## How small and how fast?

# Shannon's Information Theoretic Limits for Data Compression and Communication 

Faculty Development Program on Analog and Digital Communication 15th May - 24th May 2017

Prasad Krishnan prasad.krishnan@iiit.ac.in

International Institute of Information Technology, Hyderabad

May, 2017

What is Information Theory?


## What is Information Theory?



- Who is going to win the race?


## What is Information Theory?



- Who is going to win the race?
- "If you don't know where the stop line is, you cannot run the race effectively nor you can figure out how good you are."


## What is Information Theory

- Limits of communication and storage


## What is Information Theory

- Limits of communication and storage
- Compression : "What is the minimum length of a code which represents a given source losslessly?"


## What is Information Theory

- Limits of communication and storage
- Compression : "What is the minimum length of a code which represents a given source losslessly?"
- Channel capacity: "What is the maximum rate of error-free transmission through a given channel?"


## What is Information Theory

- Limits of communication and storage
- Compression : "What is the minimum length of a code which represents a given source losslessly?"
- Channel capacity: " What is the maximum rate of error-free transmission through a given channel?"
- ... and more.


## Outline

Digital Communication

Source Coding

Channel Coding

## Source material



- "A Mathematical Theory of Communication" - Claude Shannon, Bell System Technical Journey, 1948


## Outline

Digital Communication

## Source Coding

## Channel Coding

## Communication System



- Clear what the receiver and the (analog) source is.
- What is the channel?


## The Channel

- Given to us by nature (can optimise, but fundamental nature cannot be changed).
- Modelling noisy nature using probability (Models are not exact).
- Making appropriate assumptions are very important.
- AWGN : Typical Model for point to point (Noise signals are from a Gaussian Random Process)


## The Digital Communication Model



## The Digital Communication Model



- Shannon did not explicitly deal with this model.
- Instead he merged together some of these blocks which helped him handle the problem probabilistically.


## The Discrete Source



## The Discrete Channel



## Shannon's Discrete (Digital) Communication Model



- Source coding $\rightarrow$ Remove inherent redundancy in the source, represent in minimal fashion.


## Shannon's Discrete (Digital) Communication Model



- Source coding $\rightarrow$ Remove inherent redundancy in the source, represent in minimal fashion.
- Channel Coding $\rightarrow$ Add redundancy systematically to the source symbols to combat channel noise


## Discrete Sources and Channels - Examples

Binary Source
Sampler + Quantize + Convert each quantized sample to bits.
Binary Symmetric Channel (BSC)

- Analog Channel is AWGN
- Assume BPSK Modulation and Threshold Detector at receiver.



## Outline

## Digital Communication

## Source Coding

## Channel Coding

## Source Coding

- $\mathcal{X}$ - Source Alphabet .
- X - Source Random Variable.
- We assume that there is a probability distribution $p(X)$ on the source.
- Want to compress this source - store it in the least space without loss of information.

Binary Source

- $X \in \mathcal{X}=\{0,1\}$
- Source generates one binary symbol in each time unit.
- $p(X=0)=p, \quad p(X=1)=(1-p) .(X \sim \operatorname{Ber}(p))$


## The 'least random' and 'most random' source

- Every binary source can be stored using 1 bit representation.


## The 'least random' and 'most random' source

- Every binary source can be stored using 1 bit representation.
- Consider that $p=0$.
- Every time we run the source, we get $X=1$.
- We are sure about the outcome.


## The 'least random' and 'most random' source

- Every binary source can be stored using 1 bit representation.
- Consider that $p=0$.
- Every time we run the source, we get $X=1$.
- We are sure about the outcome.
- Least random source ( $p=0$ or $p=1$ )


## The 'least random' and 'most random' source

- Every binary source can be stored using 1 bit representation.
- Consider that $p=0$.
- Every time we run the source, we get $X=1$.
- We are sure about the outcome.
- Least random source ( $p=0$ or $p=1$ )
- Need 0 bits to represent this source!


## The 'least random' and 'most random' source

- Every binary source can be stored using 1 bit representation.
- Consider that $p=0$.
- Every time we run the source, we get $X=1$.
- We are sure about the outcome.
- Least random source ( $p=0$ or $p=1$ )
- Need 0 bits to represent this source!
- What is the most random binary source? Ans:


## The 'least random' and 'most random' source

- Every binary source can be stored using 1 bit representation.
- Consider that $p=0$.
- Every time we run the source, we get $X=1$.
- We are sure about the outcome.
- Least random source ( $p=0$ or $p=1$ )
- Need 0 bits to represent this source!
- What is the most random binary source? Ans: $p=0.5$.
- Need 1 bit to represent this source. Maximum length!
- Minimum length of representation per source symbol = Uncertainty/Randomness in the source


## The 'least random' and 'most random' source

- Every binary source can be stored using 1 bit representation.
- Consider that $p=0$.
- Every time we run the source, we get $X=1$.
- We are sure about the outcome.
- Least random source ( $p=0$ or $p=1$ )
- Need 0 bits to represent this source!
- What is the most random binary source? Ans: $p=0.5$.
- Need 1 bit to represent this source. Maximum length!
- Minimum length of representation per source symbol = Uncertainty/Randomness in the source
- What is the most random $M$-ary source? How many bits is required?
- What about arbitrary $p$ for binary source?


## Binary Entropy



- To get the intermediate points, Shannon's idea was to 'let the source run' for some time.


## Coin Toss - Bernouli RV

- Imagine a coin toss experiment with $p($ heads $)=p$, $p($ Tails $)=1-p$.
- Suppose we toss the coin $N$ times with large $N$, how many heads and tails do we expect?


## Coin Toss - Bernouli RV

- Imagine a coin toss experiment with $p($ heads $)=p$, $p($ Tails $)=1-p$.
- Suppose we toss the coin $N$ times with large $N$, how many heads and tails do we expect?
- Roughly $N p$ heads, $N(1-p)$ tails.
- How many such $N$-length vectors are there?


## Coin Toss - Bernouli RV

- Imagine a coin toss experiment with $p($ heads $)=p$, $p($ Tails $)=1-p$.
- Suppose we toss the coin $N$ times with large $N$, how many heads and tails do we expect?
- Roughly $N p$ heads, $N(1-p)$ tails.
- How many such $N$-length vectors are there?
- $\binom{N}{N p}$ vectors.


## Coin Toss - Bernouli RV - Long vectors

- What happens as $N$ increases?
- Applying Stirling's approximation $\log _{2}(a!)=\operatorname{alog}_{2}(a)-\left(\log _{2} e\right) a+O\left(\log _{2} a\right)$ : we get


## Coin Toss - Bernouli RV - Long vectors

- What happens as $N$ increases?
- Applying Stirling's approximation $\log _{2}(a!)=\log _{2}(a)-\left(\log _{2} e\right) a+O\left(\log _{2} a\right)$ : we get
- $\log _{2}$ (no of such vectors) $\approx$ $N(-p \log (p)-(1-p) \log (1-p))=N H(X)$.
- $\boldsymbol{H}(X) \triangleq-\boldsymbol{p} \log (\boldsymbol{p})-(\mathbf{1}-\boldsymbol{p}) \log (\mathbf{1}-\boldsymbol{p})$ (Binary Entropy $H(p))$


## Coin Toss - Bernouli RV - Long vectors

- What happens as $N$ increases?
- Applying Stirling's approximation $\log _{2}(a!)=\operatorname{alog}_{2}(a)-\left(\log _{2} e\right) a+O\left(\log _{2} a\right)$ : we get
- $\log _{2}$ (no of such vectors) $\approx$ $N(-p \log (p)-(1-p) \log (1-p))=N H(X)$.
- $\boldsymbol{H}(\boldsymbol{X}) \triangleq-\boldsymbol{p} \log (\boldsymbol{p})-(\mathbf{1}-\boldsymbol{p}) \log (\mathbf{1}-\boldsymbol{p})$ (Binary Entropy $H(p))$
- What is the probability of each such vector? Ans: $\approx 2^{-N H(X)}$.
- Holds with equality as $N \rightarrow \infty$.


## Compressing a binary RV

- Note that the source distribution begins to look like a uniform distribution for large $N$, with $2^{N H(X)}$ possible vectors, and $\operatorname{Prob}($ any vector $) \approx 2^{-N H(X)}$.
- Already know how to represent uniform RV .


## Compressing a binary RV

- Note that the source distribution begins to look like a uniform distribution for large $N$, with $2^{N H(X)}$ possible vectors, and $\operatorname{Prob}($ any vector $) \approx 2^{-N H(X)}$.
- Already know how to represent uniform RV .
- Need length $\log \left(2^{N H(X)}\right)=N H(X)$ bits.
- No. of bits required to represent one source symbol $=\frac{N H(X)}{N}=H(X)$.


## Compressing a binary RV

- Note that the source distribution begins to look like a uniform distribution for large $N$, with $2^{N H(X)}$ possible vectors, and $\operatorname{Prob}($ any vector $) \approx 2^{-N H(X)}$.
- Already know how to represent uniform RV .
- Need length $\log \left(2^{N H(X)}\right)=N H(X)$ bits.
- No. of bits required to represent one source symbol $=\frac{N H(X)}{N}=H(X)$.
- Using less number of bits than this will cause loss of information about source!


## Shannon's source coding theorem

Shannon's Source Coding Theorem
The minimum number of bits required to represent a source random variable $X$ taking values from $\mathcal{X}$ with distribution $p(X)$ is

$$
H(X)=\sum_{x \in \mathcal{X}}-p(x) \log (p(x))
$$

An explicit scheme exists which can achieve compression arbitrarily close to $H(X)$.

## Outline

## Digital Communication

## Source Coding

Channel Coding

## Channel Coding

| Source Symbols | Channel Coding | Codewords | Discrete Channel | Codewords <br> + Noise | Decoder | Estimate of source symbols |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (K Length) |  | ( N length) |  | ( N length) |  | (K length) |

## Channel Coding



- Let Code alphabet be $\mathcal{X}$ with distribution $p(X)$ (Codeword vector is $\boldsymbol{x} \in \mathcal{X}^{N}$ ).


## Channel Coding



- Let Code alphabet be $\mathcal{X}$ with distribution $p(X)$ (Codeword vector is $\boldsymbol{x} \in \mathcal{X}^{N}$ ).
- Received alphabet be $\mathcal{Y}$ with distribution $p(Y)$, received vector is $\boldsymbol{y} \in \mathcal{Y}^{N}$.


## Channel Coding



- Let Code alphabet be $\mathcal{X}$ with distribution $p(X)$ (Codeword vector is $\boldsymbol{x} \in \mathcal{X}^{N}$ ).
- Received alphabet be $\mathcal{Y}$ with distribution $p(Y)$, received vector is $\boldsymbol{y} \in \mathcal{Y}^{N}$.
- Channel is described according to conditional distribution $p(y \mid x), y \in \mathcal{Y}, x \in \mathcal{X}$. (Assume $p(\boldsymbol{y} \mid \boldsymbol{x})=\prod_{i=1}^{N} p\left(y_{i} \mid x_{i}\right)$ ).


## Channel Coding



- Let Code alphabet be $\mathcal{X}$ with distribution $p(X)$ (Codeword vector is $\boldsymbol{x} \in \mathcal{X}^{N}$ ).
- Received alphabet be $\mathcal{Y}$ with distribution $p(Y)$, received vector is $\boldsymbol{y} \in \mathcal{Y}^{N}$.
- Channel is described according to conditional distribution $p(y \mid x), y \in \mathcal{Y}, x \in \mathcal{X}$. (Assume $p(\boldsymbol{y} \mid \boldsymbol{x})=\prod_{i=1}^{N} p\left(y_{i} \mid x_{i}\right)$ ).
- Note that $p(y)=\sum_{x \in \mathcal{X}} p(y \mid x) p(x)$.


## Channel Coding



- Let Code alphabet be $\mathcal{X}$ with distribution $p(X)$ (Codeword vector is $\boldsymbol{x} \in \mathcal{X}^{N}$ ).
- Received alphabet be $\mathcal{Y}$ with distribution $p(Y)$, received vector is $\boldsymbol{y} \in \mathcal{Y}^{N}$.
- Channel is described according to conditional distribution $p(y \mid x), y \in \mathcal{Y}, x \in \mathcal{X}$. (Assume $p(\boldsymbol{y} \mid \boldsymbol{x})=\prod_{i=1}^{N} p\left(y_{i} \mid x_{i}\right)$ ).
- Note that $p(y)=\sum_{x \in \mathcal{X}} p(y \mid x) p(x)$.
- Rate of the code $=\frac{K}{N}$ (no. of msg symbols per codeword symbol).


## Channel Coding



- Let Code alphabet be $\mathcal{X}$ with distribution $p(X)$ (Codeword vector is $\boldsymbol{x} \in \mathcal{X}^{N}$ ).
- Received alphabet be $\mathcal{Y}$ with distribution $p(Y)$, received vector is $\boldsymbol{y} \in \mathcal{Y}^{N}$.
- Channel is described according to conditional distribution $p(y \mid x), y \in \mathcal{Y}, x \in \mathcal{X}$. (Assume $p(\boldsymbol{y} \mid \boldsymbol{x})=\prod_{i=1}^{N} p\left(y_{i} \mid x_{i}\right)$ ).
- Note that $p(y)=\sum_{x \in \mathcal{X}} p(y \mid x) p(x)$.
- Rate of the code $=\frac{K}{N}$ (no. of msg symbols per codeword symbol).
- Question: What is the maximum rate possible to achieve for (almost) zero probability of error?


## Binary Source + Binary Symmetric Channel Setup

 Binary Symmetric Channel:

- Assume source symbols are binary and channel is BSC.
- Encoding: $K$-length binary strings to $N$-length binary strings.
- Number of codewords is $2^{K}$.


## Binary Source + Binary Symmetric Channel Setup

Binary Symmetric Channel:


- Assume source symbols are binary and channel is BSC.
- Encoding: $K$-length binary strings to $N$-length binary strings.
- Number of codewords is $2^{K}$.
- If $X$ is channel input RV, we can also write channel output $Y$ as

$$
Y=X+Z
$$

where $Z$ has a $\operatorname{Ber}(p)$ distribution and is independent of $X$.

## Channel coding on the BSC with binary inputs

Question: What is the best $\frac{K}{N}=\frac{\log _{2}(\text { No. of codewords) }}{N}$ with (almost) zero probability of error?

- Repetition code: $K=1$, mapped to $N$-length string with same bits as the input.
- Probability of error goes to zero, what about rate?


## Channel coding on the BSC with binary inputs

Question: What is the best $\frac{K}{N}=\frac{\log _{2}(\text { No. of codewords) }}{N}$ with (almost) zero probability of error?

- Repetition code: $K=1$, mapped to $N$-length string with same bits as the input.
- Probability of error goes to zero, what about rate?
- Are there codes which have good rate, and low probability of error?


## Channel coding on the BSC with binary inputs

Question: What is the best $\frac{K}{N}=\frac{\log _{2}(\text { No. of codewords) }}{N}$ with (almost) zero probability of error?

- Repetition code: $K=1$, mapped to $N$-length string with same bits as the input.
- Probability of error goes to zero, what about rate?
- Are there codes which have good rate, and low probability of error?
- Shannon proved such codes exist! (Trade off with complexity of encoding/decoding)


## Channel coding on the BSC with binary inputs

- Let $\boldsymbol{x}$ be some $N$-length codeword input to the channel.
- Assuming large $N$, how does the received vector $\boldsymbol{y}$ look like?


## Channel coding on the BSC with binary inputs

- Let $\boldsymbol{x}$ be some $N$-length codeword input to the channel.
- Assuming large $N$, how does the received vector $\boldsymbol{y}$ look like?
- Ans: We will have $\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{z}$, for some $\boldsymbol{z}$ containing roughly $N p$ ones.


## Channel coding on the BSC with binary inputs

- Let $\boldsymbol{x}$ be some $N$-length codeword input to the channel.
- Assuming large $N$, how does the received vector $\boldsymbol{y}$ look like?
- Ans: We will have $\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{z}$, for some $\boldsymbol{z}$ containing roughly $N p$ ones.
- Number of such possible error vectors is $\binom{N}{N p} \approx 2^{N H(Z)}$, and the probability of each is $\approx 2^{-N H(Z)}$.


## Non-intersecting Hamming spheres

- Sphere of 'radius' $N p$ around $\boldsymbol{x}$.
- The received vector could be anywhere in this sphere.
- Number of vectors in this sphere $\approx 2^{N H(Z)}$.


## Non-intersecting Hamming spheres

- Sphere of 'radius' $N p$ around $\boldsymbol{x}$.
- The received vector could be anywhere in this sphere.
- Number of vectors in this sphere $\approx 2^{N H(Z)}$.
- Suppose there was another codeword $\boldsymbol{x}^{\prime}$ such that the spheres around $\boldsymbol{x}$ and $\boldsymbol{x}^{\prime}$ intersect.
- Then there is decoding error


## Sphere packing

- Any two codewords should be such that their spheres (of radius $N p$ ) don't intersect.


## Sphere packing

- Any two codewords should be such that their spheres (of radius $N p$ ) don't intersect.
- Pick the maximum possible number of such codewords following above rule. (Sphere packing)


## Sphere packing

- Any two codewords should be such that their spheres (of radius $N p$ ) don't intersect.
- Pick the maximum possible number of such codewords following above rule. (Sphere packing)
- Total possible received vectors $\approx 2^{N H(Y)}$.
- Number of vectors in each sphere $\approx 2^{N H(Z)}$.


## Sphere packing

- Any two codewords should be such that their spheres (of radius $N p$ ) don't intersect.
- Pick the maximum possible number of such codewords following above rule. (Sphere packing)
- Total possible received vectors $\approx 2^{N H(Y)}$.
- Number of vectors in each sphere $\approx 2^{N H(Z)}$.
- Hence Maximum number of codewords

$$
\frac{2^{N H(Y)}}{2^{N H(Z)}}=2^{N(H(Y)-H(Z))}
$$

- Maximum rate of code (with output distribution $p(y)$ ) $=H(Y)-H(Z)$.


## Capacity of BSC

- Note that $H(Y)$ is a function of $p(y)$ which is a function of $p(x)$.


## Capacity of BSC

- Note that $H(Y)$ is a function of $p(y)$ which is a function of $p(x)$.
- The maximum rate of transmission through the BSC is thus

$$
\begin{array}{r}
\max _{p(x)}(H(Y)-H(Z)) \\
=\max _{p(x)} H(Y)-H(p) \\
=1-H(p)
\end{array}
$$

## Capacity of BSC

- Note that $H(Y)$ is a function of $p(y)$ which is a function of $p(x)$.
- The maximum rate of transmission through the BSC is thus

$$
\begin{array}{r}
\max _{p(x)}(H(Y)-H(Z)) \\
=\max _{p(x)} H(Y)-H(p) \\
=1-H(p)
\end{array}
$$

- This is called the Capacity of the BSC.


## Capacity of BSC



## Shannon's Channel Capacity Theorem

## Channel Capacity Theorem

For any discrete-memoryless channel with given $p(y \mid x)$, the rate of transmission $R$ is always $\leq C$, where $C$ is the channel capacity given as

$$
C \triangleq \max _{p(x)} H(Y)-H(Y \mid X) .
$$

Also, there exists some encoding scheme by which any rate arbitrarily close to capacity is achievable.

## Capacity of AWGN

- For AWGN with bandwidth $W::$ Capacity $=$ $\frac{1}{2} \log (1+S N R)=\frac{1}{2} \log \left(1+\frac{P}{N_{0} W}\right)$.
- Only Existence of Good Codes is shown by Shannon.
- Construction of 'good' codes has happened (for AWGN channels) over the last several decades since Shannon.


## Capacity curve for AWGN



## Turbo Codes and LDPC Codes along Shannon Capacity

 Curve
## Power Efficiency of Standard Binary Channel Codes





- Who is going to win the race?
- "If you don't know where the stop line is, you cannot run the race effectively nor you can figure out how good you are."

- Who is going to win the race?
- "If you don't know where the stop line is, you cannot run the race effectively nor you can figure out how good you are."
- Shannon tells us where the stop line is!


## Thank You!

