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Source material

I “A Mathematical Theory of Communication” - Claude
Shannon, Bell System Technical Journey, 1948
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Communication System

I Clear what the receiver and the (analog) source is.

I What is the channel?



The Channel

I Given to us by nature (can optimise, but fundamental nature
cannot be changed).

I Modelling noisy nature using probability (Models are not
exact).

I Making appropriate assumptions are very important.

I AWGN : Typical Model for point to point (Noise signals are
from a Gaussian Random Process)



The Digital Communication Model

I Shannon did not explicitly deal with this model.

I Instead he merged together some of these blocks which
helped him handle the problem probabilistically.
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The Discrete Channel



Shannon’s Discrete (Digital) Communication Model

I Source coding → Remove inherent redundancy in the source,
represent in minimal fashion.

I Channel Coding → Add redundancy systematically to the
source symbols to combat channel noise
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Discrete Sources and Channels - Examples

Binary Source

Sampler + Quantize + Convert each quantized sample to bits.

Binary Symmetric Channel (BSC)

I Analog Channel is AWGN

I Assume BPSK Modulation and Threshold Detector at
receiver.



Outline

Digital Communication

Source Coding

Channel Coding



Source Coding

I X - Source Alphabet .

I X - Source Random Variable.

I We assume that there is a probability distribution p(X ) on the
source.

I Want to compress this source - store it in the least space
without loss of information.

Binary Source

I X ∈ X = {0, 1}
I Source generates one binary symbol in each time unit.

I p(X = 0) = p, p(X = 1) = (1− p). (X ∼ Ber(p))



The ‘least random’ and ‘most random’ source

I Every binary source can be stored using 1 bit representation.

I Consider that p = 0.

I Every time we run the source, we get X = 1.

I We are sure about the outcome.

I Least random source (p = 0 or p = 1)

I Need 0 bits to represent this source!

I What is the most random binary source? Ans: p = 0.5.

I Need 1 bit to represent this source. Maximum length!

I Minimum length of representation per source symbol =
Uncertainty/Randomness in the source

I What is the most random M-ary source? How many bits is
required?

I What about arbitrary p for binary source?
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Binary Entropy

I To get the intermediate points, Shannon’s idea was to ‘let the
source run’ for some time.



Coin Toss - Bernouli RV

I Imagine a coin toss experiment with p(heads) = p,
p(Tails) = 1− p.

I Suppose we toss the coin N times with large N, how many
heads and tails do we expect?

I Roughly Np heads, N(1− p) tails.

I How many such N-length vectors are there?

I

(
N
Np

)
vectors.
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Coin Toss - Bernouli RV - Long vectors

I What happens as N increases?

I Applying Stirling’s approximation
log2(a!) = alog2(a)− (log2e)a + O(log2a): we get

I Log2(no of such vectors) ≈
N(−plog(p)− (1− p)log(1− p)) = NH(X ).

I H(X ) , −plog(p) − (1 − p)log(1 − p) (Binary Entropy
H(p))

I What is the probability of each such vector? Ans: ≈ 2−NH(X ).

I Holds with equality as N →∞.
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Compressing a binary RV

I Note that the source distribution begins to look like a uniform
distribution for large N, with 2NH(X ) possible vectors, and
Prob(any vector)≈ 2−NH(X ).

I Already know how to represent uniform RV .

I Need length log(2NH(X )) = NH(X ) bits.

I No. of bits required to represent one source symbol
= NH(X )

N = H(X ).

I Using less number of bits than this will cause loss of
information about source!
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Shannon’s source coding theorem

Shannon’s Source Coding Theorem

The minimum number of bits required to represent a source
random variable X taking values from X with distribution p(X ) is

H(X ) =
∑
x∈X
−p(x)log(p(x)).

An explicit scheme exists which can achieve compression arbitrarily
close to H(X ).
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Channel Coding

I Let Code alphabet be X with distribution p(X ) (Codeword
vector is x ∈ XN).

I Received alphabet be Y with distribution p(Y ), received
vector is y ∈ YN .

I Channel is described according to conditional distribution
p(y |x), y ∈ Y, x ∈ X . (Assume p(y |x) =

∏N
i=1 p(yi |xi )).

I Note that p(y) =
∑

x∈X p(y |x)p(x).

I Rate of the code = K
N (no. of msg symbols per codeword

symbol).

I Question: What is the maximum rate possible to achieve for
(almost) zero probability of error?



Channel Coding

I Let Code alphabet be X with distribution p(X ) (Codeword
vector is x ∈ XN).

I Received alphabet be Y with distribution p(Y ), received
vector is y ∈ YN .

I Channel is described according to conditional distribution
p(y |x), y ∈ Y, x ∈ X . (Assume p(y |x) =

∏N
i=1 p(yi |xi )).

I Note that p(y) =
∑

x∈X p(y |x)p(x).

I Rate of the code = K
N (no. of msg symbols per codeword

symbol).

I Question: What is the maximum rate possible to achieve for
(almost) zero probability of error?



Channel Coding

I Let Code alphabet be X with distribution p(X ) (Codeword
vector is x ∈ XN).

I Received alphabet be Y with distribution p(Y ), received
vector is y ∈ YN .

I Channel is described according to conditional distribution
p(y |x), y ∈ Y, x ∈ X . (Assume p(y |x) =

∏N
i=1 p(yi |xi )).

I Note that p(y) =
∑

x∈X p(y |x)p(x).

I Rate of the code = K
N (no. of msg symbols per codeword

symbol).

I Question: What is the maximum rate possible to achieve for
(almost) zero probability of error?



Channel Coding

I Let Code alphabet be X with distribution p(X ) (Codeword
vector is x ∈ XN).

I Received alphabet be Y with distribution p(Y ), received
vector is y ∈ YN .

I Channel is described according to conditional distribution
p(y |x), y ∈ Y, x ∈ X . (Assume p(y |x) =

∏N
i=1 p(yi |xi )).

I Note that p(y) =
∑

x∈X p(y |x)p(x).

I Rate of the code = K
N (no. of msg symbols per codeword

symbol).

I Question: What is the maximum rate possible to achieve for
(almost) zero probability of error?



Channel Coding

I Let Code alphabet be X with distribution p(X ) (Codeword
vector is x ∈ XN).

I Received alphabet be Y with distribution p(Y ), received
vector is y ∈ YN .

I Channel is described according to conditional distribution
p(y |x), y ∈ Y, x ∈ X . (Assume p(y |x) =

∏N
i=1 p(yi |xi )).

I Note that p(y) =
∑

x∈X p(y |x)p(x).

I Rate of the code = K
N (no. of msg symbols per codeword

symbol).

I Question: What is the maximum rate possible to achieve for
(almost) zero probability of error?



Channel Coding

I Let Code alphabet be X with distribution p(X ) (Codeword
vector is x ∈ XN).

I Received alphabet be Y with distribution p(Y ), received
vector is y ∈ YN .

I Channel is described according to conditional distribution
p(y |x), y ∈ Y, x ∈ X . (Assume p(y |x) =

∏N
i=1 p(yi |xi )).

I Note that p(y) =
∑

x∈X p(y |x)p(x).

I Rate of the code = K
N (no. of msg symbols per codeword

symbol).

I Question: What is the maximum rate possible to achieve for
(almost) zero probability of error?



Channel Coding

I Let Code alphabet be X with distribution p(X ) (Codeword
vector is x ∈ XN).

I Received alphabet be Y with distribution p(Y ), received
vector is y ∈ YN .

I Channel is described according to conditional distribution
p(y |x), y ∈ Y, x ∈ X . (Assume p(y |x) =

∏N
i=1 p(yi |xi )).

I Note that p(y) =
∑

x∈X p(y |x)p(x).

I Rate of the code = K
N (no. of msg symbols per codeword

symbol).

I Question: What is the maximum rate possible to achieve for
(almost) zero probability of error?



Binary Source + Binary Symmetric Channel Setup
Binary Symmetric Channel:

I Assume source symbols are binary and channel is BSC.
I Encoding: K -length binary strings to N-length binary

strings.
I Number of codewords is 2K .

I If X is channel input RV, we can also write channel output Y
as

Y = X + Z ,

where Z has a Ber(p) distribution and is independent of X .
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Channel coding on the BSC with binary inputs

Question: What is the best K
N = log2(No. of codewords)

N with
(almost) zero probability of error?

I Repetition code: K = 1, mapped to N-length string with
same bits as the input.

I Probability of error goes to zero, what about rate?

I Are there codes which have good rate, and low probability of
error?

I Shannon proved such codes exist ! (Trade off with complexity
of encoding/decoding)
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Channel coding on the BSC with binary inputs

I Let x be some N-length codeword input to the channel.

I Assuming large N, how does the received vector y look like?

I Ans: We will have y = x + z , for some z containing roughly
Np ones.

I Number of such possible error vectors is

(
N
Np

)
≈ 2NH(Z),

and the probability of each is ≈ 2−NH(Z).
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Non-intersecting Hamming spheres

I Sphere of ‘radius’ Np around x .

I The received vector could be anywhere in this sphere.

I Number of vectors in this sphere ≈ 2NH(Z).

I Suppose there was another codeword x ′ such that the spheres
around x and x ′ intersect.

I Then there is decoding error
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Sphere packing

I Any two codewords should be such that their spheres (of
radius Np) don’t intersect.

I Pick the maximum possible number of such codewords
following above rule. (Sphere packing)

I Total possible received vectors ≈ 2NH(Y ).

I Number of vectors in each sphere ≈ 2NH(Z).

I Hence Maximum number of codewords

2NH(Y )

2NH(Z)
= 2N(H(Y )−H(Z)).

I Maximum rate of code (with output distribution p(y))
= H(Y )− H(Z ).
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Capacity of BSC

I Note that H(Y ) is a function of p(y) which is a function of
p(x).

I The maximum rate of transmission through the BSC is thus

maxp(x)(H(Y )− H(Z ))

= maxp(x)H(Y )− H(p)

= 1− H(p)

I This is called the Capacity of the BSC.
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Shannon’s Channel Capacity Theorem

Channel Capacity Theorem

For any discrete-memoryless channel with given p(y |x), the rate of
transmission R is always ≤ C , where C is the channel capacity
given as

C , maxp(x)H(Y )− H(Y |X ).

Also, there exists some encoding scheme by which any rate
arbitrarily close to capacity is achievable.



Capacity of AWGN

I For AWGN with bandwidth W :: Capacity =
1
2 log(1 + SNR) = 1

2 log(1 + P
N0W

).

I Only Existence of Good Codes is shown by Shannon.

I Construction of ‘good’ codes has happened (for AWGN
channels) over the last several decades since Shannon.



Capacity curve for AWGN



Turbo Codes and LDPC Codes along Shannon Capacity
Curve



I Who is going to win the race?

I “If you don’t know where the stop line is, you cannot run the
race effectively nor you can figure out how good you are.”

I Shannon tells us where the stop line is!
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Thank You!
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