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Spreading Codes



Talk Outline - Spreading Codes

I Spreading codes idea

I Need for spreading codes in GNSS

I Generating spreading codes for GNSS



What are Spreading Codes?

Example

I Consider that you have a message bit b (can be zero or one).

I Instead of transmitting b we transmit - b[1 0 0 0 0].

I The vector [1 0 0 0 0] is like a carrier - we call it the code.

I To decode, multiply received vector by [1 0 0 0 0]T .



What are Spreading Codes?

Example

I 4 different bits with 4 orthogonal codes transmitted at the
same time.

I

b0[1 0 0 0]+ b1[0 1 0 0] + b2[0 0 1 0] + b3[0 0 0 1]

=b0x0 + b1x1 + b2x2 + b3x3

I Note that xixj
T =

{
1 if i = j
0 if i 6= j

I Can get the bit bi by multiplying with xi
T . (i represents the

shift in time).
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What are Spreading Codes? - Finding Delays

Example

I Consider that a coded bit b comes with an arbitrary unknown
delay (0 ≤ j ≤ 3).

I Received vector = bxj (0 ≤ j ≤ 3).

I Then can we find out the delay j and bit b?

I Multiplying with xi (0 ≤ i ≤ 3) does the trick.



More generally - Pseudo-Random-Noise Sequences

I Consider two or more binary sequences ({+1,−1}) sequence
which have ’good’ autocorrelation properties and ’good’ cross
correlation properties.

I Such sequences are called Pseudo-Random-Noise sequences.

’Good’ autocorrelation property of a sequence x

I x ix
T
j has a high value if i = j and low value if i 6= j .

’Good’ cross-correlation property of sequences x and y

I x iy
T
j has a low value for any i , j .
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How are PNR sequences useful in GNSS?
Each satellite has its own unique PRN sequence, and uses it to modulate
data transmitted to receivers.

Ranging

I Good autocorrelation properties → Find Delay due to separation
between Rx and Satellite Tx.

I Delay (from multiple satellites) → User Location.

Saving spectrum

I Good cross-correlation properties → Decode info from different
satellites.

I Multiple satellites can transmit over the same frequency.

Gain in SNR

I Same bit is encoded in a long PRN sequence → redundancy.

I Redundancy→ provides SNR gain (and hence lowers prob. of error).
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Generating ’Pseudo-Random-Noise’

I PN Sequences deterministically generated, yet possess
properties of randomly generated sequences

I PN sequences generated using linear feedback shift registers.



Linear Feedback Shift Registers
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M-sequences (1)

 M-sequence (binary maximal length shift-register sequence)

- Generated using linear feedback shift-register and exclusive

OR-gate circuits.

 Linear generator polynomial g(x) of degree m>0

01
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1 gxgxgxg)x(g m
m

m
m ++++= −

−

- Recurrence Equation ( 10 == ggm )

     01
2

2
1

1 gxgxgxgx m
m

m
m

m ++++= −
−

−
−      (mod 2)

- If 1=ig , the corresponding circuit switch is closed,

otherwise 1≠ig , it is open.

- Output of the shift-register circuit is transformed to 1 if it is

0, and –1 if it is 1.

I Output sequence is given by

ci+m = gm−1ci+m−1 + gm−2ci+m−2 + . . .+ g1ci+1 + ci (mod 2)



Characteristic Polynomial of LFSR

I Since the operation is binary addition, the above output
equation can be rewritten as

m∑
`=0

g`ci+` = 0,

where g0 = gm = 1

I The characteristic polynomial of the LFSR is given by

g(x) =
m∑
`=0

g`x
`

I We are interested in special kinds of LFSRs which can output
PRN sequences.



Primitive Polynomial

I Every polynomial g(x) with coefficients in binary field having
g(0) = 1 divides xN + 1 for some N. The smallest N for
which this is true is called the period of g(x).

I An irreducible polynomial of degree m whose period is 2m − 1
is called a primitive polynomial



m-Sequences : Examples of PRN sequences
DANISH GPS CENTERMLS Generator

� Random sequences can be generated using a 
maximum-length sequence (MLS) generators

� n is the length of the shift register (10 for GPS)
� Length of the MLS is :
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12 � n
MLSN

Clock MLS Output
1 2 3 4 5 6 7 8 9 10

+

I An LFSR produces an m-sequence (maximum length) if and
only if its characteristic polynomial is a primitive polynomial

I In the above example, the polynomial is g(x) = 1 + x3 + x10



Delay and Add Property of m-Sequences

I The cyclic shift of an m-sequence is also an m-sequence

I The sum of an m-sequence and a cyclic shift of itself is also
an m-sequence



Autocorrelation Function of m-Sequences

Let (st) be an m-sequence of period N = 2n − 1 Then the
autocorrelation of the m-sequence is

θs,s(τ) =

{
2n − 1 if τ = 0(mod2n − 1)

−1 if τ 6= 0(mod2n − 1)



Plot of Autocorrelation Function

Normalized autocorrelation function
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Property of m-sequences (2)

 Property VI – The Shift and Add Property

  The sum of an m-sequence and a cyclic shift of itself(mod2,

term by term) is another m-sequence

 Property VII – Thumb-Tack Autocorrelation

  The normalized periodic autocorrelation function of an m-

sequence, defined as ∑ −=ρ
−

=

⊕ +
1

0
11 N

j

cc jij)(
N

)i(  is equal to for

0=i (mod N) and –1/N for 0≠i (mod N)

- 
N

)i( 1
=ρ (# of 0’s in cTc i⊕  - # of 1’s in cTc i⊕ )

- proved easily by shift and add property



Gold Sequences

I m-Sequences have good auto-correlation properties but poor
cross-correlation properties (cross-correlation can be high,
which we don’t want).

I Two m-Sequence generators are used to generate a “Gold
Sequence” which has good cross-correlation properties



Generating Gold Sequences

DANISH GPS CENTER

.

.

C/A Code Generator

2009 Danish GPS Center 22

C/A code
(Gold code)

1 2 3 4 5 6 7 8 9 10

+

1 2 3 4 5 6 7 8 9 10

+

+

10.23 
MHz 
clock

÷10

Reset 
circuit

÷20

Epoch 
detector

50Hz clock for 
navigation 

data

Phase selector

G2 code

G1 generator

G2 generator

S1

S2

G1 code

+



Gold Sequences in GPS
DANISH GPS CENTER

1098632

103

1:2
1:1

xxxxxxG
xxG

������

��

C/A Code Generation: 
Feedback Polynomials

2009 Danish GPS Center 23

.

.

1 2 3 4 5 6 7 8 9 10

+

1 2 3 4 5 6 7 8 9 10

+

G1 generator

G2 generator



Forward Error Correction



Talk Outline - Error Correcting Codes

I Need for Error Correction

I Error Correcting Codes (general principles and examples)

I Encoding and Decoding of a Block Code (Hamming Code)

I Types of Error Correcting Codes (in GNSS)

I Encoding and Decoding of Convolutional Codes



Channel Coding

Sender 

0	  

1	  

0	  

1	  

p	  

p	  

(1-‐p)	  

(1-‐p)	  

Receiver 

    p :  cross-over probability, say 0.1  

I The bit cross-over probability p (< 0.5) is a property of the
channel.

I Free to manipulate the input and output to the channel.
I Encode messages to codewords (add redundancy cleverly) :

Reduce effective Prob(error).



A trivial code example - Repetition code

I Repeat the same bit three times

I Message 0→ [0 0 0] (codeword), Message 1→ [1 1 1].

I Decode by Majority logic.

I For the above channel, probability of error comes down
(Check!).



General ideas behind FEC for the binary symmetric channel

Channel
Channel

Code
Encoder

Channel 
Code

Decoder

Messages Codeword Noisy 
codewords

Message 
estimate

I Decoder decides the Tx codeword c based on received Noisy
Codeword y .

I Decoding rule : Decoding for the most likely codeword.
(Choose that c which maximizes p(y |c)).

I Probability that every transmitted bit is flipped is p < 0.5

I If you don’t code at all, the rule decodes to the bit that was
received as it is.
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General ideas behind FEC for the binary symmetric channel

I For a code of length n: Choose the codeword which is closest
to Rx Vector y in terms of number of flipped bits.

I Minimum Hamming Distance Rule.

Example

Repetition Code

I The Majority Decoder is infact the Minimum Hamming
Distance Decoder.

I The Repetition Code can correct any single-bit error.

I Increase n to decrease P(error).

I Rate 1
n : For 1 bit of message, we need to send n coded bits.

(Pretty bad!)
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Can we do better? - Linear Block Codes

k	  message	  bits	   Code	  word	  of	  
length	  n	  bits	  

•  Each	  set	  of	  k	  message	  bits	  maps	  to	  a	  unique	  
codeword	  

	  
•  Each	  of	  the	  n	  bits	  is	  a	  linear	  combina9on	  of	  	  k	  

message	  bits	  
	  
•  n	  =	  length	  of	  the	  code,	  k	  =	  dimension	  of	  the	  code	  



Linear Block Codes

I Let u be the message vector and c is the corresponding
codeword.

I How to get c from u ?

I Linear Block Codes used a Linear Map

c = uG

I G is a full-rank matrix of size k × n (k ≤ n). The code is a
(n, k) linear block code.

Repetition Code

I G = (1 1 1).

I Message u ∈ {1, 0}.
I Codewords are [1 1 1] and [0 0 0].
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Linear Block Codes - Examples

I Hamming Codes - a class of single error correcting codes.

I Reed Solomon Codes.

Example

The (7, 4) Hamming Code

I G =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

 .



Error Correcting Capability of a Block Code

I A block code can correct t errors if and only if ‘Hamming’
balls of size t around codewords don’t intersect.

I Minimum distance of the code must be at least 2t + 1.

I Linearity =⇒ Minimum weight of the code is at least 2t + 1.
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Decoding - The Parity Check Matrix

I The Parity Check Matrix : A full-rank n − k × n matrix such
that GHT = 0.

I For the Hamming Code :

H =

 1 1 1 1 0 0 0
0 0 1 1 1 1 0
0 1 0 1 0 1 1

 .



Decoding

I Received vector y = c + e.

I Compute s = yHT = cHT + eHT = xGHT + eHT = eHT .

I Corresponding to any error vector of weight upto t there is an
unique syndrome.



Syndrome Decoding

Syndrome decoding for errors of weight upto t.

1. Find the syndrome s

2. Find e corresponding to s.

3. Find c = r − e. Map it back to x .



Types of Codes used in GNSS
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Figure 4. Utilization efficiency and part of content for subframe 

and pages of CNAV-2 

k------- Defined bits. 

n------- Total bits. 

m-------Undefined bits (NAV including reserved bits 

and reserved bits for system use). 

The Figures 2–4 compute the utilization efficiency for 

three kinds of message format respectively and show 

that there is much redundancy at subframe 1 and 4 in 

NAV which wastes a lot of communication sources 

during broadcasting navigation data, however, the 

arrangement of parameters in CNAV and CNAV-2 is 

more compact than NAV, especially the content of 

ephemeris and clock data. And the average of the 

utilization efficiency among message packets is relative 

high for CNAV, but part of packets in CNAV-2 is still 

low now, because the CNAV-2 messages have not been 

designed completely yet. 

3.2 Channel Coding 

Channel coding bits is another reason to determine the 

message efficiency. Each subframe in NAV is divided 

into 10 words of 30 bits each. Six bits in each word for 

parity lead to separate many ephemeris parameters with 

low coding efficiency.  

The CNAV and CNAV-2 format provides the 

improved error control schemes, including a modern 

parity algorithm and forward error control (FEC), such 

as convolutional encoding, CRC, interleaving and LDPC 

etc, which enhance the efficiency and improve 

performance in fading channels. And FEC with a rate 

1/2 convolution code in CNAV, so while the navigation 

message is 25bps/50sps, a 50bps/100sps signal is 

transmitted.  

Table 2. Channel coding comparison 

Coding NAV CNAV Galileo CNAV-2 

Hamming Yes No No No 

Convolution No Yes Yes No 

CRC No Yes Yes Yes 

Interleaving No No Yes Yes 

LDPC No No No Yes 

BCH No No No Yes 

 

The L1C signal provides the first navigation signal using 

modern advanced FEC-LDPC (Low Density Parity 

Check). These codes whose parity-check matrix is very 

sparse approach the Shannon capacity limit of a com-

munication system and operate at very low symbol 

signal-to-noise (SNR) ratios. LDPC added with 

interleaving in CNAV-2 will enhance the quality of 

message data and performance under the challenging 

channel such as may be applied in urban environments [8] 

and indoor circumstances. 

CRC in the last twenty four bits of message packets or 

subframe provides protection against burst as well as 

random errors with a probability of undetected error 
24 82 5.96 10   

0.5

 for all channel bit error 

probabilities  . 
The L1C signal also employs a robust TOI encoding 

scheme, BCH (51, 8) linear code with a large minimum 

Hamming distance, to permit identification of the L1C 

data frames, which ensure the low bit-error probability 

in various fading channels with repetition of the fixed 

message [9]. 

In addition, sensitivity can be improved through code 

combining over identical TOI words received from 

different satellites.  

3.3 Flexibility 

The flexible data format for navigation message design 

is the main way for GPS to interoperate with the other 

GNSS, while providing considerable flexibility to 

accommodate growth and changes in GPS operational 

needs. Galileo and GPS III, with similar timescales and 

aims, could be interoperable at every level. Due to GPS 

had leapt forward and was going to improve even more, 

transmission formats have now been mutually agreed 

and the systems will be compatible, both able to work  
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Convolutional Encoding

I Convolutional codes are used in applications that require good
performance with low encoding complexity.

I Convolution codes have memory that utilises previous bits to
encode or decode following bits (block codes are memoryless)



Convolutional Encoding

Encoder	  

x[n]	  

+	  

x[n-‐1]	   x[n-‐2]	  

+	  

D	   D	  

y1[n]	  

y2[n]	  

I y1[n] = x [n]⊕ x [n − 1]⊕ x [n − 2]

I y2[n] = x [n]⊕ x [n − 2]

I Rate 1
2 convolutional encoder

I Constraint length for each input is 2



State Diagram

	  11	  

	  	  01	  	  10	  

00	  

0/00	  

1/11	  
0/01	   0/11	  

1/10	  

1/01	  

0/10	  
1/00	  

State	  diagram	  

I State transitions are given by input/output



Example Encoding

	  11	  

	  	  01	  	  10	  

00	  

0/00	  

1/11	  
0/01	   0/11	  

1/10	  

1/01	  

0/10	  
1/00	  

State	  diagram	  

I Input: 010111001010001

I Output: 00 11 10 00 01 10 01 11 11 10 00 10 11 00 11



Brute Force Approach

I Going through the list of possible transmit sequences and
comparing Hamming distance is highly complex

I A transmit sequence of N bits has 2N possible strings,
exponential complexity

I Low Complexity Decoder: Viterbi Decoder - decoding on
trellis



Branch Metric
Time:	   i	   i+1	  

State	  

00	  

01	  

10	  

11	  

0/00	  

1/11	  

0/10	  

1/01	  

0/11	  
1/00	  

0/01	  

1/10	  

Received	  00	  
0	  

2	  

1	  

1	  

2	  
0	  
1	  

1	  

I The branch metric for hard decision decoding. In this
example, the receiver gets the parity bits 00

I Two of the branch metrics are 0, corresponding to the only
states and transitions where the corresponding Hamming
distance is 0

I Other non-zero branch metrics correspond to cases where
there are bit errors



Computing Path Metric

I Value of PM[s, i ] - total number of bit errors detected when
comparing the received parity bits to the most likely
transmitted message, considering all messages that could have
been sent by the transmitter until time step i

I If the transmitter is at state s at time step i + 1, then it must
have been in only one of two possible states at time step i ,
say α and β

I Path Metric update is given by

PM[s, i+1] = min(PM[α, i ]+BM[α→ s],PM[β, i ]+BM[β → s])



Viterbi Decoding: Step 1

Rcvd:	  

00	  

01	  

10	  

11	  

	  11	   	  10	   	  11	   	  00	   	  01	  
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1

1

0	  

2	  



Viterbi Decoding: Step 2

Rcvd:	  

00	  
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10	  

11	  
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0	  

2	   3	  
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2	  



Viterbi Decoding: Step 3

Rcvd:	  

00	  

01	  

10	  

11	  

	  11	   	  10	   	  11	   	  00	   	  01	  
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1

1

1

0	  

2	   3	  
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3	  
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2	  

2	  

2	  

I Showing only survivor paths



Viterbi Decoding: Step 4
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Viterbi Decoding: Step 5

Rcvd:	  

00	  

01	  

10	  

11	  
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I To produce the message, start from final state with smallest
path metric and word backwards and then reverse the bits



Hard Decision Decoding

I Hard decision decoding digitizes the received voltagee signals
by comparing it to a threshold, before passing it to the
decoder

I Loss of Information

I 0.500001 and 0.99999 are both treated as “1” by the decoder
even it is more likely that 0.99999 is a “1”

I Hamming distance as branch metric



Soft Decision Decoding

I Soft Decision Decoding does not digitise the incoming
samples prior to decoding

I If the convolutional code produces p parity bits and p
corresponding analog samples are v = v1, v2, . . . , vp, a soft
decision branch metric is given by

BMsoft[u, v ] =

p∑
i=1

(ui − vi )
2



Thanks!


