred CFM are not necessarily total[15] nor com-
pletely specified for each pair of node and input. For the sake
of simplicity, we minimize the representation in Figure 2.
For instance, the transition 7 → 33 should be written as:
req1(method, action, param1name, param1value), (
req1.method = "POST" ∧req1.action = "/?"
∧ req1.param1name = "message2"
∧ req1.param1value = "2 e g a sem"
)/page model(6), c = 1

C. Macro-State Change Detection

As shown in Listing 2, in order to precisely characterize the
macro-state, we solve four sub-problems: Did the macro-state
change? Which request changed the macro-state? What is the
current macro-state? Which link to pick next?

10→ 20 GET /saveprofile?action=new&is_author=True&...

20→ 21 GET /login

10

20

GET /login

10

20

21

After
21th request

After
20th request

Fig. 6. Evolution of the Navigation Graph when the Macro-State Changes

1) Example: Figure 6 shows the evolution of an extract of
the navigation graph when a macro-state change occurs. In
this example, the request GET /login permits detecting the
macro-state change, because the page model obtained in→ 10

is different from the one obtained in 20 → 21, and the same
spiderlink GET /login was executed. 10 → 20 is selected
as the cause of the state-change, because it has the highest
score value among [→ 10, 10→ 20, 20→ 21].

2) Control Flow Inference Algorithm: Listing 2 describes
the inference of a control flow model from a web application.

1 while(not stopping criterion):

2 if(curr sequence length>MAX SEQUENCE LENGTH):
3 webapp.reset()

4 curr sequence length = 0

5 spiderlink = start

6 output = webapp.send(spiderlink.concretize())

7 page = output.abstract()

8 if(macro state.changed(page,history)):

9 curr identifier += 1

10 k = index changed macro state(page,history)

11 for i in range(k,len(history)):

12 history[i].identifier = curr identifier

13 page.identifier = curr identifier

14 model.identifiers.compute colors()

15 else:

16 page.identifier = curr identifier

17 history.append({output,page})
18 model.update(history)

19 spiderlink = page.pick spiderlink()

20 curr sequence length += 1

21 return model

Listing 2. Control Flow Inference

3) Did the macro-state change: If a spiderlink i
is sent twice to the application during the requests
prev and detect, and the obtained page models
are different (i.e., abstract(resp(req(iprev))) ,
abstract(resp(req′(idetect)))), then the macro-state changed.
This is the case for the spiderlinks iprev=GET /login(→ 10)
and idetect=GET /login (20 → 21) in the navigation graph
extract shown in Figure 6.

4) Which request changed the macro-state: If a macro-
state change is detected between iprev and idetect, then the
question “which request in the history between those changed
the macro-state?” arises. To answer it, the heuristic function
score represents the likelihood of a request having changed
the macro-state. For a spiderlink i ∈ [iprev, . . . , idetect] the higher
the value of score(i), the more likely i changed the macro-
state. The dimensions of score are listed in Table I. If there
is a +, resp. −, in front of the dimension, then score is
increasing, resp. decreasing, w.r.t. this dimension. score is
used in index_changed_macro_state in Listing 2.

Due to its effectiveness, we use the PQ-gram distance as a
metric for similarity between page models[16].

5) What is the macro-state of the current execution con-
text: The current execution context is the current node in
the model. It results of the submission of the spiderlinks
since the last reset. In order to know if the current node is
one previously encountered, it is necessary to merge macro-
states. For this purpose, an identifier is associated to each
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TABLE I
DIMENSIONS OF THE SCORE(SPIDERLINK I) HEURISTIC

+ or - weight dimension name
++ number of input parameters
+ distance between page models (pprev i

−→
pi)

+ get or post
− number of times performed (total)
− number of times it changed the state
− number of requests between iprev and i
−− number of potential contradictions (approx.)

TABLE II
DIMENSIONS OF THE NAVIGATING(SPIDERLINK I) HEURISTIC

+ or - weight dimension name
+ number of times it changed the macro-state
+ get or post
− number of times performed
− number of artificially generated parameter values
− (1+consecutive contradictions)*num state change
− num recently performed
− − − request never executed

node. If the macro-state changes, then the current identifier
increases, it is unchanged otherwise (see Listing 2). Doupé
et al. reduced this macro-state collapsing problem to the
coloring of an undirected graph of identifiers[9]. If there is
an edge between two identifiers, then they will have different
colors. compute_colors() of Listing 2 is explained in [9].
Backtracking may occur during coloring(see Section III-E3).

D. Navigation Strategy

After each output abstraction, LigRE chooses the next
spiderlink to explore. It generates spiderlinks for facilitating
future data flows inference, and permits to prune the CFM.

1) Choosing the Next Spiderlink to Explore: After obtain-
ing a page model p, LigRE must decide what is the next
spiderlink in spiderlinks(p) to explore. The heuristic function
navigating represents the likelihood of a spiderlink to
be picked up to be executed on the application: for a given
spiderlink i, the lower the value of navigating(i), the
more likely i will be picked up. Table II lists its dimensions.
pick_spiderlink in Listing 2 uses it.

Either the current node contains unexplored spiderlinks and
one of them is chosen according to their navigating score,
or the shortest path in the model to nodes containing non ex-
plored spiderlinks is computed using Dijkstra’s algorithm[17].
The stopping criterion evaluates to true when for each node of
the CFM, the outgoing transitions have been explored a tester
defined number of times. The tester can limit the number of
requests and the execution time.

2) Pruning: Testers may want to prune the model for read-
ability, or speed. This process is known to reverse engineers of
binary executables[18]. LigRE permits to specify page model
patterns in order not to explore matching spiderlinks.

3) Automatic Form Filling: In case forms are found in the
web application, LigRE creates spiderlinks that may contain
automatically generated values. The value generation aims at
limiting the false positives during the later data flow inference.

We want a function artif that receives an input parameter
name (e.g., msg in Figure 2) and produces a value s.t. the
following properties hold for “most different” input parameter:

TABLE III
DIMENSIONS OF THE CONFIDENCE(SPIDERLINK I) HEURISTIC

weight dimension name
− number of nodes in the shortest path from root
− number of unexplored spiderlinks in the page model
− ... that have same hash as one which permit determining

a macro-state change

• it is easy to compute artif(name)
• it is infeasible to modify an input parameter name name

without changing artif(name)

Those properties are two of the four of ideal cryptographic
hash functions. Some web fuzzers use hash functions[19].

E. Backtracking

Backtracking consists of undoing parts of the model and
recomputing them with an additional constraint. It occurs when
either a contradiction is observed on part of the model with a
low confidence, or the abstract execution leads to a different
page model than the concrete execution. We here describe a
special case of model.update() in Listing 2.

1) Confidence: This metric is applicable to a node or a
transition. It expresses the level of trust in a part of the model.
The higher its value, the more confident we are in the coloring
and the positioning of the element. Table III contains the
dimensions used in this function.

2) Potential Contradiction: This is defined in Definition 3.
Let us assume that the node b is the current state. If there exists

Definition 3 Potential Contradiction
Let a and b be two nodes in the model. A contradiction
between a and b is defined as follows:

contradiction(a, b) =


True if ((con f idence(a) > con f idence(b))

∧(page model(a) == page model(b))
∧(color(a) , color(b)))

False otherwise

a node a, s.t. contradiction(a, b) is True, then we may have
missed detecting a state change. Thus contradictions are inputs
for navigating(see Table II) and score(see Table I).

3) Backtracking: We hypothesize that the web application
is deterministic at the abstract level: if an input sequence of
spiderlinks from the start node is executed several times, the
sequences of obtained page models are the same.

Each sent spiderlink is executed on the application, and
on the currently inferred CFM. It may happen that the CFM
execution leads to a different page model than the application
one. This is a non-determinism: either the application is not
deterministic, or the current CFM is not correct. We assume
it is the second case.

In such a situation, we rely on a heuristic stating that the
ultimate macro-state change was not correct: we considered
the identifiers α and β to map to the same macro-state, but
this turned out to be wrong. Thus, we add an edge between
α and β, redo the coloring and update of the model, reset the
application, and start a new sequence from the initial node.

256



IV. DATA FLOW MODEL ANNOTATION

The data flow model annotation corresponds to step B in
Figure 1. It consumes a control flow model, to which it adds
inferred data flows, thus producing a model, such as the one
represented in Figure 2. In such a model, the blue/dotted text
represents the source of a reflection tsrc, and the blue/dotted
arrow edges designates the reflection destination tdst.

This step consists of first generating paths to navigate in
the CFM, and then actively submitting those paths to the web
application while inferring observable data flows.

A. Definitions

Reflection and Control + Data Flow Model (CDFM) are
defined respectively in Definition 4 and Definition 5. The data-
flow computation is explained in Section IV-C.

Definition 4 Reflection / Data Flow Annotation
Let M = (S ,T,C) be an EFSM[12]. A reflection (xsrc, tsrc, tdst),
∈ (Dinpx×T×T ) is an inferred data-flow from the value of an
abstract input parameter xsrc sent in the transition tsrc to the
concrete output of the transition tdst.

Definition 5 Control and Data Flow Model (CDFM)
A control and data flow model is a CFM(Definition 2) in which
reflections re f l = (xsrc, tsrc, tdst) are annotated in the form of
a data-flow function df : (Dinpx × T × T )→ {True, False}

d f (re f l) =
{

True if re f l has been observed
False otherwise

B. Generating Paths

Random walk and breadth-first exploration are the imple-
mented strategies for generating input sequences from a model.
They limit the length of the input sequences, and the number
of times they traverse each node. If a sequence is a prefix of
another one, then we only keep the latter. We analyzed XSS on
fifteen applications of various complexity, and observed that
the longest shortest path between tsrc and tdst, both included,
is 4 transitions, and the shortest path to reach the deepest tdst

was 8, thus we arbitrarily limit the length of the generated
sequences to 8 (prefix+suffix).

C. Computing Data Flows

For each sequence I = (t1, ..., tk), for each concrete output
o j, j ∈ [1..k], for each previously sent input parameter value
xmn , m ∈ [1.. j], a distance between xmn and o j is computed.

Specifically, the data flow inference consists of first search-
ing in the output o j for exact substrings of xmn of a minimal
length, marking those found substrings, clustering them, and
then computing the edit distance[20] from xmn to the clusters.
If this distance is lower than an empirically determined thresh-
old, then a data flow is annotated on the model (see Figure 2).

V. CONTROL+DATA FLOW AWARE FUZZING

A. Overview

Control+Data Flow Aware Fuzzing encompasses steps
C and D in Figure 1: first prioritizing the considered
data flows (Section V-B), producing slices(Section V-C),
and then using those slices to guide a fuzzer. Its
pseudo-code is in Listing 3. get_reflections returns
the observed reflections by decreasing priority. It uses
the prioritization(reflection) heuristic function
whose dimensions are described in Table IV. The higher its
value, the more likely this reflection will be tested first. For
each reflection, LigRE positions the application in the node
from which tsrc originates by sending the prefix sequence.
Then LigRE feeds the fuzzer an authentication context and a
suffix (CH(tsrc, tdst)) for the fuzzer to navigate from tsrc to tdst.

1 def control data aware fuzzing(webapp, fuzzer):

2 vulns = []

3 for refl in model.get reflections():

4 webapp.reset()

5 prefix=shortest path(from=root,to=refl.src)

6 webapp.execute(prefix)

7 fuzzer.config.auth = webapp.context

8 suffix = shortest path(refl.src,refl.dst)

9 fuzzer.config.urls = suffix

10 vulns += fuzzer.do()

11 return vulns

Listing 3. Control+Data Flow-aware Fuzzing

B. Reflection Prioritization

Table V is an extract of the prioritization table in its initial
state. dimk corresponds to the dimension k of Table IV. Each
line of Table V designates a reflection. Initially, chosen, the
set of yet chosen reflections, is empty. The first reflection to
be chosen is a, since it has the highest prioritization value.
Dimensions are updated: dim4,5(a)+=1. Then b is chosen,
similarly: dim4,5(b)+=1. Later on, either c or d will be chosen.
Let us assume c is chosen first. Then dim4,5(c)+ = 1 and
dim4(d)+ = 1 are updated, since c and d have the same xsrc.

TABLE IV
DIMENSIONS OF PRIORITIZATION(REFLECTION,CHOSEN)

# weight dimension name
1 − number of reflections having the same parameter name xsrc
2 − number of reflections having the same (tsrc, tdst)
3 − number of macro-states from tsrc to tdst
4 − number of yet chosen reflections having the same xsrc
5 − number of yet chosen reflections having the same (tsrc, tdst)

TABLE V
PRIORITIZATION OF REFLECTIONS (EXTRACT, INITIAL STATE)

id tsrc xsrc tdst dim1 dim2 dim3 dim4 dim5
a 7→ 33 message2 7→ 33 1 1 0 0 0
b 7→ 17 msg 18→ 21 1 1 1 0 0
c 33→ 9 action 33→ 9 5 1 0 0 0
d 18→ 21 action 21→ 9 5 1 0 0 0
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C. Chopping
Slicing permits to limit the state space exploration. This

technique focuses on parts of the applications w.r.t. a slicing
criterion. The notion of slicing has been extended to model-
based languages. Various techniques are proposed in the
literature[21]. In LigRE, we are interested in finding paths
between a source tsrc and a destination tdst on the model.
Thus we use a compressed form of slicing called chopping[22],
which captures this relation, as described in Definition 6.

Definition 6 Chopping on the Model
Let M = (S ,T,C, re f l) be a CDFM (Definition 5). Given
(tsrc, tdst) ∈ T 2, a source and a destination transitions, a
chopping CH(tsrc, tdst) consists of all the nodes in S on which
tdst (transitively) is control dependent. Such a set is also called
a path p from tsrc to tdst. We consider one of the shortest paths
according to Dijkstra’s algorithm.
CH(tsrc, tdst) = {n ∈ S |p ∈ tsrc →

∗ tdst ∧ p = 〈n1, · · · , nk〉 ∧ ∃i :
n = ni}; where tsrc →

∗ tdst is a (transitive) relation i.e. s→ d if
exists a transition from s to d and →∗ is its transitive closure.

VI. IMPLEMENTATION

The approach is implemented as a tool “LigRE” containing
8000 SLOC of Python3.2. Figure 7 represents its architecture.
KameleonFuzz[8] extends LigRE by improving the fuzzer.

LigRE Parser   Selenium

Browser
- e.g., ChromeParseTree

Request
Control Flow Inference

Data Flow Inference

Slicer

HTTP

Request

& 
ResponseFuzzer  w3af

Web 
Application

Vulnerabilities

Slices

Fig. 7. Architecture of LigRE

During the control flow inference, the parse tree (approxi-
mated by a subset of the Document Object Model) is obtained
using the selenium library[23] which instruments the Google
Chrome browser to parse HTTP replies. During the data
flow inference, requests are performed directly to the web
application. During the fuzzing, LigRE drives the application
in the source via the prefix slice ; it then parameterizes the
suffix slice for a fuzzer (w3af[11]).

VII. EMPIRICAL EVALUATION

We aim at determining if control plus data flow model aware
XSS fuzzing is efficient enough to search for vulnerabilities in
typical web applications. We also aim at comparing the fault
detection capability of our prototype implementation LigRE
against existing state of the art black-box vulnerability scan-
ners. Relevant metrics include the number of distinct true XSS
discovered, and the number only found by a given scanner. To
measure the efficiency of the scanners, we compare the number
of sent requests and of found XSS. In our experiments, LigRE
detected XSS missed by other scanners, and most of the XSS
found by those.

A. Test Subjects

1) Web Applications: We selected seven applications of
various complexity, as described in Table VI. Our interest in
them is expressed in Appendix A.

TABLE VI
TESTED WEB APPLICATIONS

Application Description Version Plugins
P0wnMe!

 Intentionally
Vulnerable

0.3
WebGoat 5.4
Gruyere 1.0
WordPress Blog 3.2.1 Count-Per-Day 3.2.3
Elgg Social Network 1.8.13
PhpBB Forum 2.0
e-Health Medical 04/16/2013

2) BlackBox XSS Scanners: We consider the following
open-source black-box XSS scanners to compare with our
approach: Wapiti, w3af and SkipFish. They all infer the control
flow and fuzz. We list their configuration in [24]. In addition
to LigRE with all its components (A,B,C and D in Figure 1),
we also include LigRE with only A(control flow inference)
and D(w3af). We denote them as LigREABC+D and LigREA+D.

B. Research Questions

RQ1. (Fault Revealing): Does control plus data flow aware
fuzzing find more true vulnerabilities than other scanners?

For each scanner and application, we sequentially configure
the scanner, reset the application, set a random seed to the
scanner, run it against the application, and retrieve the results.
We repeat this process five times, using different seeds. If
possible, scanners are configured s.t. they only target XSS. We
configure them with the same information (e.g., credentials).
When a scanner does not handle it, we perform two sub-runs:
one with the cookie of a logged-on user and one without.

We adjust parameters for the runs to last at most five
hours. Beyond this duration, we stop the scanner and manually
analyze the results. The number of detected XSS is the union
of distinct true XSS found during the different runs. An
XSS is uniquely characterized by its source transition tsrc,
its fuzzed parameter name xsrc, its destination output tdst and
the structure in which the value of xsrc is reflected. For all
scanners, we manually verify XSS. During our experiments,
no scanner did report any false positive XSS (Skipfish reported
other false positives).

TABLE VII
LigREABC+D DETECTION CAPABILITIES ON THE TESTED APPLICATIONS

Application Inferred
Data-Flows

True XSS De-
tected

Nodes Transitions

P0wnMe 28 2 13 51
WebGoat 134 4 20 80
Gruyere 23 3 30 130

WordPress 52 2 15 129
Elgg 59 1 49 214

PhpBB 213 4 63 279
e-Health 12 5 15 33

Table VII contains the numbers of annotated reflections,
found XSS, inferred nodes and transitions. This illustrates
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the practicality of LigRE to infer the control and data flow
models of the evaluated applications. The number of nodes and
transitions, may correspond to a partial application coverage.

Figure 8 represents the number of detected true XSS
vulnerabilities for the considered scanners and applications.
LigREABC+D detected the highest number of vulnerabilities
for every application, and several vulnerabilities not detected
by other scanners. These results confirm Doupé et al.’s ex-
periments: improving the control flow inference(LigREA+D)
increases the vulnerability detection capabilities, as compared
to non macro-state-aware scanners (Wapiti, w3af(D), Skipfish).
Moreover, comparing LigREA+D and LigREABC+D shows that
data flow inference(B) and slices for flow aware fuzzing(C)
also increase XSS detection capabilities. We notice that
LigREABC+D founds vulnerabilities missed by other scanners,
including LigREA+D: see the non-dotted part of Figure 8.

Most scanners achieve limited coverage due to their partial
handling of basic forms, their inability to track the macro-
state (beyond the classic logged in/out, and assuming the tester
provides values). At times, they send requests regardless of
the available links. The aggressive behavior of Skipfish is
sometimes positive (e.g., in Gruyere, it found one XSS missed
by others on 404 pages), sometimes not (e.g., in Wordpress,
it submitted 150 times a form without detecting any XSS).
For Elgg, both Skipfish and w3af loop between pages because
they only consider the URL and not the page model.
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Fig. 8. XSS Detection Capabilities of Black-Box Scanners

On considered applications, a control plus data flow
directed fuzzing increases XSS revealing capabilities.

RQ2. (Efficiency): How efficient are the scanners in terms
of vulnerability detection capabilities per number of tests?

We set up a proxy between the scanner and the web applica-
tion, and configure this proxy to limit the number of requests.
We iteratively increase this limit, run the scanner, and retrieve

the number of found and distinct true XSS. We manually
verify them. We run such a process five times per scanner,
web application, and limit. For each number of requests, for
each scanner, we sum the number of unique true XSS detected
for all applications. The results are illustrated in Figure 9.
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Fig. 9. XSS Detection Efficiency of Black-Box Scanners

Below approximatively 850 HTTP requests, w3af is the
most efficient scanner. Thus we hypothesize that in applica-
tions with few macro-states, assuming it is able to navigate cor-
rectly, which in our experiments mainly happened in P0wnMe
and Gruyere, then w3af is more efficient than other scanners
at finding non filtered XSS.

Moreover, the LigRE proof-of-concept spends a significative
number of requests in data flow inference (from 75 to 93%).
There is room for improvement. An industrial implementation
should consider additional heuristics to prune sequences: e.g.,
with a notion of achieved coverage of n long sub-sequences.

Data flow inference is the main barrier to entry of LigRE.
If acceptable, LigRE had the highest detection capabilities.

Otherwise, traditional scanners are of interest.

RQ3. (Current Use by Testers): What is the current use of
control plus data flow models (CDFM) by testers?

We conducted two surveys for evaluating the current level
of use of CDFM by penetration testers[25], and how they
obtained them. Figure 10 synthesize relevant knowledge.

Obtaining and using CDFM: Currently used open-source
web scanners do not output CFDM. W3af[11] outputs CFM.
It achieves a low coverage[9]. In our sample, no tester uses
w3af to obtain a CFM. Those who make use of CFM rely on
a manual crawling approach, using Burp[26] as a proxy, and
manually draw CFM. However, since considered web fuzzers
only accept a list of urls and an authentication context, they
would achieve a low transition coverage.

Data Flow Tracking: 77% of testers do not perform
white-box data flow tracking, mainly because they think not
enough tools are available. 50% of those find this manual
work tedious. Those who perform it rely on dynamic exact
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string matching. 54% of testers perform black-box data flow
inference. Most of them do it manually. 57% of those find
it tedious. Data flow tracking aims at determining the exact
composing of filters, in order to produce fuzzed inputs to
bypass those filters. Performing it manually is time consuming,
and limited to human expertise. In white-box, it may require
knowledge of various server languages. Whereas in black-box,
the ability to interpret few client side languages is enough.

Even skilled penetration testers largely rely on manual
data flow tracking. Since such work is time consuming,
and prone to false negatives, there is a need for tools

producing hybrid control plus data flow models.

VIII. APPROACH LIMITATIONS

Reset: We assume the ability to reset the application in
its initial node, which may not always be practical (e.g., when
testing a live application having users connected, we have to
work on a copy). However, this does not break the black-box
harness assumption: we do not require to be aware of how
the macro-state is stored (e.g., database). How to relax this
assumption is a research direction.

Non-Deterministic Values (NDV): We assume the tester’s
ability to identify the NDV (e.g., anti-CSRF, viewstate, . . . ), or
constantly changing pages[27]. Approaches to automate their
detection have been investigated[14].

Dynamic Client-Side Content: Our implementation does
not support Ajax applications, unless they gracefully down-
grade (i.e., keep their functionality while navigating via HTTP
requests instead of Ajax events). [28, 29] automatically infer
Ajax applications. Flash and PDF files are not yet supported.

IX. RELATED WORK

A. Control Flow Inference
Based on Angluin’s L*, Shahbaz and Groz designed an

algorithm for iteratively inferring the control flow of an I/O
system. Cho et al. infer a botnet protocol[31] by adding
a prediction heuristic to [30]. Hossen et al. automatically
generate test drivers for non-Ajax web applications[32].

Doupé et al. showed that improving control flow inference
increases vulnerability detection[9]. LigRE shares similarities
with their macro-state-aware-crawler. Differences lay in the
heuristics, the introduction of confidence, contradictions, back-
tracking, and data flow inference. Doupé et al. run experiments
on a local cloud, whereas we run ours on a laptop.

Dessiatnikoff et al. cluster pages according a specially
crafted distance for SQL injections[33]. Marchetto et al. dy-
namically infer the control flow of Ajax web applications[34].
They wrote abstraction functions for common Ajax primitives.
Tonella et al. use genetic algorithm for finding the right
balance between over and under-approximations of CFM[35].

LigRE does not make use of L* and is driven by heuristics.
It clusters pages according to the notion of macro-state.
The current implementation supports non-Ajax applications or
Ajax applications which downgrade gracefully.

B. Data Flow Inference
W3af[11] and XSSAuditor[36](Chrome XSS filter) assume

the fuzzed input value to be reflected without modification,
and thus rely on exact string matching. This may lead to
false negatives when input values are transformed[37, 8].
Skipfish generates three variants for a spiderlink, and assumes
there is a data flow if the response varies[38, 33, 9]. This
may lead to false positives, if the scanner is not aware of
a macro-state change. Sun et al.[39] compute a string edit
distance[20]. Sekar[40] proposed a filtering algorithm inspired
from bioinformatics for improving the efficiency of Leven-
shtein’s distance. LigRE relies on a filter-tolerant substring
matching of a minimal length, and computes the edit distance
on a smaller output. LigRE relies on the fuzzer test verdict.

C. Control plus Data Flow Models
Caselden et al. use similar models, named HI-CFG on

basic blocs, to automatically generate exploits for memory
corruption vulnerabilities in binary programs with a grey-box
harness[41]. Netzob infers protocols implementations using
L*, and enhance it with data flows w.r.t. equivalence, size, or
repetition relations. Its test driver, abstraction, and concretiza-
tion functions are written by an analyst[42]. With PRISMA,
Krueger et al. infer control and data flow markov models of
botnet protocols from traffic captures[43]. LigRE targets XSS,
a command injection vulnerability, in web applications with a
black-box harness, and produces CDFM to drive a fuzzer.
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X. CONCLUSION

LigRE automatically reverse-engineers web applications as
a control and data flow model. It prioritizes model slices
to guide the scope of the fuzzing. Heuristics drive LigRE.
Empirical experiments show that LigRE detects more XSS
than open source and control flow aware scanners.

In addition of being an input for human penetration testers,
the obtained models can be the first step for automated
vulnerability detection: e.g., if provided to a model checker
or a fuzzer. For instance, our evolutionary smart fuzzer
KameleonFuzz[44, 8] can use such models, and improves the
fuzzing step of LigRE to detect more complex filtered XSS.
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APPENDIX

P0wnMe v0.3 is an intentionally vulnerable web application
for evaluating black-box XSS scanners. It contains XSS of
various complexity (transitions, filters, reflection structure).

WebGoat v5.4 is an intentionally vulnerable web applica-
tion for educating developers and testers. Its multiple XSS
lessons range from message book to human resources.

Gruyere v1.0 is an intentionally vulnerable web application
for educating developers and testers. Users can update their
profile, post and modify “snippets” and view public ones.

Elgg v1.8.13 is a social network platform used by univer-
sities, governments. Users can post messages, create groups,
update their profile. An XSS exists since several versions.

WordPress v3 is a blogging system: the blogger can create
posts and tune parameters. Visitors can post comments, and
search. The count-per-day plugin is known to contain XSS.

PhpBB v2 is a forum platform. We include this version, as
it is famous to contain several XSS[7].

e-Health 04/16/2013 is an extract of a medical platform
used by patients and practitioners, developed by a company.
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