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Spreading Codes



Talk Outline - Spreading Codes

» Spreading codes idea
> Need for spreading codes in GNSS

» Generating spreading codes for GNSS



What are Spreading Codes?

Example
» Consider that you have a message bit b (can be zero or one).
> Instead of transmitting b we transmit - b[1 0 0 0 0].
» The vector [1 0 0 0 0] is like a carrier - we call it the code.

» To decode, multiply received vector by [1 00 00].



What are Spreading Codes?

Example

» 4 different bits with 4 orthogonal codes transmitted at the
same time.

bo[1 0 0 0]+ 5[0 10 0] + bo[0 0 1 0] + b3[0 0 0 1]
=boxg + b1x1 + byxa + b3x3



What are Spreading Codes?

Example

» 4 different bits with 4 orthogonal codes transmitted at the
same time.

bo[1 0 0 0]+ 5[0 10 0] + bo[0 0 1 0] + b3[0 0 0 1]
=boxg + b1x1 + byxa + b3x3

1 ifi=y

0 ifi#j

» Can get the bit b; by multiplying with x; 7. (i represents the
shift in time).

» Note that X,'XjT = {



What are Spreading Codes? - Finding Delays

Example

» Consider that a coded bit b comes with an arbitrary unknown
delay (0 <j < 3).

» Received vector = bx; (0 < j < 3).

» Then can we find out the delay j and bit b7

» Multiplying with x; (0 < i < 3) does the trick.



More generally - Pseudo-Random-Noise Sequences

» Consider two or more binary sequences ({41, —1}) sequence
which have 'good’ autocorrelation properties and 'good’ cross
correlation properties.

» Such sequences are called Pseudo-Random-Noise sequences.



More generally - Pseudo-Random-Noise Sequences

» Consider two or more binary sequences ({41, —1}) sequence
which have 'good’ autocorrelation properties and 'good’ cross
correlation properties.

» Such sequences are called Pseudo-Random-Noise sequences.

'Good’ autocorrelation property of a sequence x

> x;xJ-T has a high value if i = j and low value if i # j.

'Good’ cross-correlation property of sequences x and y

> x,-yJ-T has a low value for any i, .



How are PNR sequences useful in GNSS?

Each satellite has its own unique PRN sequence, and uses it to modulate
data transmitted to receivers.

Ranging

» Good autocorrelation properties — Find Delay due to separation
between Rx and Satellite Tx.

> Delay (from multiple satellites) — User Location.
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How are PNR sequences useful in GNSS?

Each satellite has its own unique PRN sequence, and uses it to modulate
data transmitted to receivers.

Ranging

» Good autocorrelation properties — Find Delay due to separation
between Rx and Satellite Tx.

> Delay (from multiple satellites) — User Location.

Saving spectrum

» Good cross-correlation properties — Decode info from different
satellites.

> Multiple satellites can transmit over the same frequency.

Gain in SNR

» Same bit is encoded in a long PRN sequence — redundancy.

> Redundancy — provides SNR gain (and hence lowers prob. of error).



Generating 'Pseudo-Random-Noise’

» PN Sequences deterministically generated, yet possess
properties of randomly generated sequences

» PN sequences generated using linear feedback shift registers.



Linear Feedback Shift Registers
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» Qutput sequence is given by

Citm = 8m—1Ci4m—1 + 8m—2Citm—2+ ...+ g1Ciy+1 + ci(mod 2)



Characteristic Polynomial of LFSR

» Since the operation is binary addition, the above output
equation can be rewritten as

m
> &iciy =0,
=0

where go = gn =1

» The characteristic polynomial of the LFSR is given by
m
g(x) =) ax’
=0

» We are interested in special kinds of LFSRs which can output
PRN sequences.



Primitive Polynomial

» Every polynomial g(x) with coefficients in binary field having
g(0) = 1 divides xN 4 1 for some N. The smallest N for
which this is true is called the period of g(x).

» An irreducible polynomial of degree m whose period is 27 — 1
is called a primitive polynomial



m-Sequences : Examples of PRN sequences
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» An LFSR produces an m-sequence (maximum length) if and
only if its characteristic polynomial is a primitive polynomial

> In the above example, the polynomial is g(x) = 1 + x3 + x10



Delay and Add Property of m-Sequences

» The cyclic shift of an m-sequence is also an m-sequence

> The sum of an m-sequence and a cyclic shift of itself is also
an m-sequence



Autocorrelation Function of m-Sequences

Let (s¢) be an m-sequence of period N = 2" — 1 Then the
autocorrelation of the m-sequence is

0..(7) 2" — 1 if 7 =0(mod2" — 1)
T) =
® -1 if T 0(mod2" —1)



Plot of Autocorrelation Function

Normalized autocorrelation function
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Gold Sequences

» m-Sequences have good auto-correlation properties but poor
cross-correlation properties (cross-correlation can be high,
which we don't want).

» Two m-Sequence generators are used to generate a “Gold
Sequence” which has good cross-correlation properties



Generating Gold Sequences
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Gold Sequences in GPS

Satellite CPS Code Code
D PRN Phase Delay
Number  Signal  Selection  Chips
Number _ Number (C2)
T T 206 5
2 2 367 6
3 3 168 7
1 1 569 8
5 5 169 17
6 6 2610 18
7 7 108 139
8 8 269 1o
9 3210 o
10 263 251
11 34 252
12 56 6 251
13 6617 255
1 768 256
15 89 257
16 9410 258
7 164 66
18 255
19 366
20 167
21 568
22 69
23 163
2 166
25 567
% 608
27 9
28 10
29 6
30 7
31
32
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Forward Error Correction



Talk Outline - Error Correcting Codes

Need for Error Correction

v

v

Error Correcting Codes (general principles and examples)

v

Encoding and Decoding of a Block Code (Hamming Code)
Types of Error Correcting Codes (in GNSS)

Encoding and Decoding of Convolutional Codes

v

v



Channel Coding

Sender Receiver
1-
0 (1-p) 0
p
P
1~ 1
(1-p)

p : cross-over probability, say 0.1

» The bit cross-over probability p (< 0.5) is a property of the
channel.

» Free to manipulate the input and output to the channel.

» Encode messages to codewords (add redundancy cleverly) :
Reduce effective Prob(error).



A trivial code example - Repetition code

v

Repeat the same bit three times

v

Message 0 — [0 0 0] (codeword), Message 1 — [1 1 1].

v

Decode by Majority logic.

v

For the above channel, probability of error comes down
(Check!).



General ideas behind FEC for the binary symmetric channel

Nois Message
Messages —Channel =~ Codeword codewc}/rds Channel estima?e
—»  Code » Channel Code ——»

Decoder

Encoder

> Decoder decides the Tx codeword ¢ based on received Noisy
Codeword y.

» Decoding rule : Decoding for the most likely codeword.
(Choose that ¢ which maximizes p(y|c)).



General ideas behind FEC for the binary symmetric channel

Messages | Channel | Codeword
—»  Code >

Encoder

Noisy
codewords
Channel

Channel
Code
Decoder

Message

estimate
—»

> Decoder decides the Tx codeword ¢ based on received Noisy

Codeword y.

» Decoding rule : Decoding for the most likely codeword.
(Choose that ¢ which maximizes p(y|c)).

» Probability that every transmitted bit is flipped is p < 0.5

» If you don't code at all, the rule decodes to the bit that was

received as it is.



General ideas behind FEC for the binary symmetric channel

» For a code of length n: Choose the codeword which is closest
to Rx Vector y in terms of number of flipped bits.

> Minimum Hamming Distance Rule.



General ideas behind FEC for the binary symmetric channel

» For a code of length n: Choose the codeword which is closest
to Rx Vector y in terms of number of flipped bits.

> Minimum Hamming Distance Rule.

Example
Repetition Code

» The Majority Decoder is infact the Minimum Hamming
Distance Decoder.

» The Repetition Code can correct any single-bit error.



General ideas behind FEC for the binary symmetric channel

» For a code of length n: Choose the codeword which is closest
to Rx Vector y in terms of number of flipped bits.

> Minimum Hamming Distance Rule.

Example
Repetition Code

» The Majority Decoder is infact the Minimum Hamming
Distance Decoder.

» The Repetition Code can correct any single-bit error.
» Increase n to decrease P(error).

» Rate % : For 1 bit of message, we need to send n coded bits.
(Pretty bad!)



Can we do better? - Linear Block Codes

. Code word of
k message bits I:> length n bits

* Each set of k message bits maps to a unique
codeword

* Each of the n bits is a linear combination of k
message bits

* n =length of the code, k = dimension of the code



Linear Block Codes

> Let u be the message vector and c is the corresponding
codeword.

» How to get ¢ from u ?

» Linear Block Codes used a Linear Map
c=uG

» G is a full-rank matrix of size k x n (k < n). The code is a
(n, k) linear block code.



Linear Block Codes

> Let u be the message vector and c is the corresponding
codeword.

» How to get ¢ from u ?

» Linear Block Codes used a Linear Map
c=uG

» G is a full-rank matrix of size k x n (k < n). The code is a
(n, k) linear block code.

Repetition Code
> G=(111).
» Message u € {1,0}.
» Codewords are [1 1 1] and [0 0 0].



Linear Block Codes - Examples

» Hamming Codes - a class of single error correcting codes.

» Reed Solomon Codes.

Example
The (7,4) Hamming Code
1110000
1001100
> G =
0101010
1101001



Error Correcting Capability of a Block Code

D



Error Correcting Capability of a Block Code
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Error Correcting Capability of a Block Code

» A block code can correct t errors if and only if ‘Hamming'
balls of size t around codewords don't intersect.

» Minimum distance of the code must be at least 2t + 1.

> Linearity = Minimum weight of the code is at least 2t + 1.



Decoding - The Parity Check Matrix

» The Parity Check Matrix : A full-rank n — k x n matrix such
that GHT = 0.

» For the Hamming Code :

1111000
H=1001111PO
0101011



Decoding

» Received vector y = ¢ + e.
» Compute s = yHT = cH" + eH” =xGHT + eH™ =eH".

» Corresponding to any error vector of weight upto t there is an
unique syndrome.



Syndrome Decoding

Syndrome decoding for errors of weight upto t.

1. Find the syndrome s
2. Find e corresponding to s.

3. Find ¢ = r — e. Map it back to x.



Types of Codes used in GNSS

Table 2. Channel coding comparison

Coding NAV CNAV Galileo CNAV-2
Hamming Yes No No No
Convolution No Yes Yes No
CRC No Yes Yes Yes
Interleaving No No Yes Yes
LDPC No No No Yes
BCH No No No Yes




Convolutional Encoding

» Convolutional codes are used in applications that require good
performance with low encoding complexity.

» Convolution codes have memory that utilises previous bits to
encode or decode following bits (block codes are memoryless)



Convolutional Encoding

x[n-1] x[n 2]
" 74)|E \\Dk

Encoder

y,[n]

v

yi[n] = x[n] ® x[n — 1] ® x[n — 2]
ya[n] = x[n] @ x[n — 2]

Rate % convolutional encoder

v

v

» Constraint length for each input is 2



State Diagram

1/01

State diagram

» State transitions are given by input/output



Example Encoding

1/01

State diagram

> Input: 010111001010001
» Output: 00 11 10 00 01 10 01 11 11 10 00 10 11 00 11



Brute Force Approach

» Going through the list of possible transmit sequences and
comparing Hamming distance is highly complex

» A transmit sequence of N bits has 2V possible strings,
exponential complexity

» Low Complexity Decoder: Viterbi Decoder - decoding on
trellis



Branch Metric

Time: i Received 00 i+1
0/00 0
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» The branch metric for hard decision decoding. In this
example, the receiver gets the parity bits 00

» Two of the branch metrics are 0, corresponding to the only
states and transitions where the corresponding Hamming
distance is 0

» Other non-zero branch metrics correspond to cases where
there are bit errors



Computing Path Metric

» Value of PM[s, /] - total number of bit errors detected when
comparing the received parity bits to the most likely
transmitted message, considering all messages that could have
been sent by the transmitter until time step i

> If the transmitter is at state s at time step 7 + 1, then it must
have been in only one of two possible states at time step /,
say o and 3

» Path Metric update is given by

PM[s, i+1] = min(PM[a, i]+BM[a — s], PM[S, i/]+BM[5 — s])



Viterbi Decoding: Step 1

Revd: 11 10 11 00 01
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Viterbi Decoding: Step 2

Revd: 11 10

0 | o 2 2 3 3

01 | oo 0 1

10 00 ( ’,\ 0 i

11 00_400 ,,,,,, 1




Viterbi Decoding: Step 3

Revd: 01
00 S
01
A
<
10 "
1 o \#
» Showing only survivor paths




Viterbi Decoding: Step 4

Revd: 01
00 2
01
3
10 3
11 2 {3




Viterbi Decoding: Step 5

Revd: 11 10 11 00 01

00

01

10

11

» To produce the message, start from final state with smallest
path metric and word backwards and then reverse the bits



Hard Decision Decoding

» Hard decision decoding digitizes the received voltagee signals
by comparing it to a threshold, before passing it to the
decoder

» Loss of Information

» 0.500001 and 0.99999 are both treated as “1" by the decoder
even it is more likely that 0.99999 is a “1"

» Hamming distance as branch metric



Soft Decision Decoding

» Soft Decision Decoding does not digitise the incoming
samples prior to decoding

» If the convolutional code produces p parity bits and p
corresponding analog samples are v = vq, v, ..., vp, a soft
decision branch metric is given by

p

BMsoft[Ua V] = Z(Ui - Vi)2

i=1



Thanks!



