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Index Coding Problem Setup

I A noiseless broadcast channel between the source and T
receivers

I Messages W = {Wi ∈ Ft , i ∈ [1 : n]}.
I Demand set at receiver j : D(j) ⊆ W
I Side information at receiver j : S(j) ⊆ W\D(j)
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Index Code: Definition

I Index code:
Map from {t-length message vectors} → { l-length
codewords}

I E : Fnt → Fl

Length and Transmission Rate

I Length of the Code = l .

I Transmission rate = l
n .

Want to find index codes of low transmission rate.
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Index Coding

I Multiuser Communication and Broadcast channels
I Index Coding Problem Setup

I Definition of an Index Code (Encoding function).
I Measures of interest
I Scalar and Vector Linear Index Codes

I Two ways to think about Scalar Linear Index Coding
I Fitting Matrix
I Alignment approach

I An upper and lower bound on optimal length from graph
theory.

I Some New and Open problems.



Measures of interest for an Index Code

I For an IC problem I, define

β(t, I)

as the minimal length of an index code (encoding t-length
messages) for I.

I Broadcast rate β(I)

β(I) = lim
t→∞

βq(t, I)

t
.

I Definition of broadcast rate assumes that we have the
freedom to choose t.

Goal of index coding (general)

Design codes that have transmission rate close to β.
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Linear index codes, Vector codes, Scalar codes

I General goal may be too hard, so we restrict to specific
classes.

I An index code is called
I Linear: if the encoding function is linear
I For a linear code, the encoding function is simply

multiplication by a matrix G .

Gl×ntW nt×1

I Vector: if the messages are vectors (t > 1).
I Scalar: if the messages are scalars (t = 1).
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Length of a (scalar linear) index code

I For a scalar linear scheme, let the optimal broadcast rate be
l∗.

l∗ ≥ β(1, I)

l∗ is also the length of an optimal (scalar linear) code.

I Scalar linear code: All transmissions are linear combinations of
scalar message symbols.

I Optimal code ⇒ Minimum number of linear combinations of
info symbols such that every demand can be met.

I Focus for rest of the talk: Scalar linear index codes.
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Two ways to think about Scalar Linear Index Coding

I Fitting matrix approach

I Interference alignment approach

I Variation is only in the method of code construction.

I After obtaining a code, we can ‘look’ at the code using both
approaches.
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Fitting matrix approach

I In general, for sink i can decoding for symbol Wj , it needs a
linear combination of the form

Wj +
∑

k∈S(i)

αkWk ,

(demanded symbol + some linear combination of side-info
symbols).

I In successful decoding, this linear combination is be obtained
as a linear combination of the transmissions.

I For example (sink 1 to decode W1) needs a linear combination
:

W1 + α2W2 + α3W3.
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Fitting Matrix formulation

Define a matrix A with

I Number of rows = Total number of demands at all sinks

I Number of messages =n.

I Every row corresponds to some demand (say symbol Wj) at
some sink i .



Fitting Matrix formulation

The row corresponding to demand Wj at receiver i is filled with
follows.

I ‘1’ in the j th position (corresponding to Wj)

I ‘X ’s in the positions corresponding to S(i).

I 0s in other positions.

I For the example given before,

A =


1 X X 0 0
X 1 0 0 0
X X 1 0 0
X 0 0 1 X
0 0 0 X 1

 .
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Fitting Matrix formulation

I Note that we can fill the matrix A with any values for the X s,
and we get a solution (encoding function Fn → Fl)

I How to find the optimal code?
I Find an assignment for the X s which minimises the rank of A

(minrank(A) = l∗)
I Keep only l∗ L.I rows, and throw away the rest.
I The l∗ × n matrix give an encoding matrix of an optimal code.

‘Index Coding by Matrix completion’
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Fitting Matrix formulation

I For the example:

Aassigned =


1 0 1 0 0
0 1 0 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1

 .

Throw away row 3 and row 5.

I

Gopt =

 1 0 1 0 0
0 1 0 0 0
0 0 0 1 1

 .

I This is infact an optimal code (we shall see why later).
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Interference Alignment (IA) Formulation

I Linear index code:

GW =
n∑

i=1

GiWi ,

where Gi is the i th column of G .

I Gi := precoding vector for message Wi .

I Idea of interference alignment: To decode any demand,
choose the interference (non-sideinformation) precoding
vectors independent of the precoding vectors of the demanded
symbol.
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IA approach - Another way to look at linear equation
solving

I Let W = (W1 W2 W3 W4 W5)T , a = (a1 a2 a3 a4)T .

I Let GW = a. We want W .

I Consider the columns of matrix G as Gi , i = 1, 2, 3, 4, 5.

I The given equations are in the form:

5∑
i=1

WiGi = a

.

I We can solve for W , if Gi s are independent.
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IA approach - Another way to look at linear equation
solving

I Suppose we want to solve for only a particular Wk , while
having Wi : i ∈ S(j) as prior knowledge.

I We can thus obtain

5∑
i=1

WiGi −
∑
i∈S(j)

WiGi

=
∑
i /∈S(j)

WiGi .

=
∑

i /∈S(j)∪k

WiGi + WkGk

I Wk is decodable if Gk is independent of {Gi : i /∈ S(j) ∪ k}.
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I For example, consider decoding W1 at receiver 1. For some
index code matrix G , we can get

G1W1 + (G4W4 + G5W5)

W1 is decodable if G1 /∈ span({W4,W5}).

IA Index Coding formulation

Design encoding matrix G such that

I Gk is independent of Gi : i /∈ S(j) ∪ {k} for any demand k at
any receiver j .

I G has the least number of rows.
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Single-Unicast

I General Fitting Matrix/IA problem solving is hard.

I Bounds on Minimal Index Coding length exist for special
classes.

Single-Unicast

I Each receiver demands an unique message symbol.
I Can be represented by a ‘Side-information’ graph

I SI graph has the vertices as the symbols (or receivers).
I Edges indicate side-information available at the receivers.
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Unicast example with SI graph
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How to get the SI graph?- Vertices are messages
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How to get the SI graph? - Edges indicate SI
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Full SI graph of the example
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Using the SI graph (and its complement) to obtain bounds

I Bounds from graph theoretic parameters.

I Upper bounds : Clique Cover, Chromatic Number, Local
Chromatic Number, Cycle packing (Maximum number of
edge-disjoint cycles).

I Lower bounds: Size of Maximum Acyclic Induced Subgraph
(MAIS), Independence Number.



Upper bound from Cycle Packing

I Naive transmission is to send all n symbols uncoded.

I Suppose there is a cycle in the SI graph consisting of r
messages.

I Then we can satisfy these r -demands by r − 1 transmissions.

W1
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W3

W4

W5
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Upper bound from Cycle Packing

I Find the maximum number of vertex-disjoint cycles in the SI
graph.

I For each cycle, we can ‘save’ one transmission.

I For the symbols not on any of the picked cycles, send
uncoded symbols.
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Lower bound : MAIS

Definition
Induced subgraph of SI graph GSI :
Pick a subset of vertices of GSI and take all edges between them.

Theorem
(MAIS lower bound: )
The length of the optimal code is at least as large as the size
(number of vertices) in an maximum, acyclic, induced subgraph of
GSI .

l∗ ≥ |MAIS |.

I How to get MAIS? - Hard problem.

I We can get an AIS (not necessarily maximal) by deleting
some vertices and seeing if the graph is acyclic (→ this gives a
lower bound)
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MAIS Lower Bound
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New and Open Problems

Some New and Open problems.

I Pliable Index Coding

I Distributed Index Coding

I Connections to Distributed Storage.

I Field size for index coding.

I
...



Pliable Index Coding

I Receivers are happy to receive any message, rather than
precisely asking for one.

I Probabilistic guarantees on length of Index Code based on
some randomized algorithms.

“Pliable Index Coding”, IEEE Trans. on. Info. Theory, 2015, S. Brahma
and C. Fragouli (UCLA)



Distributed Index Coding

I Multisource index coding.

I Information theoretic results on Capacity region.

I Graph theoretic upper bounds on special class of problems.

I “Distributed Index Coding”, P. Sadeghi, F. Arbabjolfaei, Y.H. Kim,
April 2016 (Australian National University and UCSD).

I “The Single-Uniprior Index-Coding Problem: The Single-Sender
Case and the Multi-Sender Extension”, L. Ong et al (University of
NewCastle Australia, Institute of Infocomm research Singapore,
IBM Research Singapore)



Connections to Distributed Storage

I Index Coding and Distributed Storage are dual-problems (in a
sense).

I IC matrix G can be thought as the parity check matrix of a
generator matrix of a Distributed Storage Code.

“On a Duality Between Recoverable Distributed Storage and Index
Coding”, Arya Mazumdar, March 2014 (University of Massachusetts at
Amherst)



Field sizes for index coding

I Larger fields means more complexity.

I Want solutions over small fields

“Optimal solution for the index coding problem using network coding
over GF(2)”, J. Qureshi et al, Nanyang Tech Univ Singapore, June 2012
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