
Value-Analysis of REIL programs

(Technical Report)

Sanjay Rawat, Laurent Mounier
Verimag, Grenoble France

1 Motivation

As a part of our work on smart fuzzing, and more specifically on taint-analysis,
we describe here a static analysis technique to over-approximate the value con-
tained in each register and memory location accessed at each execution point of
a Reil program. The motivation is twofold:

1. To identify the (abstract) addresses of memory locations used in the pro-
gram. This is mandatory to follow how tainted values are propagated
during the program execution ;

2. To approximate at each execution point, the current offset in the input
flows. The goal here is to mark each tainted value with its origin (as an
offset in a given input flow).

To illustrate the first point, let us consider the following example of C program
with its associated Reil translation (Fig. 1). x, y and z are local variables
of a given procedure (stored at offsets −4, −8 and −12 from the base pointer
ebp), and t is a global variable, supposed to be tainted, and those address is
in register t0. A taint analysis performed on this program should indicate that
variable z is not tainted at the end of the execution. However, to get this result
at the Reil level, it is necessary to identify that the value written at offset −12
(line 10) comes from the memory location written at line 3. Hence, we need to
know that the values of registers t5 and t4 are equals. This property will be
provided by the value-analysis technique we describe below.

1

y = 3 ;

...

x = t ;

z = y ;

1: STR 3, ,t3 // t3 := 3

2: ADD ebp, -8, t4 // t4 := ebp-8

3: STM t3, ,t4 // Mem[t4] := t3

...

4: LDM t0, , t1 // t1 := Mem[t0]

5: ADD ebp, -4, t2 // t2 := ebp-4

6: STM t1, ,t2 // Mem[t2] := t1

7: ADD ebp, -8, t5 // t5 := ebp-8

8: LDM t5, , t6 // t6 := Mem[t5]

9: ADD ebp, -12, t7 // t7 := ebp-12

10: STM t6, , t7 // Mem[t7] := t6

Figure 1: A small C program and its corresponding Reil translation

2 Intraprocedural Value-Analysis

First, we describe how this value-analysis is carried out at the procedure level.

2.1 Notations

We assume in the following that:

• The target program is a finite sequence of Reil instructions I = [i1, i2, . . . ın].

• During the execution of I a finite set of registersR and a (possibly infinite)
set of memory locations M are accessed. The exact structure of M we
consider is detailed in section 2.2.

• The set R consists in general-purpose registers {t0, t1, . . . , tm} and Intel
X86 specific registers SR (like the stack pointer esp, the frame pointer ebp,
etc.). Remember that in Reil each instruction ik defines (i.e., assigns) at
most one register. In the following this register will be noted reg(ik).

• The initial value of the stack pointer esp when entering a procedure is
noted initesp. We assume that all other registers are initialized w.r.t. esp
during the course of the procedure.

For a given register or memory location x ∈ R ∪M, we denote by V alc (x, ik)
the set of all possible (concrete) values of x after execution of any occurrence of
instruction ik (whatever is the execution sequence leading to ik). In particular
V alc (x, ik) = ∅ if ik is not reachable.

2

2.2 Memory Model

The memory model we consider consists in a (potentially finite) set of memory
cells of fixed-size (say 1 byte). Some of these cells are addressed during a
program execution either for reading (using a LDM instruction) or for writing

(using a STM instruction). In Reil each LDM or STM operation may access a
fixed amount of consecutive memory cells (either 1, 2, or 4). In the following
we call a memory location such a set of consecutive memory cells accessed at
program execution.

From the source level point of view, this set of memory locations may include:

• the local variables and parameters to the procedure under consideration ;

• the global variables ;

• the dynamically allocated memory.

At the binary level, the addresses of these memory locations will be either
absolute values (for global variables), or computed from the current value of the
base pointer register ebp (for parameters and local variables), or obtained as a
result of memory allocation functions (like malloc()).

As explained before, one of our objective is to compute statically, at the binary
level, the addresses of these memory locations. This means facing the following
difficulties:

• the exact value of ebp is unknown ;

• the value returned by a malloc() is unknown ;

• accessing non-scalar variables (e.g., arrays) requires some arithmetic com-
putations ;

• distinct registers may be used to address the same memory location ;

• the set of memory locations actually accessed depends on the program
execution (i.e., it is not known statically), it could even be infinite . . .

• etc.

For these reasons, our algorithm will compute abstract addresses of memory
locations, meaning that:

• an abstract address will be defined as offsets w.r.t. some reference value
(the value of esp, the value returned by a given call to malloc(), etc.) ;

3

• an abstract address may represent a set of possible real addresses (over-
approximation) ;

• only a finite set of distinct offsets will be considered for a given reference
value (widening to a special address meaning “any possible address”).

Note that in general we should deal with memory location overlapping, meaning
that writing to a memory location of size 4 located abstract address a also
impacts the memory location of size 2 located at abstract address a + 2 (for
instance).

We will leave this issue for further works, considering in the following that:

• all memory locations are of size 4 ;

• each (concrete) address is a multiple of 4.

2.3 Value computation as a forward data-flow analysis

The technique we used can be viewed as generalization of a constant propagation
algorithm implemented as a data-flow analysis. It computes a set of abstract
value (where each abstract value is a superset of some concrete values) for each
register and each memory location. These abstract values are associated to the
input and output of each node (i.e., instruction) of a control-flow graph (CFG)
of the program. More precisely:

• The set of abstract values of each register and memory locations are gath-
ered into a state vector ;

• State vectors Sn
in (resp. Sn

out) are attached to the input (resp. output) of
each node n of the CFG ;

• A partial order relation is defined over the set of state vectors to form a
lattice, where higher abstract values are “less precise” than lower ones ;

The algorithm computes the more precise state vectors associated to each node
compatible with the program execution. To do so, the program semantics is
abstracted by a transfer functions F〉 describing how the execution of each in-
struction i may transform a state vector. Abstract values coming from different
execution paths are combined using a merge operator t, defined as a the least-
upper bound in the lattice.

Formally, the final value of state vectors Sn
in and Sn

out is defined as the least
fix-point of the following function, where S0in denotes the initial value of the

4

state vector at the input of the entry node of the CFG1:

Sn
in =


S0in if n is the entry point of the CFG⊔
n′∈Pred (n)

Sn′

out otherwise .

Sn
out = F (Sn

in)

This fix-point is computed iteratively, starting from the bottom value ⊥ of the
lattice. Note that a widening operator has to be used to ensure termination. In
the following we give a precise definitions of the lattice and transfer function we
used.

2.4 Abstract domain

The abstract domain A we use to represent abstract values is borrowed from
the ones proposed in [6] and [1, 9] for “abstract address sets”. More precisely,
an abstract value will be expressed as a pair < B,X >, where:

• B is an (abstract) “base value”, which can be either

– an instruction (address) ik

– an element of the set {Empty,None, InitEsp,Any}

• X is a finite set of integers (X ⊆ Z).

2.4.1 Abstract values

Each abstract value < B,X > represents a set of concrete values v ∈ Z defined
as follows:

V alc (< B,X >) =



∅ if B = Empty

Z if B = Any

X if B = None

{initesp + x | x ∈ X} if B = InitEsp

{v + x | v ∈ V alc (reg(ik), ik)} if B = ik

1this state vector simply associates the value InitEsp to register esp according to our
assumptions regarding register initializations.

5

Intuitively this means that an abstract value < B,X > will be either a constant
belonging to X (when B is None), or an address defined with respect to esp

(when B is InitEsp), or with respect to the value of the destination register
computed at a given instruction ik (when B is ik), or finally any possible value
(when B is Any).

Note that, for all sets X and Y , the two following equalities holds (from the
previous definition):

V alc(< Empty, X >) = V alc(< Empty, Y >)

V alc(< Any, X >) = V alc(< Any, Y >)

2.4.2 Comparing abstract values

We define here some comparison relations between abstract values with respect
to the set of concrete values they represent. First, we consider two main notions
of equality between abstract values:

• a “strong equality” (≡), expressing that two abstract values represent
(exactly) the same sets of concrete values;

• a “weak equality” (∼=), expressing that two abstract values represent non
disjoint sets of concrete values.

However, abstract values of the form < ik, X > are context-dependent, since
their associated concrete values depend on the position of the current CFG
location with respect to ik. Therefore, comparing such values needs to take
into account CFG locations as well. To do so, we introduce the predicate
SV alc(i, (p1, p2)), defined in [6], indicating when two abstract values computed
at location p1 and p2, and depending on (path dependent) concrete values com-
puted at location ik, can be considered as “comparable”:

SV alc(ik, (p1, p2)) =
(ik dominates both p1 and p2)

∨
(either p1 dominates p2 or p2 dominates p1).

In particular we assume that SV alc(i0, (l1, l2)) holds for all (l1, l2) when i0 is
the entry point of the procedure.

The small example below illustrates a situation where predicate SV alc does not
hold:

1. while (i < N) {

6

2. t1 = x ; // abstract value of t1 = abstract value of x

3. read(x) ; // abstract value of x = <3, {0}>

4. t2 = x ; // abstract value of t2 = abstract value of x

// beware, t1 and t2 may not contain the same value !

}

• Strong equality (≡):

< B1, X1 > at l1 ≡ < B2, X2 > at l2 iff



B1 = B2 = Any

or B1 = B2 = Empty

or B1 = B2 = None and X1 = X2

or B1 = B2 = InitEsp and X1 = X2

or B1 = B2 = i and X1 = X2 and SV alc(i, (l1, l2))

The following property holds:

< B1, X1 > at l1 ≡ < B2, X2 > at l2 ⇔ V alc (< B1, X1 >) = V alc (< B2, X2 >)

The definition of weak equality depends on some general assumptions on the
memory model and on the way memory locations are accessed. In particular we
could identify two typical situations:

• An optimistic assumption (Ao), saying that distinct memory locations
(stack, heap and global variables) are non overlapping, that stack or heap
addresses are not known statically (i.e., they cannot be expressed by con-
stant values in the program), and that distinct calls to malloc will allocate
distinct memory zones:

∀X. ∀ik. V alc(< InitEsp, X >) 6= V alc(< None, X >) 6= V alc(< ik, X >)

• A pessimistic assumption (Ap), saying that none of the previous hypothe-
ses necessarily holds:
∃X. ∃ik.

V alc(< InitEsp, X >) ∩ V alc(< None, X >) 6= ∅
∨

V alc(< InitEsp, X >) ∩ V alc(< ik, X >) 6= ∅
∨

V alc(< None, X >) ∩ V alc(< ik, X >) 6= ∅

In the following we will consider assumption Ao as the default one.

• Weak equality (∼=) under assumption Ao:

7

< B1, X1 > at l1 ∼= < B2, X2 > at l2 iff



B1 = Any and B2 6= Empty

or B2 = Any and B1 6= Empty

or B1 = B2 = None and X1 ∩X2 6= ∅
or B1 = B2 = InitEsp and X1 ∩X2 6= ∅
or B1 = B2 = i and

SV alc(i, (l1, l2)) and X1 ∩X2 6= ∅

• Weak equality (∼=) under assumption Ao:

< B1, X1 > at l1 ∼= < B2, X2 > at l2 iff

{
B1 = Any and B2 6= Empty

or B2 = Any and B1 6= Empty

The following property holds:

< B1, X1 > at l1 ∼= < B2, X2 > at l2 ⇔ V alc (< B1, X1 >)∩V alc (< B2, X2 >) 6= ∅

We now define a (partial) order relation � over A.

• Partial order relation (�):

< B1, X1 > � < B2, X2 > iff



B2 = Any

or B1 = Empty

or B1 = B2 = None and X1 ⊆ X2

or B1 = B2 = InitEsp and X1 ⊆ X2

or B1 = B2 = i and

SV alc(i, (l1, l2)) and X1 ⊆ X2

Intuitively, under assumption Ao, < B1, X1 > � < B2, X2 > means that <
B1, X1 > is more precise than < B2, X2 > (i.e.. it contains less concrete values):

< B1, X1 > � < B2, X2 >⇔ V alc (< B1, X1 >) ⊆ V alc (< B2, X2 >)

According to these definition, (A,�) is a lattice those greatest element is> =< Any,Z >
and those least element is ⊥ =< Empty, ∅ >.

8

2.4.3 Merging abstract values

We also define a least upper-bound operator t:

< B1, X1 > t < B2, X2 >=


< Any, ∅ > if B1 6= B2 6= Empty

< B1, X1 ∪X2 > if B1 = B2

< B1, X1 > if B2 = Empty

< B2, X2 > if B1 = Empty

The structure of the lattice (A,�) is depicted in Fig 2.

< Empty, ∅ >

< i1, ∅ > < in, ∅ >< None, ∅ >< InitEsp, ∅ >

< InitEsp, X >

< InitEsp, X ′ ⊃ X >

< None, X >

< None, X ′ ⊃ X >

< i1, X >

< i1, X
′ ⊃ X >

< in, X >

< in, X
′ ⊃ X >

< Any, ∅ >

Figure 2: The lattice (A,�)

2.5 The lattice of state vectors

The purpose of our data-flow analysis is to collect information about the pos-
sible values of each register and each memory locations used throughout the
procedure execution. Individual registers are simply referred by their (unique)
name, whereas sets of memory locations have to be referred by their abstract
addresses.

9

A state vector S is therefore a total function from (R ∪ A) to A such that
S (l) = a iff the value contained in l (where l is either a register or a set of
memory locations) is a

Note that, for a given state vector Sn
in obtained at iteration k of the fix-point

computation algorithm, Sn
in (l) =< Empty, X > means that the value of l has

not been computed so far (at this iteration) when entering node n.

The relation � and the binary operator t are now extended to state vectors:

S1 � S2 iff ∀x ∈ (M∪A). S1(x) � S2(x)

S1 t S2 = {S1(x) t S2(x) | x ∈ (M∪A)}

Note that, in the lattice of state vectors ordered by �, ⊥ is the function which
is always equal to < Empty, ∅ > and > is the function which is always equal to
< Any, ∅ >.

Remark: Alternatively, a state vector could have been defined as a partial
function from (R ∪ A) to A, assuming that undefined elements are equal to
< Empty, ∅ >. This definition will be used in the implementation, since it does
not requireM∪A to be known a priori: new state vector entries will be added
only when required by the current computation. �.

It could better to consider a special UNKNOWN value instead of Empty ?

2.6 Transfer Functions Fi

We now describe how the execution of each REIL instruction ik transforms an
input state vector Sin into an output state vector Sout. We note Sin(ti) =<
Bi, Xi > and Sout is defined instruction-wised by the transfer function Fi asso-
ciated to ik as explained below.

Transfer between register: STR t0, ,t1

Sout = Sin[t1→ Sin(t0)]

Addition or subtraction: ADD t0, t1, t2

Sout = Sin[t2→ Add(Sin(t0), Sin(t1))]

10

where the function Add is defined as follows:

Add(< B1, X1 >,< B2, X2 >) =



< B1, {x1 + x2 | x1 ∈ X1 ∧ x2 ∈ X2} >
if B1 = B2 and B1 6= None and B1 6= Any

< B1, {x1 + x2 | x1 ∈ X1 ∧ x2 ∈ X2} > if B2 = None

< B2, {x1 + x2 | x1 ∈ X1 ∧ x2 ∈ X2} > if B1 = None

< ik, {0} > otherwise

In case of at least one operand is “unknown” in Sin (i.e., equal to <
Empty, ∅ >) then the result will be unknown as well in Sout. A similar
definition holds for a SUB instruction.

Other arithmetic and logic operations: MUL t0, t1, t2

Sout = Sin[t2→Mul(Sin(t0), Sin(t1))]

where the function Mul is defined as follows:

Mul(< B1, X1 >,< B2, X2 >) =

{
< None, {x1 × x2 | x1 ∈ X1 ∧ x2 ∈ X2} > if B1 = B2 = None

< ik, {0} > otherwise

Again, in case of at least one operand is “unknown” in Sin (i.e., equal to
< Empty, ∅ >) then the result will be unknown as well in Sout. Similar
definitions holds for other arithmetic or logical binary operators.

it may be possible to be more precise for some operators ...

Memory write operation: STM t0, ,t1 (meaning MEM[t1] := t0)
When t1 is “unknown” in Sin, then Sout remains equal to Sin (the defini-
tion of t1 will be available at a next iteration). Otherwise, two situations
may occur:

• if the value < B1, X1 > of t1 in Sin denotes a single memory location,
then this memory location is assigned with t0 in Sout (strong update);

• otherwise, for each element a of < B1, X1 >, the current value of
MEM[v] is merged with the value of t0 (weak update).

Assuming < B1, X1 >= Sin(t1), this is formalized as follows:

Sout =


if B1 = InitEsp or B1 = None and |X1| = 1 then Sin[Sin(t1)→ Sin(t0)]

if B1 = InitEsp or B1 = None and |X1| > 1 then

∀a ∈ Sin(t1). Sin[a→ Sin(a) t Sin(t0)]

if B1 = Any then ∀a ∈ A. Sin[a→ Sin(a) t Sin(t0)]

Remark:
A better definition could be obtained by considering the set of “may

11

aliases” (according to relation ∼=) of < B1, X1 > in case of weak update.
In principle, may aliases are defined with respect to a given position. This
means that when an element of Sin is assigned with an abstract value of the
form < i,X >, the location l at which this assignment takes place should
stored as well. A simpler alternative is to use the relation ≈ (instead of
∼=) to define may aliases . . .�.

Memory read operation: LDM t0, ,t1 (meaning t1 := MEM[t0])
When t0 is “unknown” in Sin then Sout remains equal to Sin (the def-
inition of t0 will be available at a next iteration). Otherwise, several
situations may occur:

• if B0 = Any, then we are reading from “any” memory location and
the content of t1 in Sout will be “any” as well;

• if Sin(t0) is “unknown”, then the content of t1 in Sout will be “any”;

• otherwise, the value of t1 in Sout is the merge of all the values MEM[a]
for each address s belonging to Sin(t0).

Formally:

Sout =



if B0 = Any then Sin[t1→< Any, ∅ >]

if B0 = InitEsp or B0 = None and ∃a ∈ Sin(t0). Sin(a) =< Empty, ∅ > then

Sin[t1→< Any, ∅ >]

if B0 = InitEsp or B0 = None and 6 ∃a ∈ Sin(t0). Sin(a) =< Empty, ∅ > then

∀a ∈ Sin(t0). Sin[t1→ Sin(t1) t Sin(a)]

All other instructions leave the input state vector unchanged (i.e., Sout = Sin).

2.7 Correctness of the Analysis

This dataflow analysis is conservative, it computes a superset of the concrete
value of each register and memory location. If we note V ala(reg(ik), ik) the
value computed by this algorithm for each This property can be formalized as
follows:

A Completer

3 Some experimental results

Add some words on the tool chain used to produce these results

12

We give the results obtained when executing this value-analysis on two small
examples of C programs.

3.1 Conditionnal statement

#inc lude <s t d i o . h>
i n t main ()
{

i n t x , y=5, z ;
i f (y<4) {

x=3; z =4;
} e l s e {

x=4; z =3;
} ;
y=x+z ;
re turn z ;

}

At the assembly level the address of local variables x, y and z are respectively
at offsets −8, −12 and −16 from the initial value of esp when entering function
main. The value of function Sout at the end of the main function is given below:

(u’ebp’, ’40105601’, [0]), (u’esp’, ’initESP’, [4]),

(’initESP-12’, ’noval’, [6, 7, 8]),

(’initESP-16’, ’noval’, [3, 4]),

(’initESP-8’, ’noval’, [3, 4])

As expected, final values of x and z are {3, 4}, whereas final value of y is in
{6, 7, 8}. Note that esp has been incremented by 4 during the execution (its
final value is InitEsp+4), and that ebp has been initalized at (Reil) instruction
number 40105601.

3.2 Iterative statement

#inc lude <s t d i o . h>
i n t main ()
{

i n t x=0, i , y ;
f o r (i =0; i <4; i++) {

y=6; x=x+i ;
}
re turn 0 ;

}

13

At the assembly level the address of local variables x, i and y are respectively
at offsets −8, −12 and −16 from the initial value of esp when entering function
main. The value of function Sout at the end of the main function is given below:

(u’ebp’, ’40105701’, [0]), (u’esp’, ’initESP’, [4]),

(’initESP-12’, ’anyval’, []),

(’initESP-16’, ’noval’, [6]),

(’initESP-8’, ’anyval’, [])

The final values of x and i have been “widened” to Any, since they change at
each iteration. The final value of y is 6, as expected.

4 Interprocedural Value-Analysis

4.1 Some generalities on interprocedural analysis

Several techniques can be used to perform a data-flow analysis at an interpro-
cedural level. They can be classified according to several criteria [7]:

context sensitivity: A context-insensitive analysis does not distinguish be-
tween all the potential calling contexts (memory and register content, ex-
ecution stack, etc.) of a procedure. Data-flow information inherited from
all calling contexts is merged before analyzing the procedure, and data-
flow information synthetized during the procedure execution is propagated
back to all callers. This is not the case in a context-sensitive analysis.

scope: The interprocedural effects (i.e., the mutual influence between a caller
and a callee) can be approximated in several ways. In its simplest form an
interprocedural analysis could just interpret a procedure call in the most
conservative way (the “worst” situation is assumed after a call, e.g., all
memory locations are tainted and their value is unknown). A less extreme
approach is the so-called side effect analysis, where only the callee’s in-
fluence is computed (the caller’s influence being approximated by fixed
values). Finaly, a whole program analysis aims to take into account influ-
ences in both directions (caller → callee, and vice-versa).

underlying approach: Two broad approaches are usually considered in in-
terprocedural analysis, the functionnal approach, and the value-based ap-
proach. The functionnal approach proceeds in two steps:

1. the computation of a context-independent and parameterized sum-
mary for each individual procedure, representing the effect of the
call ;

14

2. the data-flow analysis of each procedure, where the effect of each call
is computed by applying the corresponding summary.

Note that this approach is not always applicable. Note also that these two
steps can be combined when there is no recursive procedure (performing
the analysis from the leaves to the top in the call graph, which is DAG in
this case). The value based approach does not rely on summaries, but it
requires the construction of a suprer graph (linking the CFG of each pro-
cedures). Then, when a procedure call is encountered during the analysis,
the callee is analysed after transmitting all the required information. At
the end of this analysis the syntethized information is propagated back to
the caller.

In this work we propose to use first a whole-program, context-insensitive, func-
tionnal approach.

Remark (calling conventions).
Dealing with interprocedural analysis at the binary level needs to take into
account the calling convention used by x86 compilers. These conventions usually
fall in four categories:

cdcl: It is the most common one in Unix environment, and it is the one used
by gcc. All the parameters are transmitted on the stack, and the stack is
“cleaned” by the caller after the call.

stdcall: It is the most common one in Windows environment when the number
of argument is fixed for each function. All the parameters are transmitted
on the stack, and the stack is “cleaned” by the callee at the end of its
execution (instruction RET n).

fastcall: Same as “stdcall”, apart that the first and second parameters are
transmitted through registers ecx and edx.

thiscall: Used for object-oriented languages, same as “stdcall” apart that the
first parameter is the current object instance (this), and it is transmitted
register ecx.

In all cases the return value is transmitted through register eax.

4.2 Defining procedure summaries

According to our obejctives, the information we need to get from procedure
summaries is:

15

• the number of parameters (to retrieve these parameters in the caller’s
context) ;

• the function side-effects, namely wat has been tainted/untainted and,
what are the values that have been computed/modified for each mem-
ory locations.

Indeed, these side effects can be restricted to the memory locations that are
relevant from the caller’s point of view, namely:

• the callee’s return value, i.e., register eax (we assume that other registers
are left unchanged) ;

• the memory locations those address has been transmitted as an argument
to the callee ;

• the global variables.

These side-effects needs to be expressed in terms of memory locations influencing
the callee’s behaviour, namely:

• the values transmitted as an argument to the callee ;

• the values contained in memory locations those address has been trans-
mitted as an argument to the callee ;

• the global variables.

In an initial (and simplified) version, we may consider function summaries only
in terms of taint analysis, i.e., what are the side effects of a procedure execu-
tion regarding the final taintedness of return value, global variables, and output
parameters (memory locations those address has been transmitted as an argu-
ment). In this way, the (expensive) value analysis is used only to allow a precise
taint analysis inside some specific procedures.

In a more elaborated version it could be possible to deal with side effects in
terms of value analysis as well, if it happens to be useful

5 Comparison with related work

5.1 VSA as proposed in [3, 4, 5]

The notations used in this part are taken from [5]. The ones used in [3] slightly
differ.

16

5.1.1 Abstract Memory Model

Address expressions At the binary level, memory locations are accessed:

• either directly, the address is then an immediate value (absolute address);

• or inderictly, the address is then of the form

base + index ∗ scale + offset

where base and index are registers, scale and offset are integer constants.

Memory regions and abstract addresses

• The whole memory area is considered as 3 disjoint memory regions: the
globa-region (a single region for all global data), the AR-region (a set of
activation regions associated to each procedure 2 and the malloc-region (a
set of dynamically allocated memory zones).

• Each concrete memory address is represented by a pair (memory-region,
offset), considering that:

– (Global, 0) represents the absolute address 0

– for a procedure P, (AR P, 0) represents the value of esp when entering
procedure P

– (malloc L, 0) represents the address returned by a call to malloc at
program point L.

The memory region MemRgn is defined as

MemRgn = {Global} ∪ Proc ∪AllocMemRgn

Abstract locations An abstract location (or a-loc) is a representation of a
memory zone accessed at program execution (like a variable name at the source
level). Each a-loc is identified by an (abstract) address and a size. We can
distinguish between:

global a-locs: global variable accesses;

local a-locs: local variable and parameter accesses;

2but no more than one AR per procedure, even for recusive ones

17

heap a-locs: accesses to dynamic memory, note that there is one heap a-loc
per heap-region (corresponding to a call to malloc) those size might be
unknown (hence considered as ∞);

registers: to identify register accesses. Special registers are Flags.

5.1.2 Value Set Analysis

The main purpose of VSA is to compute both (and simultaneously) a “safe
approximation of the set of numeric values or addresses that each a-loc holds at
each program point”.

value sets Value sets are used to represent set of (numeric) values. The
abstract representation chosen in [5] is to use strided-interval (SI). An SI of size
s is denoted as s[l, u] and, assuming a k-bits memory, represents the following
set of concrete values:

{i ∈ [−2k−1, 2k−1 − 1] | l ≤ i ≤ u, i ≡ l mod s}

The empty SI will be noted ⊥ and the set of SI is noted StridedInterval. A
V alueSet is a partial function associating an SI to each memory region:

V alueSet : MemRgn→ StridedInterval

Value sets form a lattice (with respect to inclusion, @). Available operators are:

• meet (vs1 u vs2), join (vs1 t vs2), widening (vs1 5 vs2),

• addition with a constant (vs + c),

• dereferencing (∗(vs, s)) meaning the set of a-locs of size s addressed by
value-set vs as a pair of sets (F, P), for “fully-accessed” and “partially
accessed” a-locs.

abstract environment The main purpose of VSA is to associate an “ab-
stract environment” (AbsEnv) to each program location, where an AbsEnv is
a mapping associating a value-set to each a-loc. a − locs[R] denotes the set
of a-locs belonging to a memory region R, and AlocEnv[R] denotes the set of
values associated each a-loc of R:

AlocEnv[R] : a− locs[R]→ V alueSet

18

An AbsEnv is then defined as the product of the following mapings:

(register → V alueSet ∪ {true, false,maybe}3)

× ({Global} → AlocEnv[Global])

× (Proc→ AlocEnv[Proc])

× (AllocMemRgn→ AlocEnv[AllocMemRgn])

Note that maping for Proc and AllocMemRgn are partial mappings, since a
procedure may be not active, or a malloc instruction not executed yet.

5.1.3 Intraprocedural VSA

It is a data-flow analysis those objective is to compute the AbsEnv associated
to each node of a program CFG. It is based on a (classical) working-list forward
least fix-point computation algorithm, based on a transfer function associated
to each instruction. Specific features are:

• Conditions are taken into account. In the CFG, both instructions and
conditions are associated to edges (and not to vertices). The transfer
fuction associated to a condition allows to restrict (using operator u) the
current AbsEnv wrt this condition. Note that retrieving the “high level”
predicate (e.g, x ≥ 5) associated to a branch or jump instruction from the
binary may not be trivial.

• Widening is applied at at least one edge of every cycle in the CFG (“ la
Bourdoncle”). The choice of this edge is explained in a specific paper.

• Due the fact that size and overlapping of a-locs is taken into account, the
transfer function associated to memory reads and writes is more complex.
In particular:

– for each memory write, there’s a distinction between two main cases:

∗ if the write address corresponds to a single fully-accessed a-locs
which is neither in a recursive procedure nor in the heap, then
this a-loc is strongly updated with the new value set ;

∗ otherwise, each fully-accessed a-locs is weakly updated (the new
value set is t-ned with the current one), and each partally-
accesed a-locs is set to “top” (any possible value).

– for each memory read, the same distinction occurs:

∗ if there’s no partially-accessed a-locs in the read address, then
value read is a t of all the fully-accessed a-locs ;

∗ otherwise the value read is “top”.

Two versions of intraprocedural VSA have been proposed.

19

version 1 [3]. The set of a-locs considered during the VSA is computed a
priori using the so-called “semi-naive algorithm” implemented by IDAPro. This
algorithm looks for explicit (i.e., based on syntactic patterns) memory accesses:

• either through an offset relative to ebp or esp
(e.g., [ebp + ...], [esp + ...])

• or through absolute addresses in case of global variables (e.g., [190098])

An a-loc is then a memory region laying between two such addresses (it has a
given size). The value sets stored in the memory locations identified (only) by
this fixed set of a-locs are computed during the VSA.

This approach suffers from some drawbacks:

• “indirect” memory accesses are ignored (e.g., [eax], [eax + ...])

• the memory layout considered is sometimes too coarse, ignoring the un-
derlying data structure (array, records). As a consequence, VSA results
can be (too) over-approximated: whenever an a-loc representing an array
slice is accessed, the slice is considered as a whole (even if only one cell
is accessed). This is also the case when computing dependencies between
a-locs.

version 2 [8, 5]. To improve version 1, the idea is to proceed in an iterative
way (following an abstraction-refinement scheme). It relies on a combination
between VSA and ASI (Aggregate Structure Identification). ASI allows to iden-
tify the structure od data aggregates used in a program trough the data patterns
used to access them:

Ex: accessing every four bytes at offets -40, -32, ... -8 means accessing a 4-bytes
field of an array of 8-bytes structures.

The principle is the following:

• a first VSA is performed from the a-locs provided by IDAPro ;

• data-access patterns are generated from the results of this VSA

• apply ASI to refine the initial set of a-locs

• run VSA again on this new set

• etc., until no more a-locs are discovered.

20

Rk: it is not clear what happens when the value of a register used for a memory
accessed is found equal to “ANY” by the 1st round of VSA ... (probably no
possible ASI from this information)

The underlying problem is to find a good trade-off between accuracy and ef-
ficiency (number of a-locs discoverd wrt execution time). Another problem is
that some operations (like memcpy, used for instance to initialise dynamicaly
allocated memory) “breaks” the whole memory zone into a 1-byte array. To
solve these two problems some indications can be given by the user.

5.1.4 Interprocedural VSA

Two versions are described in [5], a context-insensitive and a context-sensitive
one.

The context-insensitive solution It follows a value-based approach, which
does not need to compute procedure summaries (but it means that each proce-
dure will be entirely analyzed at each iteration). The basic idea is to consider a
so-called super-graph, which extends the notion of CFG to the whole program,
and to perform a intra-procedural like data-flow analysis from this super-graph.
The main difficulty is to correctly handle parameter binding (i.e., relating formal
parameters to actual ones). Details of this approach are given below.

Super-graph. Each call instruction is splitted into two nodes, named call and
end-call. To express the control flows corresponding to procedure calls,
edges are added between each call nodes and the corresponding enter

node (of the procedure being called), and similarly between each exit node
and all possible corresponding end-call nodes (of each potential callers).
Note that in [5] (direct) edges are also added between each corresponding
call and end-call nodes, with the identity transfer function4

Parameter bindings. Special operations are performed when dealing with
call → enter and exit → end-call edges. In the former case, the
content of esp is initialized at offset 0 (base offset for the callee), and each
a-loc defined in the callee is initilialized with its value as computed in the
caller’s environment. This is performed for arguments, registers and local
variables (???). In the latter case, esp is restored, and each a-loc defined
in the caller is assigned with its value as computed in the callee’s environ-
ment. Note that weak updates are used in case of recursive prpcedures or
memory overlapings.

4to take into account the case where the propagation quiesces in the callee.

21

Interprocedural VSA. It is similar to a classical intraprocedural analysis per-
formed on a CFG, apart that the extra-edges are taken into account (by
applying the transfer functions described above).

The context-sensitive solution to be completed

5.1.5 Main differences with our work

Clearly the main concern of this work is to staticaly compute a safe over-
approximation of the possible value of each memory location accessed from
any (arbitrary) binary program. Our objective is less ambitious: we need a
VSA only for making the taint analysis more precise, by keeping track of the
addresses used in memory read/write operations whenever it’s possible, while
preserving the scalability of our analysis. This leads to some differences:

• taking into account size and overlapings of memory zones ;

• being more or less “dynamic” (?): a single abstract address for each mem-
ory chunk accessed (a-loc), whereas we start a “new” a-loc whenever we
are lost in the course of a procedure ...

This latest point needs to be clarified, some refinements/extensions are given in [5] . . .

5.2 Statically-directed dynamic automated test genera-
tion [2]

to be completed

6 What is missing in this current version

• summarize the general assumption we are considering: expected structure
of the stack, no recursive procedures (yet ?), symbolic jumps handled by
IDAPro (no more), etc.

• size of the memory transfers to be taken into account

• (scalable) interprocedural analysis

• taint analysis

22

• optimization by taking into account only registers and statements involved
in address computations (?)

• use of widening and narrowing operators to make the fix-point computa-
tion more efficient still keeping accurate enough results . . .

• etc.

to be completed ..

References

[1] Wolfram Amme, Peter Braun, Eberhard Zehendner, and François Thomas-
set. Data Dependence Analysis of Assembly Code. Research Report RR-
3764, INRIA, 1999.

[2] Domagoj Babić, Lorenzo Martignoni, Stephen McCamant, and Dawn Song.
Statically-directed dynamic automated test generation. In Proceedings of the
2011 International Symposium on Software Testing and Analysis, ISSTA ’11,
pages 12–22, New York, NY, USA, 2011. ACM.

[3] Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses in x86
executables. In In CC, pages 5–23. Springer-Verlag, 2004.

[4] Gogul Balakrishnan and Thomas Reps. Wysinwyx: What you see is not
what you execute. ACM Trans. Program. Lang. Syst., 32:23:1–23:84, August
2010.

[5] Gogul Balakrishnan and Thomas Reps. Wysinwyx: What you see is not
what you execute. ACM Trans. Program. Lang. Syst., 32:23:1–23:84, August
2010.

[6] Saumya Debray and Robert Muth. Alias analysis of executable code. In In
POPL, pages 12–24, 1998.

[7] U. Khedker, A. Sanyal, and B. Karkare. Data flow analysis: theory and
practice. Taylor and Francis, 2009.

[8] Thomas Reps, Gogul Balakrishnan, and Junghee Lim. Intermediate-
representation recovery from low-level code. ACM/SIGPLAN Workshop
Partial Evaluation and Semantics-Based Program Manipulation, page 100,
2006.

[9] Am Wolfram, Peter Braun, François Thomasset, and Eberhard Zehend-
ner. Data dependence analysis of assembly code. Int. J. Parallel Program.,
28:431–467, October 2000.

23

