## Linear Algebra

#### Trivandrum School on Communication, Coding and Networking 2017

#### Prasad Krishnan

Signal Processing and Communications Research Centre, International Institute of Information Technology, Hyderabad

January 27-30, 2017



A D F A B F A B F A B F

## Linear Algebra

### Vector Spaces

- Definitions : Fields and Vector Space.
- Linear Combinations.
- Linear Independence and Dependence.
- Subspaces
- Basis and Dimension.
- Vectors as tuples.
- Basis change matrix.
- Linear Transformations.
  - Definition.
  - Linear Transformations as Matrices.
  - Similar matrices.
  - Range and Null Space of Linear Transformations.
  - Rank-Nullity Theorem.
  - Eigen values and vectors of a Linear Operator.





### General ideas about Math-based Education and Research

- Math is not hard!
- There are only sets and maps (relations between sets).
- Start from basic axioms.
- Connect simple facts to create bigger facts (not always easy!).
- Imagination and Creativity.



Fields (Scalars) : A set which is closed under addition (and subtraction), multiplication (and division by non-zeros) - How much?



- Fields (Scalars) : A set which is closed under addition (and subtraction), multiplication (and division by non-zeros) - How much?
- Examples: Number of apples in a basket of infinite apples?



- Fields (Scalars) : A set which is closed under addition (and subtraction), multiplication (and division by non-zeros) - How much?
- Examples: Number of apples in a basket of infinite apples? (No).
- Temperature (



- Fields (Scalars) : A set which is closed under addition (and subtraction), multiplication (and division by non-zeros) - How much?
- Examples: Number of apples in a basket of infinite apples? (No).
- Temperature (No).
- Examples :  $(\mathbb{R}, +, .)$  (



- Fields (Scalars) : A set which is closed under addition (and subtraction), multiplication (and division by non-zeros) - How much?
- Examples: Number of apples in a basket of infinite apples? (No).
- Temperature (No).
- Examples :  $(\mathbb{R}, +, .)$  (Yes)
- $(\mathbb{F}_p, + (mod \ p), x (mod \ p))$  (integers modulo p). (



- Fields (Scalars) : A set which is closed under addition (and subtraction), multiplication (and division by non-zeros) - How much?
- Examples: Number of apples in a basket of infinite apples? (No).
- Temperature (No).
- Examples :  $(\mathbb{R}, +, .)$  (Yes)
- $(\mathbb{F}_p, + (mod \ p), x (mod \ p))$  (integers modulo p). (Yes)



- ► Space = set.
- ► Vector space V over a field of scalars F : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].



Space = set.

- ► Vector space V over a field of scalars F : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- Examples:  $\{(a, b) : a, b \in \mathbb{Z}\}$  over  $\mathbb{R}$



Space = set.

- ► Vector space V over a field of scalars F : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- Examples:  $\{(a, b) : a, b \in \mathbb{Z}\}$  over  $\mathbb{R}$  (No!).



Space = set.

- ► Vector space V over a field of scalars 𝔽 : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- Examples:  $\{(a, b) : a, b \in \mathbb{Z}\}$  over  $\mathbb{R}$  (No!).
- Examples:  $\{(a, b) : a, b \in \mathbb{R}\}$  over  $\mathbb{R}$



Space = set.

- ► Vector space V over a field of scalars F : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- Examples:  $\{(a, b) : a, b \in \mathbb{Z}\}$  over  $\mathbb{R}$  (No!).
- Examples:  $\{(a, b) : a, b \in \mathbb{R}\}$  over  $\mathbb{R}$  (Yes!),



Space = set.

► Vector space V over a field of scalars F : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].

- Examples:  $\{(a, b) : a, b \in \mathbb{Z}\}$  over  $\mathbb{R}$  (No!).
- Examples:  $\{(a, b) : a, b \in \mathbb{R}\}$  over  $\mathbb{R}$  (Yes!),
- Set of finite energy signals over  $\mathbb{R}$ .

Space = set.

- ► Vector space V over a field of scalars F : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- Examples:  $\{(a, b) : a, b \in \mathbb{Z}\}$  over  $\mathbb{R}$  (No!).
- Examples:  $\{(a, b) : a, b \in \mathbb{R}\}$  over  $\mathbb{R}$  (Yes!),
- ► Set of finite energy signals over ℝ. (Yes!)



Space = set.

- ► Vector space V over a field of scalars F : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- Examples:  $\{(a, b) : a, b \in \mathbb{Z}\}$  over  $\mathbb{R}$  (No!).
- Examples:  $\{(a, b) : a, b \in \mathbb{R}\}$  over  $\mathbb{R}$  (Yes!),
- ► Set of finite energy signals over ℝ. (Yes!)

• 
$$\mathbb{F}^n = \{(x_1, ..., x_n) : x_i \in \mathbb{F}\}$$
 over  $\mathbb{F}$ .



Space = set.

- ► Vector space V over a field of scalars F : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- Examples:  $\{(a, b) : a, b \in \mathbb{Z}\}$  over  $\mathbb{R}$  (No!).
- Examples:  $\{(a, b) : a, b \in \mathbb{R}\}$  over  $\mathbb{R}$  (Yes!),
- Set of finite energy signals over  $\mathbb{R}$ . (Yes!)
- $\mathbb{F}^n = \{(x_1, ..., x_n) : x_i \in \mathbb{F}\}$  over  $\mathbb{F}$ . **(Yes!)**
- $\blacktriangleright$  Set of locations within a room, over  ${\mathbb R}$



Space = set.

- ► Vector space V over a field of scalars F : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- Examples:  $\{(a, b) : a, b \in \mathbb{Z}\}$  over  $\mathbb{R}$  (No!).
- Examples:  $\{(a, b) : a, b \in \mathbb{R}\}$  over  $\mathbb{R}$  (Yes!),
- ▶ Set of finite energy signals over ℝ. (Yes!)
- $\mathbb{F}^n = \{(x_1, ..., x_n) : x_i \in \mathbb{F}\}$  over  $\mathbb{F}$ . **(Yes!)**
- Set of locations within a room, over  $\mathbb{R}$  (No!)



For  $\mathbf{x} = x(t)$ ,  $\mathbf{y} = y(t)$  (complex-valued functions), define

$$<\mathbf{x},\mathbf{y}>=\int_{-\infty}^{\infty}x(t)y^{*}(t)dt\in\mathbb{C}.$$



For  $\mathbf{x} = x(t)$ ,  $\mathbf{y} = y(t)$  (complex-valued functions), define

$$<\mathbf{x},\mathbf{y}>=\int_{-\infty}^{\infty}x(t)y^{*}(t)dt\in\mathbb{C}.$$

- Energy of the signal x(t),  $||\mathbf{x}||^2 = \langle \mathbf{x}, \mathbf{x} \rangle$ .
- If  $||\mathbf{x}|| < \infty$ , then signal x(t) has finite energy.



For  $\mathbf{x} = x(t)$ ,  $\mathbf{y} = y(t)$  (complex-valued functions), define

$$<\mathbf{x},\mathbf{y}>=\int_{-\infty}^{\infty}x(t)y^{*}(t)dt\in\mathbb{C}.$$

- Energy of the signal x(t),  $||\mathbf{x}||^2 = \langle \mathbf{x}, \mathbf{x} \rangle$ .
- If  $||\mathbf{x}|| < \infty$ , then signal x(t) has finite energy.

#### Theorem

Finite-energy signals form a vector space over  $\mathbb{C}$ .



For  $\mathbf{x} = x(t)$ ,  $\mathbf{y} = y(t)$  (complex-valued functions), define

$$<\mathbf{x},\mathbf{y}>=\int_{-\infty}^{\infty}x(t)y^{*}(t)dt\in\mathbb{C}.$$

- Energy of the signal x(t),  $||\mathbf{x}||^2 = \langle \mathbf{x}, \mathbf{x} \rangle$ .
- If  $||\mathbf{x}|| < \infty$ , then signal x(t) has finite energy.

Theorem

Finite-energy signals form a vector space over  $\mathbb{C}.$ 

Proof:

- If x(t) is finite-energy, then so is cx(t) for any  $c \in \mathbb{C}$ .
- To show : If x(t), y(t) are finite-energy, then so is x(t) + y(t).



・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

For  $\mathbf{x} = x(t)$ ,  $\mathbf{y} = y(t)$  (complex-valued functions), define

$$<\mathbf{x},\mathbf{y}>=\int_{-\infty}^{\infty}x(t)y^{*}(t)dt\in\mathbb{C}.$$

- Energy of the signal x(t),  $||\mathbf{x}||^2 = \langle \mathbf{x}, \mathbf{x} \rangle$ .
- If  $||\mathbf{x}|| < \infty$ , then signal x(t) has finite energy.

#### Theorem

Finite-energy signals form a vector space over  $\mathbb{C}$ . Proof:

- If x(t) is finite-energy, then so is cx(t) for any  $c \in \mathbb{C}$ .
- To show : If x(t), y(t) are finite-energy, then so is x(t) + y(t).
- Given :  $||\mathbf{x}|| < \infty$ ,  $||\mathbf{y}|| < \infty$ , show  $||\mathbf{x} + \mathbf{y}|| < \infty$ .



・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

$$\begin{aligned} ||\mathbf{x} + \mathbf{y}||^2 &= ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle \\ &\leq ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + 2|\langle \mathbf{x}, \mathbf{y} \rangle|. \\ &\leq ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + 2||\mathbf{x}||.||\mathbf{y}|| \quad (\text{if } |\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}||.||\mathbf{y}||) \\ &< \infty \quad (\text{as each of the above terms are finite}) \end{aligned}$$



$$\begin{aligned} ||\mathbf{x} + \mathbf{y}||^2 &= ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle \\ &\leq ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + 2| \langle \mathbf{x}, \mathbf{y} \rangle|. \\ &\leq ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + 2||\mathbf{x}||.||\mathbf{y}|| \quad (\text{if } || \langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}||.||\mathbf{y}||) \\ &< \infty \qquad (\text{as each of the above terms are finite}) \end{aligned}$$

Cauchy-Schwarz inequality

$$| < x, y > | \le ||x||.||y||$$

Proof: Fact:  $||\mathbf{x} - \lambda \mathbf{y}||^2 \ge 0$ , for any  $\lambda \in \mathbb{C}$ . Expand this and substitute  $\lambda = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{y}||^2}$ .



(日)

$$\begin{aligned} ||\mathbf{x} + \mathbf{y}||^2 &= ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle \\ &\leq ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + 2| \langle \mathbf{x}, \mathbf{y} \rangle|. \\ &\leq ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + 2||\mathbf{x}||.||\mathbf{y}|| \quad (\text{if } || \langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}||.||\mathbf{y}||) \\ &< \infty \qquad (\text{as each of the above terms are finite}) \end{aligned}$$

### Cauchy-Schwarz inequality

$$| < x, y > | \le ||x||.||y||$$

Proof: Fact:  $||\mathbf{x} - \lambda \mathbf{y}||^2 \ge 0$ , for any  $\lambda \in \mathbb{C}$ . Expand this and substitute  $\lambda = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{y}||^2}$ .

(Turns out that  $\langle x, y \rangle$  is also an example of a linear algebraic object called inner product)

1. Finite-energy signals form a vector space over  $\mathbb{C}.$ 



#### Definition: Fields

A *field*  $\mathbb{F}$  is a set S with two operations (addition (+) and multiplication(.)) such that

▶ For any  $a, b \in S$ ,  $a + b \in S$  (closure under addition)



#### Definition: Fields

A *field*  $\mathbb{F}$  is a set S with two operations (addition (+) and multiplication(.)) such that

- ▶ For any  $a, b \in S$ ,  $a + b \in S$  (closure under addition)
- Given a, b, c ∈ S, then a + (b + c) = (a + b) + c. (Addition is associative).



#### Definition: Fields

A field  $\mathbb{F}$  is a set S with two operations (addition (+) and multiplication(.)) such that

- ▶ For any  $a, b \in S$ ,  $a + b \in S$  (closure under addition)
- Given a, b, c ∈ S, then a + (b + c) = (a + b) + c. (Addition is associative).
- There exists a special element 0 ∈ S such that a + 0 = 0 + a = a for all a ∈ S (Additive identity exists).



A D F A B F A B F A B F

#### Definition: Fields

A field  $\mathbb{F}$  is a set S with two operations (addition (+) and multiplication(.)) such that

- ▶ For any  $a, b \in S$ ,  $a + b \in S$  (closure under addition)
- Given a, b, c ∈ S, then a + (b + c) = (a + b) + c. (Addition is associative).
- There exists a special element 0 ∈ S such that a + 0 = 0 + a = a for all a ∈ S (Additive identity exists).
- For a ∈ S there exists an element b ∈ S such that a + b = b + a = 0. (We write this element b as -a and call it the Additive inverse of a in S. Note: Subtraction is just addition with additive inverse.)



### Definition: Fields

A field  $\mathbb{F}$  is a set S with two operations (addition (+) and multiplication(.)) such that

- ▶ For any  $a, b \in S$ ,  $a + b \in S$  (closure under addition)
- Given a, b, c ∈ S, then a + (b + c) = (a + b) + c. (Addition is associative).
- There exists a special element 0 ∈ S such that a + 0 = 0 + a = a for all a ∈ S (Additive identity exists).
- For a ∈ S there exists an element b ∈ S such that a + b = b + a = 0. (We write this element b as -a and call it the Additive inverse of a in S. Note: Subtraction is just addition with additive inverse.)
- For all  $a, b \in S$ , a + b = b + a (Addition is Commutative)



・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

# Definition: Fields (continued)

..such that ..

- ► *S* is closed under multiplication.
- Multiplication is associative.
- Multiplicative identity exists (denoted by 1).
- Multiplicative inverses exist for all elements but 0.
- Multiplication is commutative.



# Definition: Fields (continued)

..such that ..

- ► *S* is closed under multiplication.
- Multiplication is associative.
- Multiplicative identity exists (denoted by 1).
- Multiplicative inverses exist for all elements but 0.
- Multiplication is commutative.

...such that..

For all a, b, c ∈ S, a.(b + c) = a.b + a.c (Distributivity of multiplication).

It is really over! (I think)



# Fields: Informally

### Fields

A set where we can add, multiply, subtract (add with additive inverses), and divide (multiply with multiplicative inverses) and things work out *nicely*.

- Examples:  $\mathbb{R}$ ,  $\mathbb{C}$ ,  $\mathbb{F}_p$ .
- ▶ Non-examples:  $\mathbb{R}^{m \times k}$  matrices  $(m = k \neq 1)$ .



A D F A B F A B F A B F

# Fields: Informally

### Fields

A set where we can add, multiply, subtract (add with additive inverses), and divide (multiply with multiplicative inverses) and things work out *nicely*.

- Examples:  $\mathbb{R}$ ,  $\mathbb{C}$ ,  $\mathbb{F}_p$ .
- ▶ Non-examples:  $\mathbb{R}^{m \times k}$  matrices  $(m = k \neq 1)$ .
- ► Think: What kind of structure exist if k = m = 1 ?, k = m ?, k ≠ m ?.



A set V is a vector space over  $\mathbb{F}$  (field of scalars) if the following properties are satisfied :

► *V* is closed under vector addition, which is commutative and associative.  $\forall \mathbf{v}, \mathbf{w} \in V, \mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v} \in V$ .



A set V is a vector space over  $\mathbb{F}$  (field of scalars) if the following properties are satisfied :

- ► V is closed under vector addition, which is commutative and associative.  $\forall v, w \in V, v + w = w + v \in V$ .
- ► There exists 0 ∈ V, x + 0 = x [Zero vector (Additive identity)]



A set V is a vector space over  $\mathbb{F}$  (field of scalars) if the following properties are satisfied :

- ► V is closed under vector addition, which is commutative and associative.  $\forall v, w \in V, v + w = w + v \in V$ .
- ► There exists 0 ∈ V, x + 0 = x [Zero vector (Additive identity)]
- ∀x ∈ V, there exists y ∈ V such that x + y = 0. (Additive inverse exists).



A D F A B F A B F A B F

# Vector Space: Formal Definition

 $\ldots$  if the following properties are satisfied :

► *V* is closed under Scalar Multiplication.  $\forall x \in V, \forall \alpha \in \mathbb{F}, \alpha x \in V.$ 



# Vector Space: Formal Definition

 $\ldots$  if the following properties are satisfied :

- ► V is closed under Scalar Multiplication.  $\forall x \in V, \forall \alpha \in \mathbb{F}, \alpha x \in V.$
- $\blacktriangleright \ \forall \pmb{x}, \pmb{y} \in V \text{ and } \alpha, \beta \in \mathbb{F}$

1. 
$$1\mathbf{x} = \mathbf{x}$$
  
2.  $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$   
3.  $(\alpha\beta)\mathbf{x} = \alpha(\beta\mathbf{x})$   
4.  $(\alpha + \beta)\mathbf{x} = \alpha \mathbf{x} + \beta \mathbf{x}$ 



# Vector Space: Informal Definition

### Vector space V over $\mathbb F$

A set closed under addition, scalar multiplication (multiplication by scalars from  $\mathbb F).$ 

Notation:



# Vector Space: Informal Definition

### Vector space V over $\mathbb F$

A set closed under addition, scalar multiplication (multiplication by scalars from  $\mathbb{F}$ ).

Notation:

- Normal font,  $(\alpha, \beta)$  for scalars.
- Bold fonts (*v*, *w*) for vectors.
- ► Caps for Vector spaces (V, W).
- ▶ **F** for field.



- $W \subseteq V$  is called a subspace if it is a vector space (over  $\mathbb{F}$ ).
- ► A subset of W is a subspace if and only if :
  - For all  $\boldsymbol{v}, \boldsymbol{w} \in W$ ,  $\alpha \boldsymbol{v} + \boldsymbol{w} \in W, \forall \alpha \in \mathbb{F}$ .



- $W \subseteq V$  is called a subspace if it is a vector space (over  $\mathbb{F}$ ).
- ► A subset of W is a subspace if and only if :
  - For all  $\mathbf{v}, \mathbf{w} \in W$ ,  $\alpha \mathbf{v} + \mathbf{w} \in W, \forall \alpha \in \mathbb{F}$ .
- Examples:
- $V = \mathbb{R}^3$

$$W = \{(x_1, x_2, x_3) \in V : x_1 + 2x_2 + 5x_3 = 0\}$$



- $W \subseteq V$  is called a subspace if it is a vector space (over  $\mathbb{F}$ ).
- ► A subset of W is a subspace if and only if :
  - For all  $\boldsymbol{v}, \boldsymbol{w} \in W$ ,  $\alpha \boldsymbol{v} + \boldsymbol{w} \in W, \forall \alpha \in \mathbb{F}$ .
- Examples:
- $V = \mathbb{R}^3$

$$W = \{(x_1, x_2, x_3) \in V : x_1 + 2x_2 + 5x_3 = 0\}$$

(Yes!)



- $W \subseteq V$  is called a subspace if it is a vector space (over  $\mathbb{F}$ ).
- ► A subset of W is a subspace if and only if :
  - For all  $\mathbf{v}, \mathbf{w} \in W$ ,  $\alpha \mathbf{v} + \mathbf{w} \in W, \forall \alpha \in \mathbb{F}$ .
- Examples:
- $V = \mathbb{R}^3$

$$W = \{(x_1, x_2, x_3) \in V : x_1 + 2x_2 + 5x_3 = 0\}$$



- $W \subseteq V$  is called a subspace if it is a vector space (over  $\mathbb{F}$ ).
- ► A subset of W is a subspace if and only if :
  - For all  $\mathbf{v}, \mathbf{w} \in W$ ,  $\alpha \mathbf{v} + \mathbf{w} \in W, \forall \alpha \in \mathbb{F}$ .
- Examples:
- $V = \mathbb{R}^3$

$$W = \{(x_1, x_2, x_3) \in V : x_1 + 2x_2 + 5x_3 = 0\}$$

#### (Yes!)

- $V = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 = x_1 + 1\}$  (No!)
- Set of all polynomials of degree only 5.



- $W \subseteq V$  is called a subspace if it is a vector space (over  $\mathbb{F}$ ).
- ► A subset of W is a subspace if and only if :
  - For all  $\boldsymbol{v}, \boldsymbol{w} \in W$ ,  $\alpha \boldsymbol{v} + \boldsymbol{w} \in W, \forall \alpha \in \mathbb{F}$ .
- Examples:
- $V = \mathbb{R}^3$

$$W = \{(x_1, x_2, x_3) \in V : x_1 + 2x_2 + 5x_3 = 0\}$$

### (Yes!)

- ►  $V = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 = x_1 + 1\}$  (No!)
- Set of all polynomials of degree only 5. (No!)



## Linear Combination of vectors

A linear combination of a set of vectors
S = {v<sub>i</sub> : i = 1, ..., r} ⊂ V is

$$\sum_{i=1}^r \alpha_i \, \mathbf{v_i}$$

for some  $\alpha_i \in \mathbb{F}$ .

- ▶ Note that if  $\alpha_i = 0, \forall i$ , then the linear combination gives the  $\mathbf{0} \in V$ .
- ► Examples: S = {(1 0 0), (0 1 0)}. Then (1 1 0) is a linear combination.



・ロット 御マ キョット キョン

### Linear Dependence

### Linear Dependence of vectors

• Vectors  $\{v_i : i = 1, ..., r\}$  are called *linearly dependent* 

$$\sum_{i=1}^r \alpha_i \, \mathbf{v_i} = \mathbf{0},$$

for some  $\alpha_i$ s, at least one of which is non-zero.



### Linear Dependence

### Linear Dependence of vectors

• Vectors  $\{v_i : i = 1, ..., r\}$  are called *linearly dependent* 

$$\sum_{i=1}^r \alpha_i \, \mathbf{v}_i = \mathbf{0},$$

for some  $\alpha_i$ s, at least one of which is non-zero.

• If  $\alpha_j \neq 0$  for some  $1 \leq j \leq r$  then

$$\mathbf{v}_{j} = \sum_{i=1, i \neq j}^{r} \beta_{i} \mathbf{v}_{i},$$

where 
$$\beta_i = \frac{-\alpha_i}{\alpha_j}$$
.



## Linear Independence

- If {v<sub>i</sub> : i = 1,...,r} is not linearly dependent, then they are linearly independent.
- Only zero-linear combination gives 0.



A D F A B F A B F A B F

• Consider the vectors (from  $\mathbb{R}^2$ )

$$S = \left\{ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{v_2} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$$
(1)

 $\blacktriangleright \ \ \mathsf{The set} \ \{ \textit{\textbf{v}}_1, \textit{\textbf{v}}_2 \} \ \mathsf{is linearly} \\$ 



・ロト ・ 日 ト ・ モ ト ・ モ ト

• Consider the vectors (from  $\mathbb{R}^2$ )

$$S = \left\{ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{v_2} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$$
(1)

• The set 
$$\{v_1, v_2\}$$
 is linearly independent.



æ

・ロト ・回ト ・ヨト ・ヨト

• Consider the vectors (from  $\mathbb{R}^2$ )

$$S = \left\{ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{v_2} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$$
(1)



æ

・ロト ・回ト ・ヨト ・ヨト

• Consider the vectors (from  $\mathbb{R}^2$ )

$$S = \left\{ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{v_2} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$$
(1)

- The set  $\{v_1, v_2\}$  is linearly independent.
- Consider  $S \cup \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ . This is linearly dependent.
- Consider  $S \cup \{\mathbf{0}\}$ . This is linearly



A D F A B F A B F A B F

• Consider the vectors (from  $\mathbb{R}^2$ )

$$S = \left\{ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{v_2} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$$
(1)

- The set  $\{v_1, v_2\}$  is linearly independent.
- Consider  $S \cup \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ . This is linearly dependent.
- Consider  $S \cup \{\mathbf{0}\}$ . This is linearly dependent.



A D F A B F A B F A B F

### Span

The span of a set of vectors  $S = \{v_i : i = 1, ..., r\}$  is the set of all linear combinations of the vectors in that set.

$$span(S) = \left\{ \sum_{i=1}^r \alpha_i \mathbf{v}_i : \alpha_i \in \mathbb{F} \right\}.$$



#### Span

The span of a set of vectors  $S = \{v_i : i = 1, ..., r\}$  is the set of all linear combinations of the vectors in that set.

$$span(S) = \left\{ \sum_{i=1}^r \alpha_i \, \mathbf{v}_i : \alpha_i \in \mathbb{F} \right\}.$$

• Let 
$$A \in \mathbb{F}^{m \times n}$$
.

Row space = 
$$\left\{ \sum_{i=1}^{m} \alpha_i \mathbf{a}_i : \mathbf{a}_i \text{ is the } i^{th} \text{ row of } A, \ \alpha_i \in \mathbb{F} \right\}$$



#### Span

The span of a set of vectors  $S = \{v_i : i = 1, ..., r\}$  is the set of all linear combinations of the vectors in that set.

$$span(S) = \left\{ \sum_{i=1}^r \alpha_i \, \mathbf{v}_i : \alpha_i \in \mathbb{F} \right\}.$$

• Let 
$$A \in \mathbb{F}^{m \times n}$$
.

Row space = 
$$\left\{ \sum_{i=1}^{m} \alpha_i \mathbf{a}_i : \mathbf{a}_i \text{ is the } i^{th} \text{ row of } A, \ \alpha_i \in \mathbb{F} \right\}$$

• 
$$S = \{(1,2), (1,1), (-4,9)\}$$
. Span $(S) =$ 



#### Span

The span of a set of vectors  $S = \{v_i : i = 1, ..., r\}$  is the set of all linear combinations of the vectors in that set.

$$span(S) = \left\{ \sum_{i=1}^r \alpha_i \, \mathbf{v}_i : \alpha_i \in \mathbb{F} \right\}.$$

• Let 
$$A \in \mathbb{F}^{m \times n}$$
.

Row space = 
$$\left\{ \sum_{i=1}^{m} \alpha_i \mathbf{a}_i : \mathbf{a}_i \text{ is the } i^{th} \text{ row of } A, \ \alpha_i \in \mathbb{F} \right\}$$

• 
$$S = \{(1,2), (1,1), (-4,9)\}$$
. Span(S) =  $\mathbb{R}^2$ .



#### Span

The span of a set of vectors  $S = \{v_i : i = 1, ..., r\}$  is the set of all linear combinations of the vectors in that set.

$$span(S) = \left\{ \sum_{i=1}^r \alpha_i \, \mathbf{v}_i : \alpha_i \in \mathbb{F} \right\}.$$

• Let 
$$A \in \mathbb{F}^{m \times n}$$
.

Row space = 
$$\left\{ \sum_{i=1}^{m} \alpha_i \mathbf{a}_i : \mathbf{a}_i \text{ is the } i^{th} \text{ row of } A, \ \alpha_i \in \mathbb{F} \right\}$$

• 
$$S = \{(1,2), (1,1), (-4,9)\}$$
. Span(S) =  $\mathbb{R}^2$ .



# Basis of a Subspace

### Basis of a subspace W

A subset B of W is called a basis of W if

- 1. B is linearly independent set
- 2. B spans W
- A subspace  $W \subseteq V$  can have multiple bases.



# Basis of a Subspace

### Basis of a subspace W

A subset B of W is called a basis of W if

- 1. B is linearly independent set
- 2. B spans W
- A subspace  $W \subseteq V$  can have multiple bases.
- ► Examples: Let  $V = \{p_0 + p_1t + p_2t^2 : p_i \in \mathbb{F}\}$ . Basis for V is  $\{1, t, t^2\}$  (so is  $\{1 + t, 1 + t^2, 1 + t + t^2\}$ ).



# Basis of a Subspace

### Basis of a subspace W

A subset B of W is called a basis of W if

- 1. B is linearly independent set
- 2. B spans W
- A subspace  $W \subseteq V$  can have multiple bases.
- ► Examples: Let  $V = \{p_0 + p_1t + p_2t^2 : p_i \in \mathbb{F}\}$ . Basis for V is  $\{1, t, t^2\}$  (so is  $\{1 + t, 1 + t^2, 1 + t + t^2\}$ ).
- Any set of k-linearly independent vectors of  $\mathbb{F}^k$ .



#### Theorem

Any two bases for a subspace contain the same number of vectors



・ロト ・聞ト ・ヨト ・ヨト

### Theorem

Any two bases for a subspace contain the same number of vectors Proof:

1. Consider two bases  $B = \{ \boldsymbol{b_i} : i = 1, .., n \}$ ,

$$C = \{c_i : i = 1, .., m\}$$
. Suppose  $n < m$ .



### Theorem

Any two bases for a subspace contain the same number of vectors Proof:

- 1. Consider two bases  $B = \{ b_i : i = 1, ..., n \}$ ,  $C = \{ c_i : i = 1, ..., m \}$ . Suppose n < m.
- 2. Consider  $A_1 = \{c_1, b_1, ..., b_n\}$ . This is a linearly dependent set.



### Theorem

Any two bases for a subspace contain the same number of vectors Proof:

- 1. Consider two bases  $B = \{ b_i : i = 1, ..., n \}$ ,  $C = \{ c_i : i = 1, ..., m \}$ . Suppose n < m.
- 2. Consider  $A_1 = \{c_1, b_1, ..., b_n\}$ . This is a linearly dependent set.
- 3. Note that  $c_1 \neq 0$ . This means we should have some  $b_i \in span(\{c_1, b_1, ..., ..., b_n\} \setminus b_i)$ .



・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

#### Theorem

Any two bases for a subspace contain the same number of vectors Proof:

- 1. Consider two bases  $B = \{ b_i : i = 1, ..., n \}$ ,  $C = \{ c_i : i = 1, ..., m \}$ . Suppose n < m.
- 2. Consider  $A_1 = \{c_1, b_1, ..., b_n\}$ . This is a linearly dependent set.
- 3. Note that  $c_1 \neq 0$ . This means we should have some  $b_i \in span(\{c_1, b_1, ..., ..., b_n\} \setminus b_i)$ .
- 4. Let  $B_1 = \{ \boldsymbol{c_1}, \boldsymbol{b_1}, ..., \boldsymbol{b_n} \} \setminus \boldsymbol{b_i}$ . Then  $B_1$  spans V and  $|B_1| = |B|$ .



・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

#### Theorem

Any two bases for a subspace contain the same number of vectors Proof:

- 1. Consider two bases  $B = \{ b_i : i = 1, ..., n \}$ ,  $C = \{ c_i : i = 1, ..., m \}$ . Suppose n < m.
- 2. Consider  $A_1 = \{c_1, b_1, ..., b_n\}$ . This is a linearly dependent set.
- 3. Note that  $c_1 \neq 0$ . This means we should have some  $b_i \in span(\{c_1, b_1, ..., ..., b_n\} \setminus b_i)$ .
- 4. Let  $B_1 = \{ \boldsymbol{c_1}, \boldsymbol{b_1}, ..., \boldsymbol{b_n} \} \setminus \boldsymbol{b_i}$ . Then  $B_1$  spans V and  $|B_1| = |B|$ .
- 5. Continue this. To get  $B_{k+1}$ , we add one vector from C to  $B_k$  and remove one vector from  $B_k$  (while maintaining spanning property).



3

・ロット 御 マ イロット キャー

#### Theorem

Any two bases for a subspace contain the same number of vectors Proof:

- 1. Consider two bases  $B = \{ b_i : i = 1, ..., n \}$ ,  $C = \{ c_i : i = 1, ..., m \}$ . Suppose n < m.
- 2. Consider  $A_1 = \{c_1, b_1, ..., b_n\}$ . This is a linearly dependent set.
- 3. Note that  $c_1 \neq 0$ . This means we should have some  $b_i \in span(\{c_1, b_1, ..., ..., b_n\} \setminus b_i)$ .
- 4. Let  $B_1 = \{ \boldsymbol{c_1}, \boldsymbol{b_1}, ..., \boldsymbol{b_n} \} \setminus \boldsymbol{b_i}$ . Then  $B_1$  spans V and  $|B_1| = |B|$ .
- 5. Continue this. To get  $B_{k+1}$ , we add one vector from C to  $B_k$  and remove one vector from  $B_k$  (while maintaining spanning property).
- 6. At stage *n*, we get  $B_n = \{c_1, ..., c_n\}$  which is a spanning set

・ロット 御 マイ ヨマ ・ ヨマ

#### Theorem

Any two bases for a subspace contain the same number of vectors Proof:

- 1. Consider two bases  $B = \{ b_i : i = 1, ..., n \}$ ,  $C = \{ c_i : i = 1, ..., m \}$ . Suppose n < m.
- 2. Consider  $A_1 = \{c_1, b_1, ..., b_n\}$ . This is a linearly dependent set.
- 3. Note that  $c_1 \neq 0$ . This means we should have some  $b_i \in span(\{c_1, b_1, ..., ..., b_n\} \setminus b_i)$ .
- 4. Let  $B_1 = \{ \boldsymbol{c_1}, \boldsymbol{b_1}, ..., \boldsymbol{b_n} \} \setminus \boldsymbol{b_i}$ . Then  $B_1$  spans V and  $|B_1| = |B|$ .
- 5. Continue this. To get  $B_{k+1}$ , we add one vector from C to  $B_k$  and remove one vector from  $B_k$  (while maintaining spanning property).
- 6. At stage *n*, we get  $B_n = \{c_1, ..., c_n\}$  which is a spanning set



The following are equivalent (Prove it!):

- ► B is linearly independent and spans W.
- B is a maximal linearly independent set of W.
- *B* is a minimal set which spans *W*.



The following are equivalent (Prove it!):

- ► B is linearly independent and spans W.
- B is a maximal linearly independent set of W.
- B is a minimal set which spans W.

Dimension of a Subspace W

dim(W) = No. of vectors in any basis of W.



#### Theorem

Let V be a finite dimensional vector space and S be a linearly independent subset of vectors from V. Then S can be extended to a basis of V, i.e., there is a basis B for V such that  $S \subseteq B$ .



#### Theorem

Let V be a finite dimensional vector space and S be a linearly independent subset of vectors from V. Then S can be extended to a basis of V, i.e., there is a basis B for V such that  $S \subseteq B$ . Proof idea:

• If span(S) = V, then nothing to prove



#### Theorem

Let V be a finite dimensional vector space and S be a linearly independent subset of vectors from V. Then S can be extended to a basis of V, i.e., there is a basis B for V such that  $S \subseteq B$ . Proof idea:

- If span(S) = V, then nothing to prove
- ▶ If  $span(S) \neq V$ , choose a vector  $\mathbf{v} \notin span(S)$ , and form  $S_1 = S \cup \{\mathbf{v}\}.$



・ロト ・ 雪 ト ・ ヨ ト

#### Theorem

Let V be a finite dimensional vector space and S be a linearly independent subset of vectors from V. Then S can be extended to a basis of V, i.e., there is a basis B for V such that  $S \subseteq B$ . Proof idea:

- If span(S) = V, then nothing to prove
- ▶ If  $span(S) \neq V$ , choose a vector  $\mathbf{v} \notin span(S)$ , and form  $S_1 = S \cup \{\mathbf{v}\}.$
- If span(S<sub>1</sub>) = V, then we are done. Else find a vector outside span(S<sub>1</sub>) and add. ... (repeat).



#### Theorem

Let V be a finite dimensional vector space and S be a linearly independent subset of vectors from V. Then S can be extended to a basis of V, i.e., there is a basis B for V such that  $S \subseteq B$ . Proof idea:

- ▶ If *span*(*S*) = *V*, then nothing to prove
- ▶ If  $span(S) \neq V$ , choose a vector  $\mathbf{v} \notin span(S)$ , and form  $S_1 = S \cup \{\mathbf{v}\}.$
- If span(S<sub>1</sub>) = V, then we are done. Else find a vector outside span(S<sub>1</sub>) and add. ... (repeat).
- We will have a basis for V at the end.



### Vectors from *n*-dimensional V.S as *n*-tuples

#### Unique representation of vectors using basis vectors

Let V be a *n*-dimensional vector space with basis  $B = \{\boldsymbol{b_1}, ..., \boldsymbol{b_n}\}$ . Then any vector  $\boldsymbol{v} \in V$  can be written as a unique linear combination of the basis vectors

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{b}_i.$$



## Vectors from *n*-dimensional V.S as *n*-tuples

#### Unique representation of vectors using basis vectors

Let V be a *n*-dimensional vector space with basis  $B = \{\boldsymbol{b_1}, ..., \boldsymbol{b_n}\}$ . Then any vector  $\boldsymbol{v} \in V$  can be written as a unique linear combination of the basis vectors

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{b}_i.$$

• In terms of the basis B, we can represent v as the *n*-tuple,

$$[\mathbf{v}]_{B} = (\alpha_{1}, \alpha_{2}, ..., \alpha_{n}).$$

This is only a representation, and may change with the basis chosen.



A D F A B F A B F A B F

#### Vectors as coordinates

• Let  $V = \mathbb{R}^2$ . Let  $B = \{ \boldsymbol{b_1} = (1, 0), \boldsymbol{b_2} = (0, 1) \}.$ 

• Consider a vector 
$$\mathbf{v} = (5, 6)$$
.

▶ 
$$v = 5b_1 + 6b_2$$
.

In terms of B, we have

$$[\mathbf{v}]_B = \left[ \begin{array}{c} 5\\6 \end{array} \right]$$



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

How do vector-representations change with change in the basis (from  $B = \{ \mathbf{b}_i : i = 1..n \}$  to  $C = \{ \mathbf{c}_i : i = 1..n \}$ ) chosen?

Given  $[\mathbf{v}]_B$ , what is  $[\mathbf{v}]_C$ ?



How do vector-representations change with change in the basis (from  $B = \{ \mathbf{b}_i : i = 1..n \}$  to  $C = \{ \mathbf{c}_i : i = 1..n \}$ ) chosen?

Given  $[\mathbf{v}]_B$ , what is  $[\mathbf{v}]_C$ ?

• Given  $B = \{ \boldsymbol{b}_i \}$ , we have

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{b}_i,$$

how to get  $\beta_i$ s such that

$$\mathbf{v} = \sum_{i=1}^{n} \beta_i \mathbf{c}_i,$$

i.e. what is  $[\mathbf{v}]_C$ ?



Note that

$$[\mathbf{v}]_{C} = \sum_{i=1}^{n} \alpha_{i} [\mathbf{b}_{i}]_{C}.$$
$$= \begin{bmatrix} [\mathbf{b}_{1}]_{C} \ [\mathbf{b}_{2}]_{C} \ \dots \ [\mathbf{b}_{n}]_{C} \end{bmatrix} \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix}$$
$$= \begin{pmatrix} \beta_{1} \\ \vdots \\ \beta_{n} \end{pmatrix}$$



æ

・ロト ・回ト ・ヨト ・ヨト

Note that

$$[\mathbf{v}]_{C} = \sum_{i=1}^{n} \alpha_{i} [\mathbf{b}_{i}]_{C}.$$

$$= \begin{bmatrix} [\mathbf{b}_{1}]_{C} [\mathbf{b}_{2}]_{C} \dots [\mathbf{b}_{n}]_{C} \end{bmatrix} \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix}$$

$$= \begin{pmatrix} \beta_{1} \\ \vdots \\ \beta_{n} \end{pmatrix}$$

 $\begin{bmatrix} [\boldsymbol{b_1}]_C \ [\boldsymbol{b_2}]_C \ \dots \ [\boldsymbol{b_n}]_C \end{bmatrix}$  is known as the basis change matrix.



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

### Basis change : Example

- Consider the basis  $C = \{c_1 = (1,0), c_2 = (1,1)\}$  for  $\mathbb{R}^2$ .
- Let  $\mathbf{v} = (5, 6)$ . What is  $[\mathbf{v}]_C$ ?



э

・ロト ・ 雪 ト ・ ヨ ト

#### Basis change : Example

• Consider the basis  $C = \{c_1 = (1, 0), c_2 = (1, 1)\}$  for  $\mathbb{R}^2$ .

• Let 
$$\mathbf{v} = (5, 6)$$
. What is  $[\mathbf{v}]_C$ ?

$$[\mathbf{v}]_{C} = 5[\mathbf{b}_{1}]_{C} + 6[\mathbf{b}_{2}]_{C}$$
$$= 5\begin{bmatrix}1\\0\end{bmatrix} + 6\begin{bmatrix}-1\\1\end{bmatrix}$$
$$= \begin{bmatrix}-1\\6\end{bmatrix}.$$

• Check :  $v = -1c_1 + 6c_2$ .



 $\mathcal{L}$ =Finite energy signals which are also time-limited from [0, *T*]. Theorem *A basis for*  $\mathcal{L}$  *is* 

$$f_i(t) = \frac{1}{\sqrt{T}} e^{j2\pi i t/T}, \ i = 0, \pm 1, \pm 2, ...$$

Proof:

► Fourier Series expansion.



1. Finite-energy time-bounded signals form a vector space.



- 1. Finite-energy time-bounded signals form a vector space.
- 2. Span of time-limited sinusoids = Time-limited Finite-Energy signals
  - The sinusoidal basis helps to easily characterize output signal when the signal is passed through 'linear time-invariant' systems.
  - Can think of signals as vectors. Makes Digital Communication possible!



### Linear Transformations

- ▶ Maps between Vector Spaces (defined over a common field 𝔽).
- We like linearity.

#### Linear Transformation

Let V and W be vector spaces over the field F. A function  $T: V \to W$  is a linear transformation if

$$\mathcal{T}(c\mathbf{v_1} + \mathbf{v_2}) = c\mathcal{T}(\mathbf{v_1}) + \mathcal{T}(\mathbf{v_2}), \forall \mathbf{v_1}, \mathbf{v_2} \in V, \text{and}, \forall c \in \mathbb{F}.$$

If V = W, then T is called a *linear operator*.



1. T: 
$$R^{2\times 2} \to R$$
 where T is defined as  
 $T\left(\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}\right) = x_1 + x_4.$ 



æ

・ロト ・日本 ・日本 ・日本

1. T: 
$$R^{2\times 2} \to R$$
 where *T* is defined as  
 $T\left(\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}\right) = x_1 + x_4.$  (Yes!)

2. 
$$T: R^2 \to R^3$$
 where T is defined as  $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 + x_2 \end{bmatrix}$ .



г

・ロト ・ 日 ト ・ モ ト ・ モ ト

٦.

1. T: 
$$R^{2\times 2} \to R$$
 where *T* is defined as  
 $T\left(\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}\right) = x_1 + x_4.$  (Yes!)

2. 
$$T : R^2 \to R^3$$
 where  $T$  is defined as  $T\left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 + x_2 \end{bmatrix}$ .  
(Yes!)

3. 
$$T: R^2 \to R^3$$
 where  $T$  is defined as  $T\left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{bmatrix}$ 



г

・ロト ・聞ト ・ヨト ・ヨト

п

1. T: 
$$R^{2\times 2} \to R$$
 where *T* is defined as  
 $T\left(\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}\right) = x_1 + x_4.$  (Yes!)

2. 
$$T : \mathbb{R}^2 \to \mathbb{R}^3$$
 where  $T$  is defined as  $T\left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 + x_2 \end{bmatrix}$ .  
(Yes!)

3. 
$$T : \mathbb{R}^2 \to \mathbb{R}^3$$
 where  $T$  is defined as  $T\left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{bmatrix}$   
(No!)

4. 
$$T : R^3 \to R^3$$
 where  $T$  is defined as  $T\left( \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} x_1 \\ x_2 \\ a \end{bmatrix}$ 



г

(日)、

п

1. T: 
$$R^{2\times 2} \to R$$
 where *T* is defined as  
 $T\left(\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}\right) = x_1 + x_4.$  (Yes!)

2. 
$$T : \mathbb{R}^2 \to \mathbb{R}^3$$
 where  $T$  is defined as  $T\left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 + x_2 \end{bmatrix}$ .  
(Yes!)

3. 
$$T : R^2 \to R^3$$
 where  $T$  is defined as  $T\left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{bmatrix}$   
(No!)

4.  $T : \mathbb{R}^3 \to \mathbb{R}^3$  where T is defined as  $T\left( \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} x_1 \\ x_2 \\ a \end{bmatrix}$ . (No if  $a \neq 0$ , Yes if a = 0)



г

イロト イポト イヨト イヨト

п



► 
$$y(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau.$$

 Is this is a linear transformation? (What are its domain and codomain?)





• 
$$y(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau.$$

- Is this is a linear transformation? (What are its domain and codomain?)
- Linear Transformation.





• 
$$y(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau.$$

- Is this is a linear transformation? (What are its domain and codomain?)
- Linear Transformation.
- Domain=Codomain=Vector Space of Finite energy signals.



1. Finite-energy time-bounded signals form a vector space.



- 1. Finite-energy time-bounded signals form a vector space.
- 2. Span of time-limited sinusoids = Time-limited Finite-Energy signals.



- 1. Finite-energy time-bounded signals form a vector space.
- 2. Span of time-limited sinusoids = Time-limited Finite-Energy signals.
- 3. LTI systems are Linear Operators on the Space of Finite Energy Signals.



# Sum and Composition of Linear Transformations

▶  $T_1$  and  $T_2$  are linear transformations from  $V \rightarrow W$ . Then so is their 'sum' T defined as

$$T(\mathbf{v}) = T_1(\mathbf{v}) + T_2(\mathbf{v}).$$

▶ So is *T*′ ('composition') defined as

$$T'(\boldsymbol{v})=T_2(T_1(\boldsymbol{v})).$$



# Sum and Composition of Linear Transformations

▶  $T_1$  and  $T_2$  are linear transformations from  $V \rightarrow W$ . Then so is their 'sum' T defined as

$$T(\mathbf{v}) = T_1(\mathbf{v}) + T_2(\mathbf{v}).$$

▶ So is *T*′ ('composition') defined as

$$T'(\boldsymbol{v})=T_2(T_1(\boldsymbol{v})).$$

Series and Parallel LTI systems.



Range and Null Space of a Linear Transformation

Range (Image) and Null-Space (Kernel) of T

Range (Image):

$$R(T) = \{ \boldsymbol{w} \in W : T(\boldsymbol{v}) = \boldsymbol{w}, \text{for some } \boldsymbol{v} \in V \}.$$

Nullspace (kernel):

$$N(T) = \{ \boldsymbol{v} \in V : T(\boldsymbol{v}) = \boldsymbol{0} \in W \}.$$



Range and Null Space of a Linear Transformation

Range (Image) and Null-Space (Kernel) of T

Range (Image):

$$R(T) = \{ \boldsymbol{w} \in W : T(\boldsymbol{v}) = \boldsymbol{w}, \text{for some } \boldsymbol{v} \in V \}.$$

Nullspace (kernel):

$$N(T) = \{ \mathbf{v} \in V : T(\mathbf{v}) = \mathbf{0} \in W \}.$$

- R(T) is a subspace of W.
- N(T) is a subspace of V.



# Range and Null Space





・ロト ・ 日 ト ・ モ ト ・ モ ト

# Rank Nullity Theorem

#### Rank and Nullity

• 
$$Rank(T) = dim(R(T)).$$

• Nullity(T) = dim(N(T)).

#### Rank Nullity Theorem

Let V be a finite dimensional vector space and  $\, {\cal T} : V \to W$  be a L.T. Then

$$dim(V) = Rank(T) + Nullity(T).$$



A D F A B F A B F A B F



æ

・ロト ・四ト ・モト ・モト

- Let n = dim(V), k = dim(N(T)). We want to show that dim(R(T)) = n − k.
- Let  $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$  be basis for N(T).



э

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

- Let n = dim(V), k = dim(N(T)). We want to show that dim(R(T)) = n - k.
- Let  $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$  be basis for N(T).
- We can extend this to a basis  $B = \{\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{v}_{k+1}, \dots, \mathbf{v}_n\}$ for V.



э

- Let n = dim(V), k = dim(N(T)). We want to show that dim(R(T)) = n − k.
- Let  $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$  be basis for N(T).
- We can extend this to a basis  $B = \{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$  for V.
- It suffices to show that  $\{T(v_{k+1}), \ldots, T(v_n)\}$  is a basis for R(T).



▶ We first show  $\{T(v_{k+1}), \ldots, T(v_n)\}$  are independent. And then have to show that it spans R(T).



- We first show  $\{T(v_{k+1}), \ldots, T(v_n)\}$  are independent. And then have to show that it spans R(T).
- Suppose not. Then, for some  $\alpha_i$ s not all zero,

$$\mathbf{0} = \sum_{i=k+1}^{n} \alpha_i T(\mathbf{v}_{k+i})$$
$$= T(\sum_{i=k+1}^{n} \alpha_i \mathbf{v}_i).$$



- We first show  $\{T(v_{k+1}), \ldots, T(v_n)\}$  are independent. And then have to show that it spans R(T).
- Suppose not. Then, for some  $\alpha_i$ s not all zero,

$$\mathbf{0} = \sum_{i=k+1}^{n} \alpha_i T(\mathbf{v}_{k+i})$$
$$= T(\sum_{i=k+1}^{n} \alpha_i \mathbf{v}_i).$$

• This means 
$$\sum_{i=1}^{n-k} \alpha_i \mathbf{v_{k+i}} \in N(T)$$
. Thus,

$$\sum_{i=k+1}^{n} \alpha_i \mathbf{v}_i = \sum_{i=1}^{k} \beta_i \mathbf{v}_i.$$



#### Rearranging,

$$\sum_{i=k+1}^{n} \alpha_i \mathbf{v}_i - \sum_{i=1}^{k} \beta_i \mathbf{v}_i = \mathbf{0},$$

for  $\alpha_i$ s not all zero.



・ロト ・聞ト ・ヨト ・ヨト

Rearranging,

$$\sum_{i=k+1}^{n} \alpha_i \mathbf{v}_i - \sum_{i=1}^{k} \beta_i \mathbf{v}_i = \mathbf{0},$$

for  $\alpha_i$ s not all zero.

- ► This is a contradiction as { v<sub>i</sub> : i = 1, ..., n} is a basis.
- Thus  $\{T(\mathbf{v}_{k+1}), \ldots, T(\mathbf{v}_n)\}$  is linearly independent.



• Have to still show  $B_R = \{T(\mathbf{v}_{k+1}), \ldots, T(\mathbf{v}_n)\}$  spans R(T).



æ

・ロト ・四ト ・モト ・モト

- Have to still show  $B_R = \{T(\mathbf{v}_{k+1}), \ldots, T(\mathbf{v}_n)\}$  spans R(T).
- For any vector  $\boldsymbol{w} \in R(T)$ , show that  $\boldsymbol{w} \in span(B_R)$ .



A D F A B F A B F A B F

- Have to still show  $B_R = \{T(\mathbf{v}_{k+1}), \ldots, T(\mathbf{v}_n)\}$  spans R(T).
- For any vector  $\boldsymbol{w} \in R(T)$ , show that  $\boldsymbol{w} \in span(B_R)$ .
- There exists a  $\mathbf{v} \in V$  such that  $T(\mathbf{v}) = \mathbf{w}$ .



э

・ロット 御マ トルマン・

- Have to still show  $B_R = \{T(\mathbf{v}_{k+1}), \dots, T(\mathbf{v}_n)\}$  spans R(T).
- For any vector  $\boldsymbol{w} \in R(T)$ , show that  $\boldsymbol{w} \in span(B_R)$ .
- There exists a  $\mathbf{v} \in V$  such that  $T(\mathbf{v}) = \mathbf{w}$ .
- We have  $\mathbf{v} = \sum_{i=1}^{n} \gamma_i \mathbf{v}_i$  (as B is a basis for V).



э.

- Have to still show  $B_R = \{T(\mathbf{v}_{k+1}), \ldots, T(\mathbf{v}_n)\}$  spans R(T).
- For any vector  $\boldsymbol{w} \in R(T)$ , show that  $\boldsymbol{w} \in span(B_R)$ .
- There exists a  $\mathbf{v} \in V$  such that  $T(\mathbf{v}) = \mathbf{w}$ .
- We have  $\mathbf{v} = \sum_{i=1}^{n} \gamma_i \mathbf{v}_i$  (as B is a basis for V).
- Apply T on both sides to get the result.



### Example

#### Let

$$A = \left( \begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 3 \end{array} \right)$$

- Consider the linear transformation from  $\mathbb{R}^3 \to \mathbb{R}^3$  given by  $x \to Ax$ .
- What is the N(T)? What is R(T)?
- Check if R-N theorem is satisfied.



・ロト ・聞ト ・ヨト ・ヨト

Characterising linear transformations

Theorem

Let  $T : V \to W$  be a L.T. Let  $B = \{\mathbf{v}_i : i = 1.., n\}$ . Then the action of T on any arbitrary  $\mathbf{v} \in V$  is completely specified by its action on the basis vectors  $\{\mathbf{v}_i : i = 1,..,n\}$ .



• Let 
$$dim(V) = n$$
,  $dim(W) = m$ . Let  $T(\mathbf{v}) = \mathbf{w}$ .



æ

(日) (四) (三) (三) (三)

- Let dim(V) = n, dim(W) = m. Let  $T(\mathbf{v}) = \mathbf{w}$ .
- ► Already know: Choosing a basis B<sub>V</sub> for V enables us to write v as a n-tuple [v]<sub>B<sub>V</sub></sub>.



A D F A B F A B F A B F

- Let dim(V) = n, dim(W) = m. Let  $T(\mathbf{v}) = \mathbf{w}$ .
- ► Already know: Choosing a basis B<sub>V</sub> for V enables us to write v as a n-tuple [v]<sub>B<sub>V</sub></sub>.
- Choosing a basis B<sub>W</sub> for W enables us to write w as a m-tuple [w]<sub>B<sub>W</sub></sub>.



・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

- Let dim(V) = n, dim(W) = m. Let  $T(\mathbf{v}) = \mathbf{w}$ .
- Already know: Choosing a basis B<sub>V</sub> for V enables us to write v as a n-tuple [v]<sub>B<sub>V</sub></sub>.
- ► Choosing a basis B<sub>W</sub> for W enables us to write w as a m-tuple [w]<sub>B<sub>W</sub></sub>.
- ► Fixing B<sub>V</sub> and B<sub>W</sub>, we have a matrix representation [T] for T.

$$[T][\mathbf{v}]_{B_V} = [\mathbf{w}]_{B_W}$$



・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

• How to get [T]?



・ロト ・ 日 ト ・ モ ト ・ モ ト

▶ How to get [T]?

# $i^{th}$ column of $[T] = [T(\mathbf{v}_i)]_{B_W}$ .



・ロト ・四ト ・モト ・モト

### Example

 Consider the Lin. Operator on the space of real polynomials of degree upto 2, defined as follows.

$$T(a_0+a_1t+a_2t^2) = (a_0+a_2)+(a_1+a_2)t+(a_0+2a_1+3a_2)t^2.$$

Find its representation under (a) Basis  $B = \{1, t, t^2\}$  (b) Basis  $C = (1 + t, 1 + t^2, 1 + t + t^2)$ .



4. Linear Transformations are heavily used in Coding Theory and Cryptography.



(日) (同) (日) (日)

- 4. Linear Transformations are heavily used in Coding Theory and Cryptography.
  - Embed a low-D subspace in a High-D vector space to a Low-D vector space. (Compression or Source Coding)



(日) (同) (日) (日)

- 4. Linear Transformations are heavily used in Coding Theory and Cryptography.
  - Embed a low-D subspace in a High-D vector space to a Low-D vector space. (Compression or Source Coding)
  - Embed a low-D vector space as a Low-D subspace of a High-D vector space (Channel Coding).



#### Let $T: V \rightarrow V$ be a Linear Operator.

#### Eigen values and vectors

A non-zero  $v \in V$  and a constant  $\lambda \in \mathbb{F}$  are called the eigen vector and its eigen value of T if

$$T(\mathbf{v}) = \lambda \mathbf{v}.$$



(日) (同) (日) (日)

For certain types of Lin. Operators, there exists a basis B = {v<sub>i</sub>} for V consisting of eigen vectors (with eigen values λ<sub>i</sub>s).



(日) (同) (日) (日)

- For certain types of Lin. Operators, there exists a basis B = {v<sub>i</sub>} for V consisting of eigen vectors (with eigen values λ<sub>i</sub>s).
- Understanding the I/O relationships of such Lin Operators are easy with such a basis.



►

- For certain types of Lin. Operators, there exists a basis
   B = {v<sub>i</sub>} for V consisting of eigen vectors (with eigen values λ<sub>i</sub>s).
- Understanding the I/O relationships of such Lin Operators are easy with such a basis.

$$T(\mathbf{v}) = T\left(\sum \alpha_i \mathbf{v}_i\right)$$
$$= \sum \alpha_i T(\mathbf{v}_i)$$
$$= \sum \alpha_i \lambda_i \mathbf{v}_i$$



Example for Eigen vectors and Values

- A basis for  $\mathcal{L}$  is

$$f_i(t) = rac{1}{\sqrt{T}} e^{j 2 \pi i t / T}, \ i = 0, \pm 1, \pm 2, ...$$



Example for Eigen vectors and Values

- ► L=Finite energy signals which are also time-limited from [0, T].
- A basis for  $\mathcal{L}$  is

$$f_i(t) = \frac{1}{\sqrt{T}} e^{j2\pi i t/T}, \ i = 0, \pm 1, \pm 2, ...$$

► The function f<sub>i</sub>(t) are the eigen vectors for any LTI system given by L, with eigen value being the fourier series coefficient of h(t) at 2πi/T.



A D F A B F A B F A B F



<ロト <回ト < 注ト < 注ト

- 1. Finite-energy time-bounded signals form a vector space.
- 2. Span of time-limited sinusoids = Time-limited Finite-Energy signals.
- 3. LTI systems are Linear Operators on the Space of Finite Energy Signals.
- 4. Linear Transformations are heavily used in Coding Theory and Cryptography.



(日) (同) (日) (日)

- 1. Finite-energy time-bounded signals form a vector space.
- 2. Span of time-limited sinusoids = Time-limited Finite-Energy signals.
- 3. LTI systems are Linear Operators on the Space of Finite Energy Signals.
- 4. Linear Transformations are heavily used in Coding Theory and Cryptography.
- 5. Fourier basis are also eigen vectors of LTI systems. So understanding I/O relationships of LTI systems is easy.



# Thank You



æ

・ロト ・四ト ・モト ・モト