
Offset-Aware Mutation based Fuzzing for Buffer Overflow Vulnerabilities:
Few Preliminary Results

Sanjay Rawat, Laurent Mounier
UJF-Grenoble 1, Grenoble INP, CNRS VERIMAG, Grenoble F-38041, France

{Sanjay.Rawat, Laurent.Mounier}@imag.fr

Abstract—This article presents few preliminary results and
future ideas related to smart fuzzing to detect buffer overflow
vulnerabilities. The approach is based on the combination
of lightweight static analysis techniques and mutation-based
evolutionary strategies. First, a static taint-analysis allows
to identify the most dangerous execution paths, containing
vulnerable statements those execution depend on user input
streams. Then, concrete input are produced and executed on
the vulnerable program following an offset-aware mutation
strategy: at each step, the current input streams are mutated
with specific values, and at specific offsets, depending on their
ability to activate a target execution path. We provide few
empirical results on a benchmarking dataset as a proof of
concept and discuss future extension.

Keywords-fuzzing, evolutionary algorithm, buffer overflow,
taint analysis.

I. INTRODUCTION

Smart fuzzing is an effective approach for discovering
vulnerabilities in applications. The prefix smart implies that
fuzzing is not performed purely randomly, but by taking
advantage of some knowledge of the application. Thus, this
technique could combine some a priori knowledge (e.g.,
the input formats), some results obtained from preliminary
analysis of the software, or even some information gained
during the fuzzing process. The goal is then to generate (or
mutate) inputs such that they cause application to malfunc-
tion e.g. crash or hanged. The main challenge is therefore
to generate inputs that allow to reach and activate some
vulnerable part of the application. From this point of view,
fuzzers based on Dynamic Symbolic Execution (DSE) have
been proposed [1], [2]. The idea is to execute the application
using some initial concrete inputs and to compute the
resulting path-condition (the sequence of constraints that
have been satisfied to execute this path). By negating one
of these constraints we obtain a path condition for a new
execution sequence. Thus, solving this new path condition
will produce new inputs thereby increasing the coverage of
the application. However, solving constraints turns out to
be a costly operation, specially in the case of arbitrary data
types.

Fuzzers based on evolutionary computing approaches (ge-
netic algorithms, evolutionary strategies etc.) take a different
approach by evolving the inputs based on its fitness which,
in turn, is based on its success to reach the vulnerable point

[3], [4], [5]. The basic idea is to instrument the application
to observe its runtime behavior and, based on various
metrics, change the inputs by doing crossover and mutation.
Traditionally, crossover and mutation are done by changing
random positions (based on some probability distribution)
in the inputs. Based on our previous experience in this
direction [4], we observe that doing a random mutation is
not very efficient specially in order to solve string constraints
which are combination of characters. In order to enhance
the mutation operator, we propose an offset-aware mutation
method which mutates string inputs at particular locations.
The method improves the process of generating inputs that
satisfy constraints. This article reports very initial results in
this direction, but the final objective of this work-in-progress
is twofold:

• to produce an automated smart fuzzer for buffer over-
flow vulnerabilities, which combines static analysis
techniques (e.g, to find vulnerable execution paths)
and evolutionary approaches (to execute these paths at
runtime);

• to provide some metric on the exploitability of the
discovered vulnerability (i.e., how easy is it to exploit
them).

II. OVERVIEW

This section briefly introduces the problem and our in-
tended approach to address that. Let us consider the follow-
ing example to explain the problem and the solution.

The sample code in Listing 1 is taken from Verisec suite
of vulnerable programs [6]. This program is vulnerable
assuming that checkD and c2 are user controlled buffer
strings and buf is fixed size buffer. If checkD contains
more than one “=\n” (combination of = and \n to pass
checks at lines 6 and 11)), buf can be overflowed by c2
(line 21). So, the problem is to generate a checkD string
that contains “=\n” character sequence. The proposed
methodology is composed of the following steps:

1. Tainted Path Generation: If there is a path starting from
user provided input and reaching some vulnerable point in
the program, knowledge of such a path helps in generating
more useful (target-oriented) inputs. Our work relies on
the availability of such a tainted path and we choose the

1i n t copyData (char ∗checkD , char ∗c2 , char ∗buf){
2char ∗outD= buf ;
3char ∗c1 ;
4i n t n c h a r = 0 , outD = 0 ; / / i n d e x i n t o o u t f i l e
5f o r (c1=checkD ;∗ c1 != ’\0 ’ ; c1 ++){
6i f (∗ c1 == ’= ’){
7i f (∗ c1++ == ’\0 ’)
8break ;
9/ / =\n : c o n t i n u a t i o n ; s i g n a l t o c a l l e r
10/ / i t ’ s ok t o pas s i n more i n f i l e
11/ / BAD: f o r g o t t o r e s e t o u t
12i f (∗ c1++ == ’\n ’){
13n c h a r = 0 ;
14c o n t in u e ;
15}
16e l s e {
17i f (∗ c2 == ’\0 ’)
18break ;
19n c h a r ++;
20i f (n c h a r > BASE SZ)
21break ;
22∗outD = ∗c1 ; /∗ BAD ∗ /
23outD ++;
24}
25} . . .

Listing 1. Excerpt of a vulnerable C code from Verisec suite of programs.

technique defined in our previous work [7]. We proposed
a static analysis approach which associates a taint environ-
ment to each variable v, at each program location l. In addi-
tion to taint information, this environment also associates to
each pair (l, v) a set of taint dependency sequences (TDS)
explaining why the variable v is tainted at location l. More
precisely, each TDS t =< l1, l2, . . . , ln > is a sequence
of program locations li a program execution path should
traverse in order to reach l with an input-dependent value
assigned to v. Thus, when l corresponds to a vulnerable
statement, this TDS set exactly characterizes the set of
“dangerous” execution paths. TDS example obtained from
Listing 1 is the following: < 5, 6, 11, 5, 6, 21 >. It means
that traversing these program locations (in this order) is a
way to reach the vulnerable statement 21 with a tainted
value of c1 (which may correspond to a potential exploit).

2. Source-code Instrumentation: Code instrumentation
plays a major role to record runtime behavior of the
application. Once a TDS is obtained, we instrument the
application at various locations (lis) pertaining to this
TDS to get its runtime behavior. We also instrument the
application to trace the input data. The idea is to map the
input S to TDS elements so that we know up to which
offset i the input was used when last TDS element lk was
hit. The heuristic is to change the input after this offset
i because the substring S[1:i] was satisfying the path
condition to reach lk, and, if the next TDS element lk+1

was not getting hit, it means the substring S[i+1:] does
not satisfy some constraint. Therefore, it makes sense to
mutate string after offset i. For example, if TDS element
6 was hit and the corresponding offset in the input is 50,
we will mutate string from the offset 51. This will increase
the chance of adding \n after this offset thereby producing

the desired substring “=\n”. we call this method as offset-
aware mutation.

3. Mutation and Constraint Learning: As mentioned
above, as a part of mutation operation, we append char-
acters in the input string after a particular offset. These
characters are not random but rather generated at runtime
by observing fittest and worst inputs based on their fitness
scores. Unlike any traditional evolutionary algorithm, we
take into account best and worst inputs to improve the
behavior of next generation of inputs. Our heuristic is based
on the observation that it is the presence and/or absence
of certain characters that makes an input good or bad.
We make use of set theory to calculate the set of such
characters that indirectly serves as constraints learning and
satisfaction step. A more detailed description of this step
is provided in [4]

4. Exploitability Metric: Once an abnormal behavior is
obtained (e.g. crash), we want to classify this crash as
exploitable or unexploitable. This will help the developers
to prioritize the patching work. We propose to analyze
process memory-snapshot after the crash together with
the tainted data propagation to certain locations. As an
initial metric, we resort to the heuristic that if any of the
memory location and registers are pointing to tainted data,
the so obtained crash points to an exploitable vulnerability.
The idea is similar to the work presented in [8], but our
objective is to make this automatic by considering other
relevant properties.

III. INITIAL RESULTS

Based on the ideas presented in the above section, we
implement a prototype in Python to see the effectiveness
of the approach on a a few sample programs from Verisec
suite [6]. Currently the TDS are produced by performing
(automatic) source-code analysis. This source code is then
instrumented manually to trace the executions. In the future,
we plan to perform these steps at the binary level using more
sophisticated techniques (e.g., dynamic reaching definitions
[9] in which reaching definitions are obtained from the
execution trace of the application with a particular input;
and binary-rewriting to enable input tracing). In table I, we
compare the results obtained with those provided in [4]. In
[4], we proposed an evolutionary algorithm that learns the
simple constraints in the form of a set M of characters that
make string based inputs to traverse a given tainted path.
As mutation, the algorithm appends characters from M at
partially random offsets. The figures in columns A1, A2
and A3 are the averages of number of iterations to generate
desired input, taken over 20 runs of the experiment. A *
denotes that corresponding algorithm could not generate any
malicious input. It is, therefore, evident (column A1 vs. A2)
that with the addition of offset-aware mutation, performance

of the algorithm mentioned in [4], improves. Note that the
number of iterations in case of edbrowse is still high because
the associated constraint on the input string is a combination
of 3 characters starting exactly at offset 0 (which is hard to
obtain by mutation).

Table I
EXPERIMENTAL RESULTS. LEGEND: A1 (RESP. A2)- EVOLUTIONARY

STRATEGY WITH (RESP. WITHOUT) OFFSET-AWARE MUTATION, A3- RANDOM

FUZZING

S.No. Application Name Constraints A1 A2 A3
1 sendmail mime fromqp ’=n’ 27 154 3701

2 edbrowse ftpls ’-- ’ 290 * *

IV. CONCLUSIONS AND FUTURE WORK

This paper deals with an evolutionary-based approach for
detecting effective buffer-overflow vulnerabilities. Starting
from a set of critical paths (the so-called TDS, obtained
during a static taint-analysis step), we apply mutation tech-
niques at runtime to generate program inputs that allow
the execution of these critical paths. With respect to our
previous work ([4]), the main improvement we propose is
to consider sequentially structured input (e.g., a sequence
of characters). Our assumption is that such inputs are most
of the time processed sequentially, from left to right, in the
target program. Thus, knowing (by program instrumentation)
that a given input starts to deviate from the critical path
we target after having processed offset i, we know that this
input should be mutated after this offset i. Experimental
results obtained from the benchmarks we used in [4] show a
significant improvement in the number of iterations required
to craft a malicious input.

This works takes place in a larger perspective whose
objective is to set up a fuzzing environment for software
vulnerability detection. According to the general approach
that we discussed here (identification of critical execution
paths and input generation to activate the corresponding vul-
nerabilities), this environment will combine several program
analysis techniques (both static and dynamic). In particular,
we plan to improve the technique proposed in this paper in
two main directions:

• The taint-analysis phase could be further refined in
order to map some specific fields of the input data with
each (branching) control location of the program. The
taint information associated to these locations is then no
longer a binary value (tainted/non tainted), but a field
identification of some user input, as in [10]. This would
allow to make the learning process more efficient and
will weaken our (strict) assumption regarding how the
input streams are processed (i.e., from left to right).

1It could not generate malicious inputs 5 times out of total 20 times. So
the average is taken over 15 iterations

• The path condition associated to each critical path can
be computed statically. Even if it cannot be solved in
the general case, we may expect to partially solve some
of its constraints (possibly using some concrete values).
Again, this information should improve the mutation
step.

Finally, our next objective is to experiment on larger real-
world applications. In particular this approach can be gen-
eralized to other sequential data structures than character
strings, like most file or network packet formats (both
consisting in well-defined field sequences).

Acknowledgements: The authors thank the anonymous ref-
erees for their valuable comments.

REFERENCES

[1] P. Godefroid, M. Y. Levin, and D. Molnar, “Automated white-
box fuzz testing,” in Proc. of Network Distributed Security
Symposium. Internet Society, 2008.

[2] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed
whitebox fuzzing,” in Proc. of the IEEE 31st Int. Conf. on
Software Engineering. IEEE Computer Society, 2009.

[3] C. D. Grosso, G. Antoniol, E. Merlo, and P. Galinier, “Detect-
ing buffer overflow via automatic test input data generation,”
Computers & Operations Research, vol. 35, no. 10, pp. 3125–
3143, 2008.

[4] S. Rawat and L. Mounier, “An evolutionary computing ap-
proach for hunting buffer overflow vulnerabilities: A case of
aiming in dim light,” in Proc of sixth EC2ND 2010. IEEE
Computer Society, 2010.

[5] S. Sparks, S. Embleton, R. Cunningham, and C. Zou, “Au-
tomated vulnerability analysis: Leveraging control flow for
evolutionary input crafting,” in Proc. of the 23 Annual Com-
puter Security Applications Conference. ACSAC, 2007.

[6] [Online]. Available: http://se.cs.toronto.edu/index.php/Verisec Suite

[7] D. Ceara, L. Mounier, and M.-L. Potet, “Taint dependency
sequences: A characterization of insecure execution paths
based on input-sensitive cause sequences,” in Proc. of the
IEEE Int. workshop MDV’10. IEEE Computer Society, 2010.

[8] C. Miller and N. Johnson, “Crash analysis using bitblaze,” in
Proc. of the Black Hat USA 2010, Las Vegas, US, July 2010.

[9] H. Agrawal, R. A. DeMillo, and E. H. Spafford, “Dynamic
slicing in the presence of unconstrained pointers,” in Proceed-
ings of the symposium TAV4. ACM, 1991, pp. 60–73.

[10] T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A
checksum-aware directed fuzzing tool for automatic software
vulnerability detection,” in Proceedings of the 2010 IEEE
Symposium S&P 2010. IEEE Computer Society, 2010.

