
Software Modeling using
UML

Software Engineering (Spring 2015)
IIIT Hyderabad

2

Engineering Models
n  Engineering model:

 A reduced representation of some system that highlights the
properties of interest from a given viewpoint

Functional Model Modeled system

w  We don’t see everything at once
w  We use a representation (notation) that is easily understood for

the purpose on hand

3

Models

n  A model is a description of something
q  “a pattern for something to be made” (Merriam-Webster)

blueprint
(model)

building building

n  model ≠ thing that is modeled
q  The Map is Not The Territory

4

Models

n  How do we model?
n  Modeling Maturity Level

q  Level 0: No specification
q  Level 1: Textual
q  Level 2: Text with Diagrams
q  Level 3: Models with Text
q  Level 4: Precise Models

5

Object-Oriented Modeling
n  Uses object-orientation as a basis of modeling
n  Models a system as a set of objects that interact with each

others
n  No semantic gap (or impedance mismatch)
n  Seamless development process

Data-oriented

Conceptual/computational world
Real world

Abstraction

Interpretation
Object-oriented

6

Key Ideas of O-O Modeling

n  Abstraction
n  Encapsulation
n  Relationship

q  Association: relationship between objects
q  Inheritance: mechanism to represent similarity among objects

n  Object-oriented
= object (class) + inheritance + message send

7

Objects vs. Classes
Interpretation in the
Real World

Representation in the
Model

Object An object represents
anything in the real
world that can be
distinctly identified.

An object has an identity,
a state, and a behavior.

Class A class represents a set
of objects with similar
characteristics and
behavior. These objects
are called instances of
the class.

A class characterizes the
structure of states and
behaviors that are
shared by all of its
instances.

8

Unified Modeling Language (UML)

n  Notation for object-oriented modeling
n  Standardized by Object Management Group (OMG)
n  Consists of 12+ different diagrams

q  Use case diagram
q  Class diagram
q  Statechart diagram
q  Sequence diagram
q  Communication diagram
q  Component diagram
q  …

What the UML is not

n  Not an OO method or process
n  Not a visual programming language
n  Not a tool specification

10

A “Full” Process (using UML diagrams)
Business Models

Domain
Model

Activity
Diagrams

Business
Use Cases

Business Process Models

System Architectural Models

Domain
Object
State Diags.

Analysis Models

Activity
Diagrams

Analysis
 Use Cases

Behavioral Models Structural Models
Analysis

Class
Diagram

State
Diagrams

Interaction
Diagrams

State
Diagrams

Component
Diagram

Deployment
Diagram

Implementation Models

System
Architecture

Design
Class

Diagrams.

Structural Models

Provides
context for

Provides
context for

Provides
context for

refine

refine

refine

refine

refine

refine Provides
context for

Provides
context for

refine

refine

trace

trace

trace

11

An “UltraLite” Process

Business
Use Cases

Business Process Models

Design Models

Requirements Models

refine

Interaction
Diagrams

trace

Design
Class

Diagrams.

Analysis
Use Cases

Behavioral Models

Static Models

Requirements
Class

Diagram

refine

trace

refine

refine code refine

12

Static vs. Dynamic Models

n  Static model
q  Describes static structure of a system
q  Consists of a set of objects (classes) and their relationships
q  Represented as class diagrams

n  Dynamic model
q  Describes dynamic behavior of a system, such as state transitions and

interactions (message sends)

q  Represented as statechart diagram, sequence diagrams, and
collaboration diagrams

13

Models and Meta-Models
n  Meta-models are simply Models of Models

Class Association

Objects

Model

Meta-Model

(M0)

(M1)

(M2)

<sawdust>
<2 tons>

<Ben&Jerry’s> <lard>
<5 tons>

CustomerOrder
item
quantity

Customer

id

14

The UML Meta-Model
n  Is a UML Model of UML

GeneralizableElement
isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

Class

isActive : Boolean

Classifier

Feature

visibility : {public, private,
protected}

*

not self.isAbstract implies
 self.allOperations->forAll(op |
 self.allMethods->exists(m |
 m.specification includes (op)))

Well-formedness constraint (OCL)

Meta-Class

15

Plane

tailNumber

public class Plane
{
private String tailNumber;

public List getFlightHistory() {...}
}

domain concept
visualization of
domain concept

representation in an
object-oriented
programming language

Domain concept
vs.

design representation of domain concept
vs.

code representation of domain concept

16

UML Class Diagram

n  Most common diagram in OO modeling
n  Describes the static structure of a system
n  Consist of:

q  Nodes representing classes
q  Links representing of relationships among classes

n  Inheritance
n  Association, including aggregation and composition
n  Dependency

17

Notation for Classes

n  The UML notation for classes is a rectangular
box with as many as three compartments.

ClassName
field1

……

fieldn

method1

…
methodn

The top compartment show the class name.

The middle compartment contains the
declarations of the fields, or attributes, of
the class.

The bottom compartment contains the
declarations of the methods of the class.

18

Example

Point
- x: int
- y: int

+ move(dx: int, dy: int): void

Point

x
y

move

Point

19

Field and Method Declarations in UML

n  Field declarations
q  birthday: Date
q  +duration: int = 100
q  -students[1..MAX_SIZE]: Student

n  Method declarations
q  +move(dx: int, dy: int): void
q  +getSize(): int

Visibility Notation
public +

protected #

package ~

private -

20

Exercise

n  Draw a UML class diagram for the following
Java code.

class Person {
 private String name;
 private Date birthday;
 public String getName() {
 // …
 }
 public Date getBirthday() {
 // …
 }
}

21

Notation for Objects

n  Rectangular box with one or two compartments

objectName: Classname

field1 = value1
……

fieldn = valuen

The top compartment shows the
name of the object and its class.

The bottom compartment contains
a list of the fields and their values.

p1:Point

x = 10
y = 20

p2:Point

x = 20
y = 30

22

UML Notation for Interfaces

 interface Drawable {

 void draw(Graphics g);
 }

+ draw(g: Graphics): void

Drawable

+ draw(g: Graphics): void

<<interface>>
Drawable

23

Inheritance in Java

n  Important relationship in OO modeling
n  Defines a relationship among classes and interfaces.
n  Three kinds of inheritances

q  extension relation between two classes (subclasses and superclasses)
q  extension relation between two interfaces (subinterfaces and

superinterfaces)
q  implementation relation between a class and an interface

24

Inheritance in UML

n  An extension relation is called specialization and generalization.
n  An implementation relation is called realization.

Superclass

Subclass

Superinterface

Subinterface

 Interface

Class

extension of
classes

implementation
of interfaces

extension of
interfaces

25

Example

Student
{abstract}

Undergraduate Graduate
{abstract} Nondegree

Master PhD

26

Exercise

n  Draw a UML class diagram showing possible
inheritance relationships among classes
Person, Employee, and Manager.

27

Association

n  General binary relationships between classes
n  Commonly represented as direct or indirect references

between classes

Student Course

28

Association (Cont.)

n  May have an optional label consisting of a name
and a direction drawn as a solid arrowhead with
no tail.

n  The direction arrow indicates the direction of
association with respect to the name.

Student Course
enroll

29

Association (Cont.)

n  An arrow may be attached to the end of path to
indicate that navigation is supported in that
direction

n  What if omitted?

Student Course
enroll

30

Association (Cont.)

n  May have an optional role name and an optional
multiplicity specification.

n  The multiplicity specifies an integer interval, e.g.,
q  l..u closed (inclusive) range of integers
q  i singleton range
q  0..* entire nonnegative integer, i.e., 0, 1, 2, …

Student Faculty
advisee advisor

1 0..*

31

Example

Student Course
enroll

advisee

advisor
Faculty

teach

1..*

6..*

0..*

1
1

0..*

32

Exercise

n  Identify possible relationships among the
following classes and draw a class diagram
q  Employee
q  Manager
q  Department

33

Aggregation

n  Special form of association representing has-a or
part-whole relationship.

n  Distinguishes the whole (aggregate class) from its
parts (component class).

n  No relationship in the lifetime of the aggregate
and the components (can exist separately).

Aggregate Component

34

Composition

n  Stronger form of aggregation
n  Implies exclusive ownership of the component

class by the aggregate class
n  The lifetime of the components is entirely included

in the lifetime of the aggregate (a component can
not exist without its aggregate).

Composition Component

35

Example

Department

member-of

Faculty

College

chair-of

Student

1

1 1

1

1 1

1..*

0..*
1..*

1..*

University

36

Dependency

n  Relationship between the entities such that the
proper operation of one entity depends on the
presence of the other entity, and changes in one
entity would affect the other entity.

n  The common form of dependency is the use
relation among classes.

Class1 Class2
<<use>>

37

Example

Registrar

+ addCourse(s: CourseSchedue, c: Course): void
+ removeCourse(s: CourseSchedue, c: Course): void
+ findCourse(title: String): Course
+ enroll(c: Course, s: Student): void
+ drop(c: Course, s: Student): void

CourseSchedule

Course

Student

Dependencies are most often omitted from the diagram unless they
convey some significant information.

38

Group Exercise: E-book Store

 Develop an OO model for an e-bookstore. The core requirements of the e-
bookstore are to allow its customers to browse and order books, music CDs,
and computer software through the Internet. The main functionalities of the
system are to provide information about the titles it carries to help customers
make purchasing decisions; handle customer registration, order processing,
and shipping; and support management of the system, such as adding,
deleting, and updating titles and customer information.

1.  Identify classes. Classes can represent physical objects, people, organizations
places, events, or concepts. Class names should be noun phrases.

2.  Identify relevant fields and methods of the classes. Actions are modeled as the
methods of classes. Method names should be verb phrases.

3.  Identify any inheritance relationships among the classes and draw the class
diagram representing inheritance relationships.

4.  Identify any association relationships among the classes and draw the class
diagram representing association relationships.

5.  Identify any aggregation and composition relationships among the classes and
draw the class diagram representing dependency relationships.

Interaction models

UML Interaction models

n  An interaction model shows the interactions that
take place between objects in a system

n  An interaction “is a behavior that comprises a set of
messages exchanged among a set of objects within a
context to accomplish a purpose” (UML user
guide)

n  Interaction models provide a view of system
behavior

Sequence Diagram
n  Captures dynamic behavior (time-oriented)
n  Purpose

q  Model flow of control
q  Illustrate typical scenarios

Sequence Diagram Notation

 :
RegisterForCoursesForm :

IRegistrationController :
ICourseCata...

 : Student

1. createSchedule()

1.2. displayCourseOfferings()

1.1. getCourseOfferings()
1.1.1. getCourseOfferings(Semester)

time

class instances (objects)

object lifeline

message or
stimulus

 : Schedule 1.3. new()

implied return
(the call return arrow is
optional)

new instance

destroyed
instance

call to self

activation
(focus of control)
•  the time during which the

instance is performing the
action (directly or through
a sub-action)

procedure call
(synchronous)

async. or
unspecified

call return

sd GoHomeSetup

:ServiceUser :ServiceBase
ref SB_GoHomeSetup :ServiceTerminal

opt

ref FindLocation

SetHome

SetInvocationTime

SetTransportPreferences

ref Authorization

A More Complex Sequence Diagram (UML 2.0)

Frame and Name

Lifeline is an object

Interaction Occurrence

Combined Fragment

Plain asynchronous
message

sd Authorization

:ServiceUser :ServiceBase
ref SB_Authorization :ServiceTerminal

Code

OK

OnWeb

OK

Sequence diagram - Example

:AccRepository:Session:Client :AuthRepository

opAuth = getAuth(userId, operId)

sd AuthAddAccount

[opAuth = null]

[else]

error

alt

perform_addAccount(userId, acct)

done

addAccount(userId, acct)

:Controller

createAccount(acct)

alt

error

done

[ac = null]

[else]

ac = findAccount(acct)

Combined Fragment Types
n  Alternatives (alt)

q  choice of behaviors – at most one will execute
q  depends on the value of the guard (“else” guard supported)

n  Option (opt)
q  Special case of alternative

n  Break (break)
q  Represents an alternative that is executed instead of the remainder of

the fragment (like a break in a loop)

n  Parallel (par)
q  Concurrent (interleaved) sub-scenarios

n  Negative (neg)
q  Identifies sequences that must not occur

Combined Fragment Types

n  Critical Region (region)
q  Traces cannot be interleaved with events on any of the

participating lifelines

n  Assertion (assert)
q  Only valid continuation

n  Loop (loop)
q  Optional guard: [<min>, <max>, <Boolean-expression>]
q  No guard means no specified limit

Different Kinds of Arrows

Procedure call or other
kind of nested flow of
control

Flat flow of control

Explicit asynchronous
flow of control

Return

UML 1.4: Asynchronous

UML 1.4: Variant of async

Example: Different Arrows

caller exchange callee

Flat Flow

lift receiver

dial tone

dial digit

dial digit

ringing tone ringing signal

lift receiver

teller : Order : Article

Nested Flow

getValue

price

getName

Interaction Modeling Tips

n  Set the context for the interaction.
n  Express the flow from left to right and from top to bottom.
n  Put active objects to the left/top and passive ones to the right/

bottom.
n  Use sequence diagrams

q  to show the explicit ordering between the stimuli
q  when modeling real-time

