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Linear Algebra

I Vector Spaces
I Definitions : Fields and Vector Space.
I Linear Combinations.
I Linear Independence and Dependence.
I Subspaces
I Basis and Dimension.
I Vectors as tuples.
I Basis change matrix.

I Linear Transformations.
I Definition.
I Linear Transformations as Matrices.
I Similar matrices.
I Range and Null Space of Linear Transformations.
I Rank-Nullity Theorem.
I Eigen values and vectors of a Linear Operator.





General ideas about Math-based Education and Research

I Math is not hard!

I There are only sets and maps (relations between sets).

I Start from basic axioms.

I Connect simple facts to create bigger facts (not always easy!).

I Imagination and Creativity.



Field - A rough definition

I Fields (Scalars) : A set which is closed under addition (and
subtraction), multiplication (and division by non-zeros) - How
much?

I Examples: Number of apples in a basket of infinite apples?
(No).

I Temperature (No).

I Examples : (R,+, .) (Yes)

I (Fp,+ (mod p), x (mod p)) (integers modulo p). (Yes)
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Vector Spaces over fields - A rough definition

I Space = set.

I Vector space V over a field of scalars F : A set closed under
addition, scalar multiplication [A set of ‘coordinate-tuples’].

I Examples: {(a, b) : a, b ∈ Z} over R (No!).

I Examples: {(a, b) : a, b ∈ R} over R (Yes!),

I Set of finite energy signals over R. (Yes!)

I Fn = {(x1, ..., xn) : xi ∈ F} over F. (Yes!)

I Set of locations within a room, over R (No!)
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Need for Linear Algebra in Communications and Coding

I For x = x(t), y = y(t) (complex-valued functions), define

< x, y >=

∫ ∞
−∞

x(t)y∗(t)dt ∈ C.

I Energy of the signal x(t), ||x||2 =< x, x > .

I If ||x|| <∞, then signal x(t) has finite energy.

Theorem
Finite-energy signals form a vector space over C.

Proof:

I If x(t) is finite-energy, then so is cx(t) for any c ∈ C.

I To show : If x(t), y(t) are finite-energy, then so is x(t) + y(t).

I Given : ||x || <∞, ||y || <∞, show ||x + y || <∞.
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Need for Linear Algebra in Communications and Coding

||x + y ||2 = ||x ||2 + ||y ||2+ < x , y > + < y , x >

≤ ||x ||2 + ||y ||2 + 2| < x , y > |.
≤ ||x ||2 + ||y ||2 + 2||x ||.||y || (if | < x , y > | ≤ ||x ||.||y ||)
<∞ (as each of the above terms are finite)

.

Cauchy-Schwarz inequality

| < x , y > | ≤ ||x ||.||y ||

Proof: Fact: ||x − λy ||2 ≥ 0, for any λ ∈ C. Expand this and
substitute λ = <x ,y>

||y ||2 .

(Turns out that < x , y > is also an example of a linear algebraic
object called inner product)
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1. Finite-energy signals form a vector space over C.



Field : Formal Definition

Definition: Fields
A field F is a set S with two operations (addition (+) and
multiplication(.)) such that

I For any a, b ∈ S , a + b ∈ S (closure under addition)

I Given a, b, c ∈ S , then a + (b + c) = (a + b) + c . (Addition is
associative).

I There exists a special element 0 ∈ S such that
a + 0 = 0 + a = a for all a ∈ S (Additive identity exists).

I For a ∈ S there exists an element b ∈ S such that
a + b = b + a = 0. (We write this element b as −a and call it
the Additive inverse of a in S . Note: Subtraction is just
addition with additive inverse.)

I For all a, b ∈ S , a + b = b + a (Addition is Commutative)
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Definition: Fields (continued)

..such that..

I S is closed under multiplication.

I Multiplication is associative.

I Multiplicative identity exists (denoted by 1).

I Multiplicative inverses exist for all elements but 0.

I Multiplication is commutative.

...such that..

I For all a, b, c ∈ S , a.(b + c) = a.b + a.c (Distributivity of
multiplication).

It is really over! (I think)
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Fields: Informally

Fields
A set where we can add, multiply, subtract (add with additive
inverses), and divide (multiply with multiplicative inverses) and
things work out nicely.

I Examples: R, C, Fp.

I Non-examples: Rm×k matrices (m = k 6= 1).

I Think: What kind of structure exist if
k = m = 1 ?, k = m ?, k 6= m ?.
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Vector Spaces : Formal Definition

A set V is a vector space over F (field of scalars) if the following
properties are satisfied :

I V is closed under vector addition, which is commutative and
associative. ∀v ,w ∈ V , v + w = w + v ∈ V .

I There exists 0 ∈ V , x + 0 = x [Zero vector (Additive
identity)]

I ∀x ∈ V , there exists y ∈ V such that x + y = 0. (Additive
inverse exists).
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Vector Space: Formal Definition

...if the following properties are satisfied :

I V is closed under Scalar Multiplication.
∀x ∈ V ,∀α ∈ F, αx ∈ V .

I ∀x , y ∈ V and α, β ∈ F
1. 1x = x

2. α(x + y) = αx + αy
3. (αβ)x = α(βx)
4. (α + β)x = αx + βx
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Vector Space: Informal Definition

Vector space V over F
A set closed under addition, scalar multiplication (multiplication by
scalars from F).

Notation:

I Normal font, (α, β) for scalars.

I Bold fonts (v ,w) for vectors.

I Caps for Vector spaces (V ,W ).

I F for field.
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Subspaces

I W ⊆ V is called a subspace if it is a vector space (over F).
I A subset of W is a subspace if and only if :

I For all v ,w ∈W , αv + w ∈W ,∀α ∈ F.

I Examples:

I V = R3

W = {(x1, x2, x3) ∈ V : x1 + 2x2 + 5x3 = 0}

(Yes!)

I V = {(x1, x2) ∈ R2 : x2 = x1 + 1} (No!)

I Set of all polynomials of degree only 5. (No!)
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Linear Combination of vectors

I A linear combination of a set of vectors
S = {vi : i = 1, ..., r} ⊂ V is

r∑
i=1

αivi ,

for some αi ∈ F.

I Note that if αi = 0,∀i , then the linear combination gives the
0 ∈ V .

I Examples: S = {(1 0 0), (0 1 0)}. Then (1 1 0) is a linear
combination.



Linear Dependence

Linear Dependence of vectors

I Vectors {vi : i = 1, ..., r} are called linearly dependent

r∑
i=1

αivi = 0,

for some αi s, at least one of which is non-zero.

I If αj 6= 0 for some 1 ≤ j ≤ r then

vj =
r∑

i=1,i 6=j

βivi ,

where βi = −αi
αj

.
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Linear Independence

I If {vi : i = 1, ..., r} is not linearly dependent, then they are
linearly independent.

I Only zero-linear combination gives 0.



Examples

I Consider the vectors (from R2)

S =

{
v1 =

(
1
1

)
, v2 =

(
1
2

)}
(1)

I The set {v1, v2} is linearly

independent.

I Consider S ∪
(

1
3

)
. This is linearly dependent.

I Consider S ∪ {0}. This is linearly dependent.
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Span of a subset of vectors

Span

The span of a set of vectors S = {vi : i = 1, ..., r} is the set of all
linear combinations of the vectors in that set.

span(S) =

{
r∑

i=1

αivi : αi ∈ F

}
.

I Let A ∈ Fm×n.

Row space =

{
m∑
i=1

αiai : ai is the i th row of A, αi ∈ F

}
.

I S = {(1, 2), (1, 1), (−4, 9)}. Span(S) =R2.
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Basis of a Subspace

Basis of a subspace W

A subset B of W is called a basis of W if

1. B is linearly independent set

2. B spans W

I A subspace W ⊆ V can have multiple bases.

I Examples: Let V = {p0 + p1t + p2t
2 : pi ∈ F}. Basis for V is

{1, t, t2} (so is {1 + t, 1 + t2, 1 + t + t2}).

I Any set of k-linearly independent vectors of Fk .
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Basis

Theorem
Any two bases for a subspace contain the same number of vectors

Proof:

1. Consider two bases B = {bi : i = 1, .., n},
C = {ci : i = 1, ..,m}. Suppose n < m.

2. Consider A1 = {c1,b1, ...,bn}. This is a linearly dependent
set.

3. Note that c1 6= 0. This means we should have some
bi ∈ span({c1,b1, .., , .,bn}\bi ).

4. Let B1 = {c1,b1, ...,bn}\bi . Then B1 spans V and
|B1| = |B|.

5. Continue this. To get Bk+1, we add one vector from C to Bk

and remove one vector from Bk (while maintaining spanning
property).

6. At stage n, we get Bn = {c1, ...., cn} which is a spanning set.

7. But that means C is dependent (contradiction).
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Basis and Dimension

The following are equivalent (Prove it!):

I B is linearly independent and spans W .

I B is a maximal linearly independent set of W .

I B is a minimal set which spans W .

Dimension of a Subspace W

dim(W ) = No. of vectors in any basis of W .
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Basis Extension

Theorem
Let V be a finite dimensional vector space and S be a linearly
independent subset of vectors from V . Then S can be extended to
a basis of V , i.e., there is a basis B for V such that S ⊆ B.

Proof idea:

I If span(S) = V , then nothing to prove

I If span(S) 6= V , choose a vector v /∈ span(S), and form
S1 = S ∪ {v}.

I If span(S1) = V , then we are done. Else find a vector outside
span(S1) and add. ... (repeat).

I We will have a basis for V at the end.
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Vectors from n-dimensional V.S as n-tuples

Unique representation of vectors using basis vectors

Let V be a n-dimensional vector space with basis B = {b1, ...,bn}.
Then any vector v ∈ V can be written as a unique linear
combination of the basis vectors

v =
n∑

i=1

αibi .

I In terms of the basis B, we can represent v as the n-tuple,

[v ]B = (α1, α2, ..., αn).

I This is only a representation, and may change with the basis
chosen.
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Vectors as coordinates

I Let V = R2. Let B = {b1 = (1, 0),b2 = (0, 1)}.
I Consider a vector v = (5, 6).

I v = 5b1 + 6b2.

I In terms of B, we have

[v ]B =

[
5
6

]
.



Change of Basis

How do vector-representations change with change in the basis
(from B = {bi : i = 1..n} to C = {ci : i = 1..n}) chosen?

Given [v ]B ,what is [v ]C?

I Given B = {bi}, we have

v =
n∑

i=1

αibi ,

how to get βi s such that

v =
n∑

i=1

βici ,

i.e. what is [v ]C?
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Change of Basis

Note that
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[b1]C [b2]C .... [bn]C

]
is known as the basis change matrix.
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Basis change : Example

I Consider the basis C = {c1 = (1, 0), c2 = (1, 1)} for R2.

I Let v = (5, 6). What is [v ]C?

I

[v ]C = 5[b1]C + 6[b2]C

= 5

[
1
0

]
+ 6

[
−1
1

]
=

[
−1
6

]
.

I Check : v = −1c1 + 6c2.
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Need for Linear Algebra in Communications and Coding

L=Finite energy signals which are also time-limited from [0,T ].

Theorem
A basis for L is

fi (t) =
1√
T
e j2πit/T , i = 0,±1,±2, ...

.

Proof:

I Fourier Series expansion.



Need for Linear Algebra in Communications and Coding

1. Finite-energy time-bounded signals form a vector space.

2. Span of time-limited sinusoids = Time-limited Finite-Energy
signals

I The sinusoidal basis helps to easily characterize output signal
when the signal is passed through ‘linear time-invariant’
systems.

I Can think of signals as vectors. Makes Digital Communication
possible!
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Linear Transformations

I Maps between Vector Spaces (defined over a common field F).

I We like linearity.

Linear Transformation
Let V and W be vector spaces over the field F . A function
T : V →W is a linear transformation if

T (cv1 + v2) = cT (v1) + T (v2), ∀v1, v2 ∈ V , and, ∀c ∈ F.

If V = W , then T is called a linear operator.



Linear Tranformation : Examples and Non-Examples

1. T: R2×2 → R where T is defined as

T

([
x1 x2
x3 x4

])
= x1 + x4.

(Yes!)

2. T : R2 → R3 where T is defined as T

([
x1
x2

])
=

 x1
x2

x1 + x2

.

(Yes!)

3. T : R2 → R3 where T is defined as T

([
x1
x2

])
=

 x1
x2
x1x2

.

(No!)

4. T : R3 → R3 where T is defined as T

x1x2
x3

 =

x1x2
a

.

(No if a 6= 0, Yes if a = 0)
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Linear Transformation : Examples and Non-Examples

I y(t) =
∫∞
−∞ h(τ)x(t − τ)dτ.

I Is this is a linear transformation? (What are its domain and
codomain?)

I Linear Transformation.

I Domain=Codomain=Vector Space of Finite energy signals.
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2. Span of time-limited sinusoids = Time-limited Finite-Energy
signals.

3. LTI systems are Linear Operators on the Space of Finite
Energy Signals.
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Sum and Composition of Linear Transformations
I T1 and T2 are linear transformations from V →W . Then so

is their ‘sum’ T defined as

T (v) = T1(v) + T2(v).

I So is T ′ (’composition’) defined as

T ′(v) = T2(T1(v)).

I Series and Parallel LTI systems.
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Range and Null Space of a Linear Transformation

Range (Image) and Null-Space (Kernel) of T

I Range (Image):

R(T ) = {w ∈W : T (v) = w , for some v ∈ V }.

I Nullspace (kernel):

N(T ) = {v ∈ V : T (v) = 0 ∈W }.

I R(T ) is a subspace of W .

I N(T ) is a subspace of V .
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Range and Null Space



Rank Nullity Theorem

Rank and Nullity

I Rank(T ) = dim(R(T )).

I Nullity(T ) = dim(N(T )).

Rank Nullity Theorem

Let V be a finite dimensional vector space and T : V →W be a
L.T. Then

dim(V ) = Rank(T ) + Nullity(T ).



Proof of Rank Nullity Theorem

I Let n = dim(V ), k = dim(N(T )). We want to show that
dim(R(T )) = n − k.

I Let {v1, . . . , vk} be basis for N(T ).

I We can extend this to a basis B = {v1, . . . , vk , vk+1, . . . , vn}
for V .

I It suffices to show that {T (vk+1), . . . ,T (vn)} is a basis for
R(T ).
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Proof of Rank Nullity Theorem

I We first show {T (vk+1), . . . ,T (vn)} are independent. And
then have to show that it spans R(T ).

I Suppose not. Then, for some αi s not all zero,

0 =
n∑

i=k+1

αiT (vk+i )

= T (
n∑

i=k+1

αivi ).

I This means
∑n−k

i=1 αivk+i ∈ N(T ). Thus,

n∑
i=k+1

αivi =
k∑

i=1

βivi .
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Proof of Rank Nullity Theorem

I Rearranging,
n∑

i=k+1

αivi −
k∑

i=1

βivi = 0,

for αi s not all zero.

I This is a contradiction as {vi : i = 1, ..., n} is a basis.

I Thus {T (vk+1), . . . ,T (vn)} is linearly independent.
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Proof of Rank Nullity Theorem

I Have to still show BR = {T (vk+1), . . . ,T (vn)} spans R(T ).

I For any vector w ∈ R(T ), show that w ∈ span(BR).

I There exists a v ∈ V such that T (v) = w .

I We have v =
∑n

i=1 γivi (as B is a basis for V ).

I Apply T on both sides to get the result.
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I For any vector w ∈ R(T ), show that w ∈ span(BR).
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Example

I Let

A =

 1 0 1
0 1 1
1 2 3


I Consider the linear transformation from R3 → R3 given by
x → Ax .

I What is the N(T )? What is R(T )?

I Check if R-N theorem is satisfied.



Matrix of a Linear Transformation

Characterising linear transformations

Theorem
Let T : V →W be a L.T. Let B = {vi : i = 1.., n}. Then the
action of T on any arbitrary v ∈ V is completely specified by its
action on the basis vectors {v i : i = 1, .., n}.



Matrix of a Linear Transformation

I Let dim(V ) = n, dim(W ) = m. Let T (v) = w .

I Already know: Choosing a basis BV for V enables us to write
v as a n-tuple [v ]BV

.

I Choosing a basis BW for W enables us to write w as a
m-tuple [w ]BW

.

I Fixing BV and BW , we have a matrix representation [T ] for
T .

[T ][v ]BV
= [w ]BW
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Matrix of a Linear Transformation

I How to get [T ]?

I

i th column of [T ] = [T (vi )]BW
.



Matrix of a Linear Transformation

I How to get [T ]?

I

i th column of [T ] = [T (vi )]BW
.



Example

I Consider the Lin. Operator on the space of real polynomials
of degree upto 2, defined as follows.

T (a0+a1t+a2t
2) = (a0+a2)+(a1+a2)t+(a0+2a1+3a2)t2.

I Find its representation under (a) Basis B = {1, t, t2} (b)
Basis C = (1 + t, 1 + t2, 1 + t + t2).



Need for Linear Algebra in Communications and Coding

4. Linear Transformations are heavily used in Coding Theory and
Cryptography.

I Embed a low-D subspace in a High-D vector space to a Low-D
vector space. (Compression or Source Coding)

I Embed a low-D vector space as a Low-D subspace of a High-D
vector space (Channel Coding).
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Eigen values and vectors of a linear operator

Let T : V → V be a Linear Operator.

Eigen values and vectors

A non-zero v ∈ V and a constant λ ∈ F are called the eigen vector
and its eigen value of T if

T (v) = λv .



Eigen values and vectors of a linear operator

I For certain types of Lin. Operators, there exists a basis
B = {v i} for V consisting of eigen vectors (with eigen values
λi s).

I Understanding the I/O relationships of such Lin Operators are
easy with such a basis.

I

T (v) = T
(∑

αiv i

)
=
∑

αiT (v i )

=
∑

αiλiv i
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Example for Eigen vectors and Values

I L=Finite energy signals which are also time-limited from
[0,T ].

I A basis for L is

fi (t) =
1√
T
e j2πit/T , i = 0,±1,±2, ...

I The function fi (t) are the eigen vectors for any LTI system
given by L, with eigen value being the fourier series coefficient
of h(t) at 2πi/T .
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Need for Linear Algebra in Communications and Coding

1. Finite-energy time-bounded signals form a vector space.

2. Span of time-limited sinusoids = Time-limited Finite-Energy
signals.

3. LTI systems are Linear Operators on the Space of Finite
Energy Signals.

4. Linear Transformations are heavily used in Coding Theory and
Cryptography.

5. Fourier basis are also eigen vectors of LTI systems. So
understanding I/O relationships of LTI systems is easy.
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Thank You


