## Linear Algebra

Trivandrum School on Communication, Coding and Networking 2017

Prasad Krishnan

Signal Processing and Communications Research Centre, International Institute of Information Technology, Hyderabad

January 27-30, 2017

## Linear Algebra

- Vector Spaces
- Definitions: Fields and Vector Space.
- Linear Combinations.
- Linear Independence and Dependence.
- Subspaces
- Basis and Dimension.
- Vectors as tuples.
- Basis change matrix.
- Linear Transformations.
- Definition.
- Linear Transformations as Matrices.
- Similar matrices.
- Range and Null Space of Linear Transformations.
- Rank-Nullity Theorem.
- Eigen values and vectors of a Linear Operator.


## General ideas about Math-based Education and Research

- Math is not hard!
- There are only sets and maps (relations between sets).
- Start from basic axioms.
- Connect simple facts to create bigger facts (not always easy!).
- Imagination and Creativity.


## Field - A rough definition

- Fields (Scalars) : A set which is closed under addition (and subtraction), multiplication (and division by non-zeros) - How much?


## Field - A rough definition

- Fields (Scalars) : A set which is closed under addition (and subtraction), multiplication (and division by non-zeros) - How much?
- Examples: Number of apples in a basket of infinite apples?


## Field - A rough definition

- Fields (Scalars) : A set which is closed under addition (and subtraction), multiplication (and division by non-zeros) - How much?
- Examples: Number of apples in a basket of infinite apples? (No).
- Temperature (


## Field - A rough definition

- Fields (Scalars) : A set which is closed under addition (and subtraction), multiplication (and division by non-zeros) - How much?
- Examples: Number of apples in a basket of infinite apples? (No).
- Temperature (No).
- Examples: $(\mathbb{R},+,$.$) ($


## Field - A rough definition

- Fields (Scalars) : A set which is closed under addition (and subtraction), multiplication (and division by non-zeros) - How much?
- Examples: Number of apples in a basket of infinite apples? (No).
- Temperature (No).
- Examples: $(\mathbb{R},+,$.$) (Yes)$
- $\left(\mathbb{F}_{p},+(\bmod p), x(\bmod p)\right)($ integers modulo $p)$.


## Field - A rough definition

- Fields (Scalars) : A set which is closed under addition (and subtraction), multiplication (and division by non-zeros) - How much?
- Examples: Number of apples in a basket of infinite apples? (No).
- Temperature (No).
- Examples: $(\mathbb{R},+,$.$) (Yes)$
- $\left(\mathbb{F}_{p},+(\bmod p), \times(\bmod p)\right)($ integers modulo $p) .($ Yes $)$


## Vector Spaces over fields - A rough definition

- Space $=$ set.
- Vector space V over a field of scalars $\mathbb{F}$ : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].


## Vector Spaces over fields - A rough definition

- Space $=$ set.
- Vector space V over a field of scalars $\mathbb{F}$ : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- Examples: $\{(a, b): a, b \in \mathbb{Z}\}$ over $\mathbb{R}$


## Vector Spaces over fields - A rough definition

- Space $=$ set.
- Vector space V over a field of scalars $\mathbb{F}$ : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- Examples: $\{(a, b): a, b \in \mathbb{Z}\}$ over $\mathbb{R}$ (No!).


## Vector Spaces over fields - A rough definition

- Space $=$ set.
- Vector space V over a field of scalars $\mathbb{F}$ : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- Examples: $\{(a, b): a, b \in \mathbb{Z}\}$ over $\mathbb{R}$ (No!).
- Examples: $\{(a, b): a, b \in \mathbb{R}\}$ over $\mathbb{R}$


## Vector Spaces over fields - A rough definition

- Space $=$ set.
- Vector space V over a field of scalars $\mathbb{F}$ : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- Examples: $\{(a, b): a, b \in \mathbb{Z}\}$ over $\mathbb{R}(\mathbf{N o !})$.
- Examples: $\{(a, b): a, b \in \mathbb{R}\}$ over $\mathbb{R}$ (Yes!),


## Vector Spaces over fields - A rough definition

- Space $=$ set.
- Vector space V over a field of scalars $\mathbb{F}$ : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- Examples: $\{(a, b): a, b \in \mathbb{Z}\}$ over $\mathbb{R}$ (No!).
- Examples: $\{(a, b): a, b \in \mathbb{R}\}$ over $\mathbb{R}$ (Yes!),
- Set of finite energy signals over $\mathbb{R}$.


## Vector Spaces over fields - A rough definition

- Space $=$ set.
- Vector space V over a field of scalars $\mathbb{F}$ : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- Examples: $\{(a, b): a, b \in \mathbb{Z}\}$ over $\mathbb{R}$ (No!).
- Examples: $\{(a, b): a, b \in \mathbb{R}\}$ over $\mathbb{R}$ (Yes!),
- Set of finite energy signals over $\mathbb{R}$. (Yes!)


## Vector Spaces over fields - A rough definition

- Space $=$ set.
- Vector space V over a field of scalars $\mathbb{F}$ : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- Examples: $\{(a, b): a, b \in \mathbb{Z}\}$ over $\mathbb{R}(\mathbf{N o !})$.
- Examples: $\{(a, b): a, b \in \mathbb{R}\}$ over $\mathbb{R}$ (Yes!),
- Set of finite energy signals over $\mathbb{R}$. (Yes!)
- $\mathbb{F}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbb{F}\right\}$ over $\mathbb{F}$.


## Vector Spaces over fields - A rough definition

- Space $=$ set.
- Vector space V over a field of scalars $\mathbb{F}$ : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- Examples: $\{(a, b): a, b \in \mathbb{Z}\}$ over $\mathbb{R}(\mathbf{N o !})$.
- Examples: $\{(a, b): a, b \in \mathbb{R}\}$ over $\mathbb{R}$ (Yes!),
- Set of finite energy signals over $\mathbb{R}$. (Yes!)
- $\mathbb{F}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbb{F}\right\}$ over $\mathbb{F}$. (Yes!)
- Set of locations within a room, over $\mathbb{R}$


## Vector Spaces over fields - A rough definition

- Space $=$ set.
- Vector space V over a field of scalars $\mathbb{F}$ : A set closed under addition, scalar multiplication [A set of 'coordinate-tuples'].
- Examples: $\{(a, b): a, b \in \mathbb{Z}\}$ over $\mathbb{R}(\mathbf{N o !})$.
- Examples: $\{(a, b): a, b \in \mathbb{R}\}$ over $\mathbb{R}$ (Yes!),
- Set of finite energy signals over $\mathbb{R}$. (Yes!)
- $\mathbb{F}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbb{F}\right\}$ over $\mathbb{F}$. (Yes!)
- Set of locations within a room, over $\mathbb{R}$ (No!)


## Need for Linear Algebra in Communications and Coding

- For $\boldsymbol{x}=x(t), \boldsymbol{y}=y(t)$ (complex-valued functions), define

$$
<\mathbf{x}, \mathbf{y}>=\int_{-\infty}^{\infty} x(t) y^{*}(t) d t \in \mathbb{C}
$$

## Need for Linear Algebra in Communications and Coding

- For $\boldsymbol{x}=x(t), \boldsymbol{y}=y(t)$ (complex-valued functions), define

$$
<\mathbf{x}, \mathbf{y}>=\int_{-\infty}^{\infty} x(t) y^{*}(t) d t \in \mathbb{C}
$$

- Energy of the signal $x(t),\|\mathbf{x}\|^{2}=<\mathbf{x}, \mathbf{x}>$.
- If $\|\mathbf{x}\|<\infty$, then signal $x(t)$ has finite energy.


## Need for Linear Algebra in Communications and Coding

- For $\boldsymbol{x}=x(t), \boldsymbol{y}=y(t)$ (complex-valued functions), define

$$
<\mathbf{x}, \mathbf{y}>=\int_{-\infty}^{\infty} x(t) y^{*}(t) d t \in \mathbb{C}
$$

- Energy of the signal $x(t),\|\mathbf{x}\|^{2}=<\mathbf{x}, \mathbf{x}>$.
- If $\|\mathbf{x}\|<\infty$, then signal $x(t)$ has finite energy.

Theorem
Finite-energy signals form a vector space over $\mathbb{C}$.

## Need for Linear Algebra in Communications and Coding

- For $\boldsymbol{x}=x(t), \boldsymbol{y}=y(t)$ (complex-valued functions), define

$$
<\mathbf{x}, \mathbf{y}>=\int_{-\infty}^{\infty} x(t) y^{*}(t) d t \in \mathbb{C}
$$

- Energy of the signal $x(t),\|\mathbf{x}\|^{2}=<\mathbf{x}, \mathbf{x}>$.
- If $\|\mathbf{x}\|<\infty$, then signal $x(t)$ has finite energy.

Theorem
Finite-energy signals form a vector space over $\mathbb{C}$.
Proof:

- If $x(t)$ is finite-energy, then so is $c x(t)$ for any $c \in \mathbb{C}$.
- To show: If $x(t), y(t)$ are finite-energy, then so is $x(t)+y(t)$.


## Need for Linear Algebra in Communications and Coding

- For $\boldsymbol{x}=x(t), \boldsymbol{y}=y(t)$ (complex-valued functions), define

$$
<\mathbf{x}, \mathbf{y}>=\int_{-\infty}^{\infty} x(t) y^{*}(t) d t \in \mathbb{C}
$$

- Energy of the signal $x(t),\|\mathbf{x}\|^{2}=<\mathbf{x}, \mathbf{x}>$.
- If $\|\mathbf{x}\|<\infty$, then signal $x(t)$ has finite energy.

Theorem
Finite-energy signals form a vector space over $\mathbb{C}$.
Proof:

- If $x(t)$ is finite-energy, then so is $c x(t)$ for any $c \in \mathbb{C}$.
- To show: If $x(t), y(t)$ are finite-energy, then so is $x(t)+y(t)$.
- Given : $\|\boldsymbol{x}\|<\infty,\|\boldsymbol{y}\|<\infty$, show $\|\boldsymbol{x}+\boldsymbol{y}\|<\infty$.

Need for Linear Algebra in Communications and Coding

$$
\begin{aligned}
\|\boldsymbol{x}+\boldsymbol{y}\|^{2} & =\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}+<\boldsymbol{x}, \boldsymbol{y}>+<\boldsymbol{y}, \boldsymbol{x}> \\
& \leq\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}+2|<\boldsymbol{x}, \boldsymbol{y}>| \\
& \leq\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}+2\|\boldsymbol{x}\| \cdot\|\boldsymbol{y}\| \quad \text { (if }|<\boldsymbol{x}, \boldsymbol{y}>| \leq\|\boldsymbol{x}\| \cdot\|\boldsymbol{y}\| \text { ) } \\
& <\infty \quad \text { (as each of the above terms are finite) }
\end{aligned}
$$

Need for Linear Algebra in Communications and Coding

$$
\begin{aligned}
\|\boldsymbol{x}+\boldsymbol{y}\|^{2} & =\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}+<\boldsymbol{x}, \boldsymbol{y}>+<\boldsymbol{y}, \boldsymbol{x}> \\
& \leq\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}+2|<\boldsymbol{x}, \boldsymbol{y}>| \\
& \leq\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}+2\|\boldsymbol{x}\| \cdot\|\boldsymbol{y}\| \text { (if }|<\boldsymbol{x}, \boldsymbol{y}>| \leq\|\boldsymbol{x}\| \cdot\|\boldsymbol{y}\| \text { ) } \\
& <\infty \quad \text { (as each of the above terms are finite) }
\end{aligned}
$$

Cauchy-Schwarz inequality

$$
|<\boldsymbol{x}, \boldsymbol{y}>| \leq\|\boldsymbol{x}\| \cdot\|\boldsymbol{y}\|
$$

Proof: Fact: $\|\boldsymbol{x}-\lambda \boldsymbol{y}\|^{2} \geq 0$, for any $\lambda \in \mathbb{C}$. Expand this and substitute $\lambda=\frac{\langle\boldsymbol{x}, \boldsymbol{y}\rangle}{\|\boldsymbol{y}\|^{2}}$.

## Need for Linear Algebra in Communications and Coding

$$
\begin{aligned}
\|\boldsymbol{x}+\boldsymbol{y}\|^{2} & =\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}+<\boldsymbol{x}, \boldsymbol{y}>+<\boldsymbol{y}, \boldsymbol{x}> \\
& \leq\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}+2|<\boldsymbol{x}, \boldsymbol{y}>| . \\
& \leq\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}+2\|\boldsymbol{x}\| \cdot\|\boldsymbol{y}\| \quad \text { (if }|<\boldsymbol{x}, \boldsymbol{y}>| \leq\|\boldsymbol{x}\| .\|\boldsymbol{y}\| \text { ) } \\
& <\infty \quad \text { (as each of the above terms are finite) }
\end{aligned}
$$

Cauchy-Schwarz inequality

$$
|<\boldsymbol{x}, \boldsymbol{y}>| \leq\|\boldsymbol{x}\| \cdot\|\boldsymbol{y}\|
$$

Proof: Fact: $\|\boldsymbol{x}-\lambda \boldsymbol{y}\|^{2} \geq 0$, for any $\lambda \in \mathbb{C}$. Expand this and substitute $\lambda=\frac{\langle\boldsymbol{x}, \boldsymbol{y}\rangle}{\|\boldsymbol{y}\|^{2}}$.
(Turns out that $\langle x, y\rangle$ is also an example of a linear algebraic object called inner product)

Need for Linear Algebra in Communications and Coding

1. Finite-energy signals form a vector space over $\mathbb{C}$.

## Field : Formal Definition

Definition: Fields
A field $\mathbb{F}$ is a set $S$ with two operations (addition ( + ) and multiplication(.)) such that

- For any $a, b \in S, a+b \in S$ (closure under addition)


## Field : Formal Definition

Definition: Fields
A field $\mathbb{F}$ is a set $S$ with two operations (addition ( + ) and multiplication(.)) such that

- For any $a, b \in S, a+b \in S$ (closure under addition)
- Given $a, b, c \in S$, then $a+(b+c)=(a+b)+c$. (Addition is associative).


## Field: Formal Definition

## Definition: Fields

A field $\mathbb{F}$ is a set $S$ with two operations (addition ( + ) and multiplication(.)) such that

- For any $a, b \in S, a+b \in S$ (closure under addition)
- Given $a, b, c \in S$, then $a+(b+c)=(a+b)+c$. (Addition is associative).
- There exists a special element $0 \in S$ such that $a+0=0+a=a$ for all $a \in S$ (Additive identity exists).


## Field : Formal Definition

## Definition: Fields

A field $\mathbb{F}$ is a set $S$ with two operations (addition (+) and multiplication(.)) such that

- For any $a, b \in S, a+b \in S$ (closure under addition)
- Given $a, b, c \in S$, then $a+(b+c)=(a+b)+c$. (Addition is associative).
- There exists a special element $0 \in S$ such that $a+0=0+a=a$ for all $a \in S$ (Additive identity exists).
- For $a \in S$ there exists an element $b \in S$ such that $a+b=b+a=0$. (We write this element $b$ as $-a$ and call it the Additive inverse of $a$ in $S$. Note: Subtraction is just addition with additive inverse.)


## Field : Formal Definition

## Definition: Fields

A field $\mathbb{F}$ is a set $S$ with two operations (addition $(+)$ and multiplication(.)) such that

- For any $a, b \in S, a+b \in S$ (closure under addition)
- Given $a, b, c \in S$, then $a+(b+c)=(a+b)+c$. (Addition is associative).
- There exists a special element $0 \in S$ such that $a+0=0+a=a$ for all $a \in S$ (Additive identity exists).
- For $a \in S$ there exists an element $b \in S$ such that $a+b=b+a=0$. (We write this element $b$ as $-a$ and call it the Additive inverse of $a$ in $S$. Note: Subtraction is just addition with additive inverse.)
- For all $a, b \in S, a+b=b+a$ (Addition is Commutative)


## Definition: Fields (continued)

..such that..

- $S$ is closed under multiplication.
- Multiplication is associative.
- Multiplicative identity exists (denoted by 1 ).
- Multiplicative inverses exist for all elements but 0.
- Multiplication is commutative.


## Definition: Fields (continued)

..such that..

- $S$ is closed under multiplication.
- Multiplication is associative.
- Multiplicative identity exists (denoted by 1 ).
- Multiplicative inverses exist for all elements but 0.
- Multiplication is commutative.
...such that..
- For all $a, b, c \in S, a .(b+c)=a . b+a . c$ (Distributivity of multiplication).

It is really over! (I think)

## Fields: Informally

## Fields

A set where we can add, multiply, subtract (add with additive inverses), and divide (multiply with multiplicative inverses) and things work out nicely.

- Examples: $\mathbb{R}, \mathbb{C}, \mathbb{F}_{p}$.
- Non-examples: $\mathbb{R}^{m \times k}$ matrices $(m=k \neq 1)$.


## Fields: Informally

## Fields

A set where we can add, multiply, subtract (add with additive inverses), and divide (multiply with multiplicative inverses) and things work out nicely.

- Examples: $\mathbb{R}, \mathbb{C}, \mathbb{F}_{p}$.
- Non-examples: $\mathbb{R}^{m \times k}$ matrices $(m=k \neq 1)$.
- Think: What kind of structure exist if $k=m=1$ ?, $k=m ?, k \neq m ?$.


## Vector Spaces: Formal Definition

A set $V$ is a vector space over $\mathbb{F}$ (field of scalars) if the following properties are satisfied :

- $V$ is closed under vector addition, which is commutative and associative. $\forall \boldsymbol{v}, \boldsymbol{w} \in V, \boldsymbol{v}+\boldsymbol{w}=\boldsymbol{w}+\boldsymbol{v} \in V$.


## Vector Spaces: Formal Definition

A set $V$ is a vector space over $\mathbb{F}$ (field of scalars) if the following properties are satisfied :

- $V$ is closed under vector addition, which is commutative and associative. $\forall \boldsymbol{v}, \boldsymbol{w} \in V, \boldsymbol{v}+\boldsymbol{w}=\boldsymbol{w}+\boldsymbol{v} \in V$.
- There exists $\mathbf{0} \in V, \boldsymbol{x}+\mathbf{0}=\boldsymbol{x}$ [Zero vector (Additive identity)]


## Vector Spaces: Formal Definition

A set $V$ is a vector space over $\mathbb{F}$ (field of scalars) if the following properties are satisfied :

- $V$ is closed under vector addition, which is commutative and associative. $\forall \boldsymbol{v}, \boldsymbol{w} \in V, \boldsymbol{v}+\boldsymbol{w}=\boldsymbol{w}+\boldsymbol{v} \in V$.
- There exists $\mathbf{0} \in V, \boldsymbol{x}+\mathbf{0}=\boldsymbol{x}$ [Zero vector (Additive identity)]
- $\forall \boldsymbol{x} \in V$, there exists $\boldsymbol{y} \in V$ such that $\boldsymbol{x}+\boldsymbol{y}=0$. (Additive inverse exists).


## Vector Space: Formal Definition

...if the following properties are satisfied :

- $V$ is closed under Scalar Multiplication. $\forall \boldsymbol{x} \in V, \forall \alpha \in \mathbb{F}, \alpha \boldsymbol{x} \in V$.


## Vector Space: Formal Definition

...if the following properties are satisfied :

- $V$ is closed under Scalar Multiplication. $\forall \boldsymbol{x} \in V, \forall \alpha \in \mathbb{F}, \alpha \boldsymbol{x} \in V$.
- $\forall \boldsymbol{x}, \boldsymbol{y} \in V$ and $\alpha, \beta \in \mathbb{F}$

1. $1 x=x$
2. $\alpha(\boldsymbol{x}+\boldsymbol{y})=\alpha \boldsymbol{x}+\alpha \boldsymbol{y}$
3. $(\alpha \beta) \boldsymbol{x}=\alpha(\beta \boldsymbol{x})$
4. $(\alpha+\beta) \boldsymbol{x}=\alpha \boldsymbol{x}+\beta \boldsymbol{x}$

## Vector Space: Informal Definition

Vector space $V$ over $\mathbb{F}$
A set closed under addition, scalar multiplication (multiplication by scalars from $\mathbb{F}$ ).
Notation:

## Vector Space: Informal Definition

Vector space $V$ over $\mathbb{F}$
A set closed under addition, scalar multiplication (multiplication by scalars from $\mathbb{F}$ ).
Notation:

- Normal font, $(\alpha, \beta)$ for scalars.
- Bold fonts ( $\boldsymbol{v}, \boldsymbol{w})$ for vectors.
- Caps for Vector spaces $(V, W)$.
- $\mathbb{F}$ for field.


## Subspaces

- $W \subseteq V$ is called a subspace if it is a vector space (over $\mathbb{F}$ ).
- A subset of $W$ is a subspace if and only if :
- For all $\boldsymbol{v}, \boldsymbol{w} \in W, \alpha \boldsymbol{v}+\boldsymbol{w} \in W, \forall \alpha \in \mathbb{F}$.


## Subspaces

- $W \subseteq V$ is called a subspace if it is a vector space (over $\mathbb{F}$ ).
- A subset of $W$ is a subspace if and only if :
- For all $\boldsymbol{v}, \boldsymbol{w} \in W, \alpha \boldsymbol{v}+\boldsymbol{w} \in W, \forall \alpha \in \mathbb{F}$.
- Examples:
- $V=\mathbb{R}^{3}$

$$
W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in V: x_{1}+2 x_{2}+5 x_{3}=0\right\}
$$

## Subspaces

- $W \subseteq V$ is called a subspace if it is a vector space (over $\mathbb{F}$ ).
- A subset of $W$ is a subspace if and only if :
- For all $\boldsymbol{v}, \boldsymbol{w} \in W, \alpha \boldsymbol{v}+\boldsymbol{w} \in W, \forall \alpha \in \mathbb{F}$.
- Examples:
- $V=\mathbb{R}^{3}$

$$
W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in V: x_{1}+2 x_{2}+5 x_{3}=0\right\}
$$

(Yes!)

## Subspaces

- $W \subseteq V$ is called a subspace if it is a vector space (over $\mathbb{F}$ ).
- A subset of $W$ is a subspace if and only if :
- For all $\boldsymbol{v}, \boldsymbol{w} \in W, \alpha \boldsymbol{v}+\boldsymbol{w} \in W, \forall \alpha \in \mathbb{F}$.
- Examples:
- $V=\mathbb{R}^{3}$

$$
W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in V: x_{1}+2 x_{2}+5 x_{3}=0\right\}
$$

(Yes!)

- $V=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{2}=x_{1}+1\right\}$


## Subspaces

- $W \subseteq V$ is called a subspace if it is a vector space (over $\mathbb{F}$ ).
- A subset of $W$ is a subspace if and only if :
- For all $\boldsymbol{v}, \boldsymbol{w} \in W, \alpha \boldsymbol{v}+\boldsymbol{w} \in W, \forall \alpha \in \mathbb{F}$.
- Examples:
- $V=\mathbb{R}^{3}$

$$
W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in V: x_{1}+2 x_{2}+5 x_{3}=0\right\}
$$

(Yes!)

- $V=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{2}=x_{1}+1\right\}(\mathbf{N o !})$
- Set of all polynomials of degree only 5 .


## Subspaces

- $W \subseteq V$ is called a subspace if it is a vector space (over $\mathbb{F}$ ).
- A subset of $W$ is a subspace if and only if :
- For all $\boldsymbol{v}, \boldsymbol{w} \in W, \alpha \boldsymbol{v}+\boldsymbol{w} \in W, \forall \alpha \in \mathbb{F}$.
- Examples:
- $V=\mathbb{R}^{3}$

$$
W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in V: x_{1}+2 x_{2}+5 x_{3}=0\right\}
$$

(Yes!)

- $V=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{2}=x_{1}+1\right\}(\mathbf{N o !})$
- Set of all polynomials of degree only 5. (No!)


## Linear Combination of vectors

- A linear combination of a set of vectors

$$
S=\left\{\boldsymbol{v}_{\boldsymbol{i}}: i=1, \ldots, r\right\} \subset V \text { is }
$$

$$
\sum_{i=1}^{r} \alpha_{i} \boldsymbol{v}_{\boldsymbol{i}}
$$

for some $\alpha_{i} \in \mathbb{F}$.

- Note that if $\alpha_{i}=0, \forall i$, then the linear combination gives the $\mathbf{0} \in V$.
- Examples: $S=\left\{\left(\begin{array}{lll}1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)\right\}$. Then $\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$ is a linear combination.


## Linear Dependence

Linear Dependence of vectors

- Vectors $\left\{\boldsymbol{v}_{\mathbf{i}}: i=1, \ldots, r\right\}$ are called linearly dependent

$$
\sum_{i=1}^{r} \alpha_{i} \boldsymbol{v}_{\boldsymbol{i}}=\mathbf{0}
$$

for some $\alpha_{i} \mathrm{~s}$, at least one of which is non-zero.

## Linear Dependence

Linear Dependence of vectors

- Vectors $\left\{\boldsymbol{v}_{\boldsymbol{i}}: i=1, \ldots, r\right\}$ are called linearly dependent

$$
\sum_{i=1}^{r} \alpha_{i} \boldsymbol{v}_{\boldsymbol{i}}=\mathbf{0}
$$

for some $\alpha_{i} \mathrm{~s}$, at least one of which is non-zero.

- If $\alpha_{j} \neq 0$ for some $1 \leq j \leq r$ then

$$
\boldsymbol{v}_{\boldsymbol{j}}=\sum_{i=1, i \neq j}^{r} \beta_{i} \boldsymbol{v}_{\boldsymbol{i}}
$$

where $\beta_{i}=\frac{-\alpha_{i}}{\alpha_{j}}$.

## Linear Independence

- If $\left\{\boldsymbol{v}_{\boldsymbol{i}}: i=1, \ldots, r\right\}$ is not linearly dependent, then they are linearly independent.
- Only zero-linear combination gives $\mathbf{0}$.


## Examples

- Consider the vectors (from $\mathbb{R}^{2}$ )

$$
\begin{equation*}
S=\left\{\boldsymbol{v}_{\mathbf{1}}=\binom{1}{1}, \boldsymbol{v}_{\mathbf{2}}=\binom{1}{2}\right\} \tag{1}
\end{equation*}
$$

- The set $\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}\right\}$ is linearly


## Examples

- Consider the vectors (from $\mathbb{R}^{2}$ )

$$
\begin{equation*}
S=\left\{\boldsymbol{v}_{\mathbf{1}}=\binom{1}{1}, \boldsymbol{v}_{\mathbf{2}}=\binom{1}{2}\right\} \tag{1}
\end{equation*}
$$

- The set $\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}\right\}$ is linearly independent.


## Examples

- Consider the vectors (from $\mathbb{R}^{2}$ )

$$
\begin{equation*}
S=\left\{\boldsymbol{v}_{\mathbf{1}}=\binom{1}{1}, \boldsymbol{v}_{\mathbf{2}}=\binom{1}{2}\right\} \tag{1}
\end{equation*}
$$

- The set $\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}\right\}$ is linearly independent.
- Consider $S \cup\binom{1}{3}$. This is linearly


## Examples

- Consider the vectors (from $\mathbb{R}^{2}$ )

$$
\begin{equation*}
S=\left\{\boldsymbol{v}_{\mathbf{1}}=\binom{1}{1}, \boldsymbol{v}_{\mathbf{2}}=\binom{1}{2}\right\} \tag{1}
\end{equation*}
$$

- The set $\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}\right\}$ is linearly independent.
- Consider $S \cup\binom{1}{3}$. This is linearly dependent.
- Consider $S \cup\{\mathbf{0}\}$. This is linearly


## Examples

- Consider the vectors (from $\mathbb{R}^{2}$ )

$$
\begin{equation*}
S=\left\{\boldsymbol{v}_{\mathbf{1}}=\binom{1}{1}, \boldsymbol{v}_{\mathbf{2}}=\binom{1}{2}\right\} \tag{1}
\end{equation*}
$$

- The set $\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}\right\}$ is linearly independent.
- Consider $S \cup\binom{1}{3}$. This is linearly dependent.
- Consider $S \cup\{\mathbf{0}\}$. This is linearly dependent.


## Span of a subset of vectors

Span
The span of a set of vectors $S=\left\{\boldsymbol{v}_{\boldsymbol{i}}: i=1, \ldots, r\right\}$ is the set of all linear combinations of the vectors in that set.

$$
\operatorname{span}(S)=\left\{\sum_{i=1}^{r} \alpha_{i} \boldsymbol{v}_{\boldsymbol{i}}: \alpha_{i} \in \mathbb{F}\right\} .
$$

## Span of a subset of vectors

## Span

The span of a set of vectors $S=\left\{\boldsymbol{v}_{\boldsymbol{i}}: i=1, \ldots, r\right\}$ is the set of all linear combinations of the vectors in that set.

$$
\operatorname{span}(S)=\left\{\sum_{i=1}^{r} \alpha_{i} \boldsymbol{v}_{\boldsymbol{i}}: \alpha_{i} \in \mathbb{F}\right\} .
$$

- Let $A \in \mathbb{F}^{m \times n}$.

$$
\text { Row space }=\left\{\sum_{i=1}^{m} \alpha_{i} \boldsymbol{a}_{\boldsymbol{i}}: \boldsymbol{a}_{\boldsymbol{i}} \text { is the } i^{\text {th }} \text { row of } A, \alpha_{i} \in \mathbb{F}\right\} .
$$

## Span of a subset of vectors

## Span

The span of a set of vectors $S=\left\{\boldsymbol{v}_{i}: i=1, \ldots, r\right\}$ is the set of all linear combinations of the vectors in that set.

$$
\operatorname{span}(S)=\left\{\sum_{i=1}^{r} \alpha_{i} \boldsymbol{v}_{i}: \alpha_{i} \in \mathbb{F}\right\} .
$$

- Let $A \in \mathbb{F}^{m \times n}$.

$$
\text { Row space }=\left\{\sum_{i=1}^{m} \alpha_{i} \boldsymbol{a}_{\boldsymbol{i}}: \boldsymbol{a}_{\boldsymbol{i}} \text { is the } i^{\text {th }} \text { row of } A, \alpha_{i} \in \mathbb{F}\right\} .
$$

- $S=\{(1,2),(1,1),(-4,9)\} . \operatorname{Span}(S)=$


## Span of a subset of vectors

## Span

The span of a set of vectors $S=\left\{\boldsymbol{v}_{i}: i=1, \ldots, r\right\}$ is the set of all linear combinations of the vectors in that set.

$$
\operatorname{span}(S)=\left\{\sum_{i=1}^{r} \alpha_{i} \boldsymbol{v}_{i}: \alpha_{i} \in \mathbb{F}\right\} .
$$

- Let $A \in \mathbb{F}^{m \times n}$.

$$
\text { Row space }=\left\{\sum_{i=1}^{m} \alpha_{i} \boldsymbol{a}_{\boldsymbol{i}}: \boldsymbol{a}_{\boldsymbol{i}} \text { is the } i^{\text {th }} \text { row of } A, \alpha_{i} \in \mathbb{F}\right\} .
$$

- $S=\{(1,2),(1,1),(-4,9)\} . \operatorname{Span}(S)=\mathbb{R}^{2}$.


## Span of a subset of vectors

## Span

The span of a set of vectors $S=\left\{\boldsymbol{v}_{i}: i=1, \ldots, r\right\}$ is the set of all linear combinations of the vectors in that set.

$$
\operatorname{span}(S)=\left\{\sum_{i=1}^{r} \alpha_{i} \boldsymbol{v}_{i}: \alpha_{i} \in \mathbb{F}\right\} .
$$

- Let $A \in \mathbb{F}^{m \times n}$.

$$
\text { Row space }=\left\{\sum_{i=1}^{m} \alpha_{i} \boldsymbol{a}_{\boldsymbol{i}}: \boldsymbol{a}_{\boldsymbol{i}} \text { is the } i^{\text {th }} \text { row of } A, \alpha_{i} \in \mathbb{F}\right\} .
$$

- $S=\{(1,2),(1,1),(-4,9)\} . \operatorname{Span}(S)=\mathbb{R}^{2}$.


## Basis of a Subspace

Basis of a subspace $W$
A subset $B$ of $W$ is called a basis of $W$ if

1. $B$ is linearly independent set
2. $B$ spans $W$

- A subspace $W \subseteq V$ can have multiple bases.


## Basis of a Subspace

Basis of a subspace $W$
A subset $B$ of $W$ is called a basis of $W$ if

1. $B$ is linearly independent set
2. $B$ spans $W$

- A subspace $W \subseteq V$ can have multiple bases.
- Examples: Let $V=\left\{p_{0}+p_{1} t+p_{2} t^{2}: p_{i} \in \mathbb{F}\right\}$. Basis for $V$ is $\left\{1, t, t^{2}\right\}$ (so is $\left\{1+t, 1+t^{2}, 1+t+t^{2}\right\}$ ).


## Basis of a Subspace

Basis of a subspace $W$
A subset $B$ of $W$ is called a basis of $W$ if

1. $B$ is linearly independent set
2. $B$ spans $W$

- A subspace $W \subseteq V$ can have multiple bases.
- Examples: Let $V=\left\{p_{0}+p_{1} t+p_{2} t^{2}: p_{i} \in \mathbb{F}\right\}$. Basis for $V$ is $\left\{1, t, t^{2}\right\}$ (so is $\left\{1+t, 1+t^{2}, 1+t+t^{2}\right\}$ ).
- Any set of $k$-linearly independent vectors of $\mathbb{F}^{k}$.


## Basis

Theorem
Any two bases for a subspace contain the same number of vectors

## Basis

Theorem
Any two bases for a subspace contain the same number of vectors
Proof:

1. Consider two bases $B=\left\{\boldsymbol{b}_{\boldsymbol{i}}: i=1, . ., n\right\}$, $C=\left\{\boldsymbol{c}_{\boldsymbol{i}}: i=1, . ., m\right\}$. Suppose $n<m$.

## Basis

Theorem
Any two bases for a subspace contain the same number of vectors
Proof:

1. Consider two bases $B=\left\{\boldsymbol{b}_{\boldsymbol{i}}: i=1, . ., n\right\}$, $C=\left\{\boldsymbol{c}_{\boldsymbol{i}}: i=1, . ., m\right\}$. Suppose $n<m$.
2. Consider $A_{1}=\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{1}}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}\right\}$. This is a linearly dependent set.

## Basis

Theorem
Any two bases for a subspace contain the same number of vectors
Proof:

1. Consider two bases $B=\left\{\boldsymbol{b}_{\boldsymbol{i}}: i=1, . ., n\right\}$, $C=\left\{\boldsymbol{c}_{\boldsymbol{i}}: i=1, . ., m\right\}$. Suppose $n<m$.
2. Consider $A_{1}=\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{1}}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}\right\}$. This is a linearly dependent set.
3. Note that $\boldsymbol{c}_{\mathbf{1}} \neq \mathbf{0}$. This means we should have some $\boldsymbol{b}_{\boldsymbol{i}} \in \operatorname{span}\left(\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{1}}, . .,, ., \boldsymbol{b}_{\boldsymbol{n}}\right\} \backslash \boldsymbol{b}_{\boldsymbol{i}}\right)$.

## Basis

Theorem
Any two bases for a subspace contain the same number of vectors
Proof:

1. Consider two bases $B=\left\{\boldsymbol{b}_{\boldsymbol{i}}: i=1, . ., n\right\}$, $C=\left\{\boldsymbol{c}_{\boldsymbol{i}}: i=1, . ., m\right\}$. Suppose $n<m$.
2. Consider $A_{1}=\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{1}}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}\right\}$. This is a linearly dependent set.
3. Note that $\boldsymbol{c}_{\mathbf{1}} \neq \mathbf{0}$. This means we should have some $\boldsymbol{b}_{\boldsymbol{i}} \in \operatorname{span}\left(\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{1}}, . .,, ., \boldsymbol{b}_{\boldsymbol{n}}\right\} \backslash \boldsymbol{b}_{\boldsymbol{i}}\right)$.
4. Let $B_{1}=\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{1}}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}\right\} \backslash \boldsymbol{b}_{\boldsymbol{i}}$. Then $B_{1}$ spans $V$ and $\left|B_{1}\right|=|B|$.

## Basis

## Theorem

Any two bases for a subspace contain the same number of vectors
Proof:

1. Consider two bases $B=\left\{\boldsymbol{b}_{\boldsymbol{i}}: i=1, . ., n\right\}$, $C=\left\{\boldsymbol{c}_{\boldsymbol{i}}: i=1, . ., m\right\}$. Suppose $n<m$.
2. Consider $A_{1}=\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{1}}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}\right\}$. This is a linearly dependent set.
3. Note that $\boldsymbol{c}_{\mathbf{1}} \neq \mathbf{0}$. This means we should have some $\boldsymbol{b}_{\boldsymbol{i}} \in \operatorname{span}\left(\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{1}}, . .,, ., \boldsymbol{b}_{\boldsymbol{n}}\right\} \backslash \boldsymbol{b}_{\boldsymbol{i}}\right)$.
4. Let $B_{1}=\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{1}}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}\right\} \backslash \boldsymbol{b}_{\boldsymbol{i}}$. Then $B_{1}$ spans $V$ and $\left|B_{1}\right|=|B|$.
5. Continue this. To get $B_{k+1}$, we add one vector from $C$ to $B_{k}$ and remove one vector from $B_{k}$ (while maintaining spanning property).

## Basis

## Theorem

Any two bases for a subspace contain the same number of vectors
Proof:

1. Consider two bases $B=\left\{\boldsymbol{b}_{\boldsymbol{i}}: i=1, . ., n\right\}$, $C=\left\{\boldsymbol{c}_{\boldsymbol{i}}: i=1, . ., m\right\}$. Suppose $n<m$.
2. Consider $A_{1}=\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{1}}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}\right\}$. This is a linearly dependent set.
3. Note that $\boldsymbol{c}_{\mathbf{1}} \neq \mathbf{0}$. This means we should have some $\boldsymbol{b}_{\boldsymbol{i}} \in \operatorname{span}\left(\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{1}}, . .,, ., \boldsymbol{b}_{\boldsymbol{n}}\right\} \backslash \boldsymbol{b}_{\boldsymbol{i}}\right)$.
4. Let $B_{1}=\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{1}}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}\right\} \backslash \boldsymbol{b}_{\boldsymbol{i}}$. Then $B_{1}$ spans $V$ and $\left|B_{1}\right|=|B|$.
5. Continue this. To get $B_{k+1}$, we add one vector from $C$ to $B_{k}$ and remove one vector from $B_{k}$ (while maintaining spanning property).
6. At stage $n$, we get $B_{n}=\left\{\boldsymbol{c}_{\mathbf{1}}, \ldots, \boldsymbol{c}_{\boldsymbol{n}}\right\}$ which is a spanning set

## Basis

## Theorem

Any two bases for a subspace contain the same number of vectors
Proof:

1. Consider two bases $B=\left\{\boldsymbol{b}_{\boldsymbol{i}}: i=1, . ., n\right\}$, $C=\left\{\boldsymbol{c}_{\boldsymbol{i}}: i=1, . ., m\right\}$. Suppose $n<m$.
2. Consider $A_{1}=\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{1}}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}\right\}$. This is a linearly dependent set.
3. Note that $\boldsymbol{c}_{\mathbf{1}} \neq \mathbf{0}$. This means we should have some $\boldsymbol{b}_{\boldsymbol{i}} \in \operatorname{span}\left(\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{1}}, . .,, ., \boldsymbol{b}_{\boldsymbol{n}}\right\} \backslash \boldsymbol{b}_{\boldsymbol{i}}\right)$.
4. Let $B_{1}=\left\{\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{1}}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}\right\} \backslash \boldsymbol{b}_{\boldsymbol{i}}$. Then $B_{1}$ spans $V$ and $\left|B_{1}\right|=|B|$.
5. Continue this. To get $B_{k+1}$, we add one vector from $C$ to $B_{k}$ and remove one vector from $B_{k}$ (while maintaining spanning property).
6. At stage $n$, we get $B_{n}=\left\{\boldsymbol{c}_{\mathbf{1}}, \ldots, \boldsymbol{c}_{\boldsymbol{n}}\right\}$ which is a spanning set
7. But that means $C$ is dependent (contradiction).

## Basis and Dimension

The following are equivalent (Prove it!):

- $B$ is linearly independent and spans $W$.
- $B$ is a maximal linearly independent set of $W$.
- $B$ is a minimal set which spans $W$.


## Basis and Dimension

The following are equivalent (Prove it!):

- $B$ is linearly independent and spans $W$.
- $B$ is a maximal linearly independent set of $W$.
- $B$ is a minimal set which spans $W$.

Dimension of a Subspace $W$ $\operatorname{dim}(W)=$ No. of vectors in any basis of $W$.

## Basis Extension

Theorem
Let $V$ be a finite dimensional vector space and $S$ be a linearly independent subset of vectors from $V$. Then $S$ can be extended to a basis of $V$, i.e., there is a basis $B$ for $V$ such that $S \subseteq B$.

## Basis Extension

Theorem
Let $V$ be a finite dimensional vector space and $S$ be a linearly independent subset of vectors from $V$. Then $S$ can be extended to a basis of $V$, i.e., there is a basis $B$ for $V$ such that $S \subseteq B$.
Proof idea:

- If $\operatorname{span}(S)=V$, then nothing to prove


## Basis Extension

Theorem
Let $V$ be a finite dimensional vector space and $S$ be a linearly independent subset of vectors from $V$. Then $S$ can be extended to a basis of $V$, i.e., there is a basis $B$ for $V$ such that $S \subseteq B$.
Proof idea:

- If $\operatorname{span}(S)=V$, then nothing to prove
- If $\operatorname{span}(S) \neq V$, choose a vector $\boldsymbol{v} \notin \operatorname{span}(S)$, and form $S_{1}=S \cup\{\boldsymbol{v}\}$.


## Basis Extension

Theorem
Let $V$ be a finite dimensional vector space and $S$ be a linearly independent subset of vectors from $V$. Then $S$ can be extended to a basis of $V$, i.e., there is a basis $B$ for $V$ such that $S \subseteq B$.
Proof idea:

- If $\operatorname{span}(S)=V$, then nothing to prove
- If $\operatorname{span}(S) \neq V$, choose a vector $\boldsymbol{v} \notin \operatorname{span}(S)$, and form $S_{1}=S \cup\{\boldsymbol{v}\}$.
- If $\operatorname{span}\left(S_{1}\right)=V$, then we are done. Else find a vector outside $\operatorname{span}\left(S_{1}\right)$ and add. ... (repeat).


## Basis Extension

Theorem
Let $V$ be a finite dimensional vector space and $S$ be a linearly independent subset of vectors from $V$. Then $S$ can be extended to a basis of $V$, i.e., there is a basis $B$ for $V$ such that $S \subseteq B$.
Proof idea:

- If $\operatorname{span}(S)=V$, then nothing to prove
- If $\operatorname{span}(S) \neq V$, choose a vector $\boldsymbol{v} \notin \operatorname{span}(S)$, and form $S_{1}=S \cup\{\boldsymbol{v}\}$.
- If $\operatorname{span}\left(S_{1}\right)=V$, then we are done. Else find a vector outside $\operatorname{span}\left(S_{1}\right)$ and add. ... (repeat).
- We will have a basis for $V$ at the end.


## Vectors from $n$-dimensional V.S as $n$-tuples

Unique representation of vectors using basis vectors Let $V$ be a $n$-dimensional vector space with basis $B=\left\{\boldsymbol{b}_{\mathbf{1}}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}\right\}$. Then any vector $\boldsymbol{v} \in V$ can be written as a unique linear combination of the basis vectors

$$
\boldsymbol{v}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{b}_{\boldsymbol{i}}
$$

## Vectors from $n$-dimensional V.S as $n$-tuples

Unique representation of vectors using basis vectors Let $V$ be a $n$-dimensional vector space with basis $B=\left\{\boldsymbol{b}_{\mathbf{1}}, \ldots, \boldsymbol{b}_{\boldsymbol{n}}\right\}$. Then any vector $\boldsymbol{v} \in V$ can be written as a unique linear combination of the basis vectors

$$
\boldsymbol{v}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{b}_{\boldsymbol{i}}
$$

- In terms of the basis $B$, we can represent $\boldsymbol{v}$ as the $n$-tuple,

$$
[\mathbf{v}]_{B}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)
$$

- This is only a representation, and may change with the basis chosen.


## Vectors as coordinates

- Let $V=\mathbb{R}^{2}$. Let $B=\left\{\boldsymbol{b}_{1}=(1,0), \boldsymbol{b}_{\mathbf{2}}=(0,1)\right\}$.
- Consider a vector $\boldsymbol{v}=(5,6)$.
- $\boldsymbol{v}=5 \boldsymbol{b}_{1}+6 \boldsymbol{b}_{2}$.
- In terms of $B$, we have

$$
[\boldsymbol{v}]_{B}=\left[\begin{array}{l}
5 \\
6
\end{array}\right] .
$$

## Change of Basis

How do vector-representations change with change in the basis (from $B=\left\{\boldsymbol{b}_{\boldsymbol{i}}: i=1 . . n\right\}$ to $C=\left\{\boldsymbol{c}_{\boldsymbol{i}}: i=1 . . n\right\}$ ) chosen?

Given $[\boldsymbol{v}]_{B}$, what is $[\boldsymbol{v}]_{C}$ ?

## Change of Basis

How do vector-representations change with change in the basis (from $B=\left\{\boldsymbol{b}_{\boldsymbol{i}}: i=1 . . n\right\}$ to $C=\left\{\boldsymbol{c}_{\boldsymbol{i}}: i=1 . . n\right\}$ ) chosen?

$$
\text { Given }[\boldsymbol{v}]_{B}, \text { what is }[\boldsymbol{v}]_{C} ?
$$

- Given $B=\left\{\boldsymbol{b}_{\mathbf{i}}\right\}$, we have

$$
\boldsymbol{v}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{b}_{i}
$$

how to get $\beta_{i} \mathrm{~s}$ such that

$$
\boldsymbol{v}=\sum_{i=1}^{n} \beta_{i} \boldsymbol{c}_{\boldsymbol{i}}
$$

i.e. what is $[\boldsymbol{v}]_{C}$ ?

## Change of Basis

Note that

$$
\begin{aligned}
{[\boldsymbol{v}]_{C} } & =\sum_{i=1}^{n} \alpha_{i}\left[\boldsymbol{b}_{\boldsymbol{i}}\right]_{C} . \\
& =\left[\begin{array}{llll}
{\left[\boldsymbol{b}_{1}\right]_{C}} & {\left[\boldsymbol{b}_{2}\right]_{C}} & \ldots & {\left[\boldsymbol{b}_{\boldsymbol{n}}\right]_{C}}
\end{array}\right]\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{n}
\end{array}\right)
\end{aligned}
$$

## Change of Basis

Note that

$$
\begin{aligned}
{[\boldsymbol{v}]_{C} } & =\sum_{i=1}^{n} \alpha_{i}\left[\boldsymbol{b}_{\boldsymbol{i}}\right]_{C} . \\
& =\left[\begin{array}{llll}
{\left[\boldsymbol{b}_{1}\right]_{C}} & {\left[\boldsymbol{b}_{2}\right]_{C}} & \ldots & {\left[\boldsymbol{b}_{\boldsymbol{n}}\right]_{C}}
\end{array}\right]\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{n}
\end{array}\right)
\end{aligned}
$$

$\left.\left[\boldsymbol{b}_{1}\right]_{C}\left[\boldsymbol{b}_{2}\right]_{C} \ldots\left[\boldsymbol{b}_{\boldsymbol{n}}\right]_{C}\right]$ is known as the basis change matrix.

## Basis change : Example

- Consider the basis $C=\left\{\boldsymbol{c}_{\mathbf{1}}=(1,0), \boldsymbol{c}_{\mathbf{2}}=(1,1)\right\}$ for $\mathbb{R}^{2}$.
- Let $\boldsymbol{v}=(5,6)$. What is $[\boldsymbol{v}]_{C}$ ?


## Basis change : Example

- Consider the basis $C=\left\{\boldsymbol{c}_{\mathbf{1}}=(1,0), \boldsymbol{c}_{\mathbf{2}}=(1,1)\right\}$ for $\mathbb{R}^{2}$.
- Let $\boldsymbol{v}=(5,6)$. What is $[\boldsymbol{v}]_{C}$ ?

$$
\begin{aligned}
{[\boldsymbol{v}]_{C} } & =5\left[\boldsymbol{b}_{1}\right]_{C}+6\left[\boldsymbol{b}_{2}\right]_{C} \\
& =5\left[\begin{array}{l}
1 \\
0
\end{array}\right]+6\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
6
\end{array}\right] .
\end{aligned}
$$

- Check: $\boldsymbol{v}=-1 \boldsymbol{c}_{1}+6 \boldsymbol{c}_{2}$.


## Need for Linear Algebra in Communications and Coding

$\mathcal{L}=$ Finite energy signals which are also time-limited from $[0, T]$.
Theorem
A basis for $\mathcal{L}$ is

$$
f_{i}(t)=\frac{1}{\sqrt{T}} e^{j 2 \pi i t / T}, \quad i=0, \pm 1, \pm 2, \ldots
$$

Proof:

- Fourier Series expansion.

Need for Linear Algebra in Communications and Coding

1. Finite-energy time-bounded signals form a vector space.

## Need for Linear Algebra in Communications and Coding

1. Finite-energy time-bounded signals form a vector space.
2. Span of time-limited sinusoids $=$ Time-limited Finite-Energy signals

- The sinusoidal basis helps to easily characterize output signal when the signal is passed through 'linear time-invariant' systems.
- Can think of signals as vectors. Makes Digital Communication possible!


## Linear Transformations

- Maps between Vector Spaces (defined over a common field $\mathbb{F}$ ).
- We like linearity.


## Linear Transformation

Let $V$ and $W$ be vector spaces over the field $F$. A function $T: V \rightarrow W$ is a linear transformation if

$$
T\left(c \mathbf{v}_{1}+\mathbf{v}_{\mathbf{2}}\right)=c T\left(\mathbf{v}_{\mathbf{1}}\right)+T\left(\mathbf{v}_{\mathbf{2}}\right), \forall \mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}} \in V, \text { and }, \forall c \in \mathbb{F} .
$$

If $V=W$, then $T$ is called a linear operator.

## Linear Tranformation: Examples and Non-Examples

1. $\mathrm{T}: R^{2 \times 2} \rightarrow R$ where $T$ is defined as $T\left(\left[\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right]\right)=x_{1}+x_{4}$.

## Linear Tranformation: Examples and Non-Examples

1. $\mathrm{T}: R^{2 \times 2} \rightarrow R$ where $T$ is defined as $T\left(\left[\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right]\right)=x_{1}+x_{4} .($ Yes! $)$
2. $T: R^{2} \rightarrow R^{3}$ where $T$ is defined as $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{1}+x_{2}\end{array}\right]$.

## Linear Tranformation: Examples and Non-Examples

1. $\mathrm{T}: R^{2 \times 2} \rightarrow R$ where $T$ is defined as
$T\left(\left[\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right]\right)=x_{1}+x_{4} .($ Yes! $)$
2. $T: R^{2} \rightarrow R^{3}$ where $T$ is defined as $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{1}+x_{2}\end{array}\right]$.
(Yes!)
3. $T: R^{2} \rightarrow R^{3}$ where $T$ is defined as $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{1} x_{2}\end{array}\right]$.

## Linear Tranformation: Examples and Non-Examples

1. T: $R^{2 \times 2} \rightarrow R$ where $T$ is defined as
$T\left(\left[\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right]\right)=x_{1}+x_{4} .($ Yes! $)$
2. $T: R^{2} \rightarrow R^{3}$ where $T$ is defined as $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{1}+x_{2}\end{array}\right]$.
(Yes!)
3. $T: R^{2} \rightarrow R^{3}$ where $T$ is defined as $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{1} x_{2}\end{array}\right]$.
(No!)
4. $T: R^{3} \rightarrow R^{3}$ where $T$ is defined as $T\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{l}x_{1} \\ x_{2} \\ a\end{array}\right]$.

## Linear Tranformation: Examples and Non-Examples

1. T: $R^{2 \times 2} \rightarrow R$ where $T$ is defined as
$T\left(\left[\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right]\right)=x_{1}+x_{4} .($ Yes! $)$
2. $T: R^{2} \rightarrow R^{3}$ where $T$ is defined as $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{1}+x_{2}\end{array}\right]$. (Yes!)
3. $T: R^{2} \rightarrow R^{3}$ where $T$ is defined as $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{1} x_{2}\end{array}\right]$.
(No!)
4. $T: R^{3} \rightarrow R^{3}$ where $T$ is defined as $T\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} \\ x_{2} \\ a\end{array}\right]$.
(No if $a \neq 0$, Yes if $a=0$ )

## Linear Transformation: Examples and Non-Examples



- $y(t)=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau$.
- Is this is a linear transformation? (What are its domain and codomain?)


## Linear Transformation: Examples and Non-Examples



- $y(t)=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau$.
- Is this is a linear transformation? (What are its domain and codomain?)
- Linear Transformation.


## Linear Transformation: Examples and Non-Examples



- $y(t)=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau$.
- Is this is a linear transformation? (What are its domain and codomain?)
- Linear Transformation.
- Domain=Codomain=Vector Space of Finite energy signals.

Need for Linear Algebra in Communications and Coding

1. Finite-energy time-bounded signals form a vector space.

## Need for Linear Algebra in Communications and Coding

1. Finite-energy time-bounded signals form a vector space.
2. Span of time-limited sinusoids $=$ Time-limited Finite-Energy signals.

## Need for Linear Algebra in Communications and Coding

1. Finite-energy time-bounded signals form a vector space.
2. Span of time-limited sinusoids $=$ Time-limited Finite-Energy signals.
3. LTI systems are Linear Operators on the Space of Finite Energy Signals.

## Sum and Composition of Linear Transformations

- $T_{1}$ and $T_{2}$ are linear transformations from $V \rightarrow W$. Then so is their 'sum' $T$ defined as

$$
T(\boldsymbol{v})=T_{1}(\boldsymbol{v})+T_{2}(\boldsymbol{v})
$$

- So is $T^{\prime}$ ('composition') defined as

$$
T^{\prime}(\boldsymbol{v})=T_{2}\left(T_{1}(\boldsymbol{v})\right)
$$

## Sum and Composition of Linear Transformations

- $T_{1}$ and $T_{2}$ are linear transformations from $V \rightarrow W$. Then so is their 'sum' $T$ defined as

$$
T(\boldsymbol{v})=T_{1}(\boldsymbol{v})+T_{2}(\boldsymbol{v})
$$

- So is $T^{\prime}$ ('composition') defined as

$$
T^{\prime}(\boldsymbol{v})=T_{2}\left(T_{1}(\boldsymbol{v})\right)
$$

- Series and Parallel LTI systems.



## Range and Null Space of a Linear Transformation

Range (Image) and Null-Space (Kernel) of $T$

- Range (Image):

$$
R(T)=\{\boldsymbol{w} \in W: T(\boldsymbol{v})=\boldsymbol{w}, \text { for some } \boldsymbol{v} \in V\} .
$$

- Nullspace (kernel):

$$
N(T)=\{\boldsymbol{v} \in V: T(\boldsymbol{v})=\mathbf{0} \in W\} .
$$

## Range and Null Space of a Linear Transformation

Range (Image) and Null-Space (Kernel) of $T$

- Range (Image):

$$
R(T)=\{\boldsymbol{w} \in W: T(\boldsymbol{v})=\boldsymbol{w}, \text { for some } \boldsymbol{v} \in V\} .
$$

- Nullspace (kernel):

$$
N(T)=\{\boldsymbol{v} \in V: T(\boldsymbol{v})=\mathbf{0} \in W\} .
$$

- $R(T)$ is a subspace of $W$.
- $N(T)$ is a subspace of $V$.


## Range and Null Space



## Rank Nullity Theorem

Rank and Nullity

- $\operatorname{Rank}(T)=\operatorname{dim}(R(T))$.
- $\operatorname{Nullity}(T)=\operatorname{dim}(N(T))$.


## Rank Nullity Theorem

Let $V$ be a finite dimensional vector space and $T: V \rightarrow W$ be a L.T. Then

$$
\operatorname{dim}(V)=\operatorname{Rank}(T)+\operatorname{Nullity}(T) .
$$

## Proof of Rank Nullity Theorem

- Let $n=\operatorname{dim}(V), k=\operatorname{dim}(N(T))$. We want to show that $\operatorname{dim}(R(T))=n-k$.


## Proof of Rank Nullity Theorem

- Let $n=\operatorname{dim}(V), k=\operatorname{dim}(N(T))$. We want to show that $\operatorname{dim}(R(T))=n-k$.
- Let $\left\{\boldsymbol{v}_{\mathbf{1}}, \ldots, \boldsymbol{v}_{\boldsymbol{k}}\right\}$ be basis for $N(T)$.


## Proof of Rank Nullity Theorem

- Let $n=\operatorname{dim}(V), k=\operatorname{dim}(N(T))$. We want to show that $\operatorname{dim}(R(T))=n-k$.
- Let $\left\{\boldsymbol{v}_{\mathbf{1}}, \ldots, \boldsymbol{v}_{\boldsymbol{k}}\right\}$ be basis for $N(T)$.
- We can extend this to a basis $B=\left\{\boldsymbol{v}_{\mathbf{1}}, \ldots, \boldsymbol{v}_{\boldsymbol{k}}, \boldsymbol{v}_{\boldsymbol{k}+\boldsymbol{1}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}\right\}$ for $V$.


## Proof of Rank Nullity Theorem

- Let $n=\operatorname{dim}(V), k=\operatorname{dim}(N(T))$. We want to show that $\operatorname{dim}(R(T))=n-k$.
- Let $\left\{\boldsymbol{v}_{\mathbf{1}}, \ldots, \boldsymbol{v}_{\boldsymbol{k}}\right\}$ be basis for $N(T)$.
- We can extend this to a basis $B=\left\{\boldsymbol{v}_{\mathbf{1}}, \ldots, \boldsymbol{v}_{\boldsymbol{k}}, \boldsymbol{v}_{\boldsymbol{k}+\boldsymbol{1}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}\right\}$ for $V$.
- It suffices to show that $\left\{T\left(\boldsymbol{v}_{\boldsymbol{k}+\mathbf{1}}\right), \ldots, T\left(\boldsymbol{v}_{\boldsymbol{n}}\right)\right\}$ is a basis for $R(T)$.


## Proof of Rank Nullity Theorem

- We first show $\left\{T\left(\boldsymbol{v}_{\boldsymbol{k}+\boldsymbol{1}}\right), \ldots, T\left(\boldsymbol{v}_{\boldsymbol{n}}\right)\right\}$ are independent. And then have to show that it spans $R(T)$.


## Proof of Rank Nullity Theorem

- We first show $\left\{T\left(\boldsymbol{v}_{\boldsymbol{k}+\boldsymbol{1}}\right), \ldots, T\left(\boldsymbol{v}_{\boldsymbol{n}}\right)\right\}$ are independent. And then have to show that it spans $R(T)$.
- Suppose not. Then, for some $\alpha_{i}$ s not all zero,

$$
\begin{aligned}
\mathbf{0} & =\sum_{i=k+1}^{n} \alpha_{i} T\left(\boldsymbol{v}_{\boldsymbol{k}+\boldsymbol{i}}\right) \\
& =T\left(\sum_{i=k+1}^{n} \alpha_{i} \boldsymbol{v}_{\boldsymbol{i}}\right) .
\end{aligned}
$$

## Proof of Rank Nullity Theorem

- We first show $\left\{T\left(\boldsymbol{v}_{\boldsymbol{k}+\boldsymbol{1}}\right), \ldots, T\left(\boldsymbol{v}_{\boldsymbol{n}}\right)\right\}$ are independent. And then have to show that it spans $R(T)$.
- Suppose not. Then, for some $\alpha_{i}$ s not all zero,

$$
\begin{aligned}
\mathbf{0} & =\sum_{i=k+1}^{n} \alpha_{i} T\left(\boldsymbol{v}_{\boldsymbol{k}+\boldsymbol{i}}\right) \\
& =T\left(\sum_{i=k+1}^{n} \alpha_{i} \boldsymbol{v}_{\boldsymbol{i}}\right) .
\end{aligned}
$$

- This means $\sum_{i=1}^{n-k} \alpha_{i} \boldsymbol{v}_{\boldsymbol{k}+\boldsymbol{i}} \in N(T)$. Thus,

$$
\sum_{i=k+1}^{n} \alpha_{i} \boldsymbol{v}_{\boldsymbol{i}}=\sum_{i=1}^{k} \beta_{i} \boldsymbol{v}_{\boldsymbol{i}}
$$

## Proof of Rank Nullity Theorem

- Rearranging,

$$
\sum_{i=k+1}^{n} \alpha_{i} \boldsymbol{v}_{\boldsymbol{i}}-\sum_{i=1}^{k} \beta_{i} \boldsymbol{v}_{\boldsymbol{i}}=\mathbf{0}
$$

for $\alpha_{i} s$ not all zero.

## Proof of Rank Nullity Theorem

- Rearranging,

$$
\sum_{i=k+1}^{n} \alpha_{i} \boldsymbol{v}_{\boldsymbol{i}}-\sum_{i=1}^{k} \beta_{i} \boldsymbol{v}_{\boldsymbol{i}}=\mathbf{0}
$$

for $\alpha_{i} s$ not all zero.

- This is a contradiction as $\left\{\boldsymbol{v}_{\boldsymbol{i}}: i=1, \ldots, n\right\}$ is a basis.
- Thus $\left\{T\left(\boldsymbol{v}_{\boldsymbol{k}+\mathbf{1}}\right), \ldots, T\left(\boldsymbol{v}_{\boldsymbol{n}}\right)\right\}$ is linearly independent.


## Proof of Rank Nullity Theorem

- Have to still show $B_{R}=\left\{T\left(\boldsymbol{v}_{\mathbf{k}+\mathbf{1}}\right), \ldots, T\left(\boldsymbol{v}_{\boldsymbol{n}}\right)\right\}$ spans $R(T)$.


## Proof of Rank Nullity Theorem

- Have to still show $B_{R}=\left\{T\left(\boldsymbol{v}_{\boldsymbol{k}+\mathbf{1}}\right), \ldots, T\left(\boldsymbol{v}_{\boldsymbol{n}}\right)\right\}$ spans $R(T)$.
- For any vector $\boldsymbol{w} \in R(T)$, show that $\boldsymbol{w} \in \operatorname{span}\left(B_{R}\right)$.


## Proof of Rank Nullity Theorem

- Have to still show $B_{R}=\left\{T\left(\boldsymbol{v}_{\boldsymbol{k}+\mathbf{1}}\right), \ldots, T\left(\boldsymbol{v}_{\boldsymbol{n}}\right)\right\}$ spans $R(T)$.
- For any vector $\boldsymbol{w} \in R(T)$, show that $\boldsymbol{w} \in \operatorname{span}\left(B_{R}\right)$.
- There exists a $\boldsymbol{v} \in V$ such that $T(\boldsymbol{v})=\boldsymbol{w}$.


## Proof of Rank Nullity Theorem

- Have to still show $B_{R}=\left\{T\left(\boldsymbol{v}_{\boldsymbol{k}+\mathbf{1}}\right), \ldots, T\left(\boldsymbol{v}_{\boldsymbol{n}}\right)\right\}$ spans $R(T)$.
- For any vector $\boldsymbol{w} \in R(T)$, show that $\boldsymbol{w} \in \operatorname{span}\left(B_{R}\right)$.
- There exists a $\boldsymbol{v} \in V$ such that $T(\boldsymbol{v})=\boldsymbol{w}$.
- We have $\boldsymbol{v}=\sum_{i=1}^{n} \gamma_{i} \boldsymbol{v}_{\boldsymbol{i}}$ (as $B$ is a basis for $V$ ).


## Proof of Rank Nullity Theorem

- Have to still show $B_{R}=\left\{T\left(\boldsymbol{v}_{\boldsymbol{k}+\mathbf{1}}\right), \ldots, T\left(\boldsymbol{v}_{\boldsymbol{n}}\right)\right\}$ spans $R(T)$.
- For any vector $\boldsymbol{w} \in R(T)$, show that $\boldsymbol{w} \in \operatorname{span}\left(B_{R}\right)$.
- There exists a $\boldsymbol{v} \in V$ such that $T(\boldsymbol{v})=\boldsymbol{w}$.
- We have $\boldsymbol{v}=\sum_{i=1}^{n} \gamma_{i} \boldsymbol{v}_{\boldsymbol{i}}$ (as $B$ is a basis for $V$ ).
- Apply $T$ on both sides to get the result.


## Example

- Let

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 2 & 3
\end{array}\right)
$$

- Consider the linear transformation from $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $x \rightarrow A x$.
- What is the $N(T)$ ? What is $R(T)$ ?
- Check if $\mathrm{R}-\mathrm{N}$ theorem is satisfied.


## Matrix of a Linear Transformation

Characterising linear transformations
Theorem
Let $T: V \rightarrow W$ be a L.T. Let $B=\left\{\boldsymbol{v}_{\boldsymbol{i}}: i=1 . ., n\right\}$. Then the action of $T$ on any arbitrary $\boldsymbol{v} \in V$ is completely specified by its action on the basis vectors $\left\{\boldsymbol{v}_{i}: i=1, \ldots, n\right\}$.

## Matrix of a Linear Transformation

- Let $\operatorname{dim}(V)=n, \operatorname{dim}(W)=m$. Let $T(\boldsymbol{v})=\boldsymbol{w}$.


## Matrix of a Linear Transformation

- Let $\operatorname{dim}(V)=n, \operatorname{dim}(W)=m$. Let $T(\boldsymbol{v})=\boldsymbol{w}$.
- Already know: Choosing a basis $B_{V}$ for $V$ enables us to write $\boldsymbol{v}$ as a $n$-tuple $[\boldsymbol{v}]_{B_{V}}$.


## Matrix of a Linear Transformation

- Let $\operatorname{dim}(V)=n, \operatorname{dim}(W)=m$. Let $T(\boldsymbol{v})=\boldsymbol{w}$.
- Already know: Choosing a basis $B_{V}$ for $V$ enables us to write $\boldsymbol{v}$ as a $n$-tuple $[\boldsymbol{v}]_{B_{V}}$.
- Choosing a basis $B_{W}$ for $W$ enables us to write $\boldsymbol{w}$ as a $m$-tuple $[\boldsymbol{w}]_{B_{W}}$.


## Matrix of a Linear Transformation

- Let $\operatorname{dim}(V)=n, \operatorname{dim}(W)=m$. Let $T(\boldsymbol{v})=\boldsymbol{w}$.
- Already know: Choosing a basis $B_{V}$ for $V$ enables us to write $\boldsymbol{v}$ as a $n$-tuple $[\boldsymbol{v}]_{B_{V}}$.
- Choosing a basis $B_{W}$ for $W$ enables us to write $\boldsymbol{w}$ as a $m$-tuple $[\boldsymbol{w}]_{B_{W}}$.
- Fixing $B_{V}$ and $B_{W}$, we have a matrix representation [T] for $T$.

$$
[T][\boldsymbol{v}]_{B_{V}}=[\boldsymbol{w}]_{B_{W}}
$$

## Matrix of a Linear Transformation

- How to get [T]?


## Matrix of a Linear Transformation

- How to get [T]?

$$
i^{\text {th }} \text { column of }[T]=\left[T\left(\boldsymbol{v}_{\boldsymbol{i}}\right)\right]_{B_{W}} .
$$

## Example

- Consider the Lin. Operator on the space of real polynomials of degree upto 2 , defined as follows.
$T\left(a_{0}+a_{1} t+a_{2} t^{2}\right)=\left(a_{0}+a_{2}\right)+\left(a_{1}+a_{2}\right) t+\left(a_{0}+2 a_{1}+3 a_{2}\right) t^{2}$.
- Find its representation under (a) Basis $B=\left\{1, t, t^{2}\right\}$ (b) Basis $C=\left(1+t, 1+t^{2}, 1+t+t^{2}\right)$.


## Need for Linear Algebra in Communications and Coding

4. Linear Transformations are heavily used in Coding Theory and Cryptography.

## Need for Linear Algebra in Communications and Coding

4. Linear Transformations are heavily used in Coding Theory and Cryptography.

- Embed a low-D subspace in a High-D vector space to a Low-D vector space. (Compression or Source Coding)


## Need for Linear Algebra in Communications and Coding

4. Linear Transformations are heavily used in Coding Theory and Cryptography.

- Embed a low-D subspace in a High-D vector space to a Low-D vector space. (Compression or Source Coding)
- Embed a low-D vector space as a Low-D subspace of a High-D vector space (Channel Coding).


## Eigen values and vectors of a linear operator

Let $T: V \rightarrow V$ be a Linear Operator.
Eigen values and vectors
A non-zero $\boldsymbol{v} \in V$ and a constant $\lambda \in \mathbb{F}$ are called the eigen vector and its eigen value of $T$ if

$$
T(\boldsymbol{v})=\lambda \boldsymbol{v}
$$

## Eigen values and vectors of a linear operator

- For certain types of Lin. Operators, there exists a basis $B=\left\{\boldsymbol{v}_{i}\right\}$ for $V$ consisting of eigen vectors (with eigen values $\left.\lambda_{i} \mathrm{~s}\right)$.


## Eigen values and vectors of a linear operator

- For certain types of Lin. Operators, there exists a basis $B=\left\{\boldsymbol{v}_{i}\right\}$ for $V$ consisting of eigen vectors (with eigen values $\left.\lambda_{i} \mathrm{~s}\right)$.
- Understanding the I/O relationships of such Lin Operators are easy with such a basis.


## Eigen values and vectors of a linear operator

- For certain types of Lin. Operators, there exists a basis $B=\left\{\boldsymbol{v}_{i}\right\}$ for $V$ consisting of eigen vectors (with eigen values $\left.\lambda_{i} \mathrm{~s}\right)$.
- Understanding the I/O relationships of such Lin Operators are easy with such a basis.

$$
\begin{aligned}
T(\boldsymbol{v}) & =T\left(\sum \alpha_{i} \mathbf{v}_{i}\right) \\
& =\sum \alpha_{i} T\left(\boldsymbol{v}_{i}\right) \\
& =\sum \alpha_{i} \lambda_{i} \boldsymbol{v}_{i}
\end{aligned}
$$

## Example for Eigen vectors and Values

- $\mathcal{L}=$ Finite energy signals which are also time-limited from $[0, T]$.
- A basis for $\mathcal{L}$ is

$$
f_{i}(t)=\frac{1}{\sqrt{T}} e^{j 2 \pi i t / T}, \quad i=0, \pm 1, \pm 2, \ldots
$$

## Example for Eigen vectors and Values

- $\mathcal{L}=$ Finite energy signals which are also time-limited from $[0, T]$.
- A basis for $\mathcal{L}$ is

$$
f_{i}(t)=\frac{1}{\sqrt{T}} e^{j 2 \pi i t / T}, \quad i=0, \pm 1, \pm 2, \ldots
$$

- The function $f_{i}(t)$ are the eigen vectors for any LTI system given by $L$, with eigen value being the fourier series coefficient of $h(t)$ at $2 \pi i / T$.

Need for Linear Algebra in Communications and Coding

## Need for Linear Algebra in Communications and Coding

1. Finite-energy time-bounded signals form a vector space.
2. Span of time-limited sinusoids $=$ Time-limited Finite-Energy signals.
3. LTI systems are Linear Operators on the Space of Finite Energy Signals.
4. Linear Transformations are heavily used in Coding Theory and Cryptography.

## Need for Linear Algebra in Communications and Coding

1. Finite-energy time-bounded signals form a vector space.
2. Span of time-limited sinusoids $=$ Time-limited Finite-Energy signals.
3. LTI systems are Linear Operators on the Space of Finite Energy Signals.
4. Linear Transformations are heavily used in Coding Theory and Cryptography.
5. Fourier basis are also eigen vectors of LTI systems. So understanding I/O relationships of LTI systems is easy.

## Thank You

