Rate $\frac{1}{3}$ Index Coding : Forbidden and Feasible Configurations

Prasad Krishnan

Joint work with Lalitha V International Institute of Information Technology, Hyderabad

June 25-30, ISIT 2017

Prasad Krishnan (IIIT-H)

Rate $\frac{1}{3}$ Index Coding

June 25-30, ISIT 2017 1 / 26

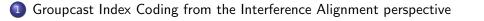
A B F A B F

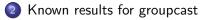
Rate $\frac{1}{3}$ Index Coding : Forbidden and Feasible Configurations

Prasad Krishnan

Joint work with Lalitha V International Institute of Information Technology, Hyderabad

June 25-30, ISIT 2017


WARNING: Talk contains graphic images.


Prasad Krishnan (IIIT-H)

Rate $\frac{1}{2}$ Index Coding

June 25-30, ISIT 2017 1 / 26

イロト イポト イヨト イヨト 二日

4 Rate $\frac{1}{3}$ feasible configurations (Sufficient condition)

イロト イロト イヨト イヨト 三日

Outline

Groupcast Index Coding from the Interference Alignment perspective

2 Known results for groupcast

3) Forbidden Configurations for Rate $\frac{1}{3}$ (Necessary Conditions)

4 Rate $\frac{1}{3}$ feasible configurations (Sufficient condition)

イロト イポト イヨト イヨト

Groupcast index coding

- A broadcast channel between the source and \mathcal{T} receivers
- Messages $\mathcal{W} = \{ W_i \in \mathbb{F}, i \in [1 : n] \}.$
- Demand set at receiver j : $D(j) \subseteq \mathcal{W}$
- Side information at receiver $j: S(j) \subseteq W \setminus D(j)$

Linear Index Code and its Rate

• Index code: Map from {Messages} \rightarrow {I-length codewords}

• Rate
$$R = \frac{1}{7}$$
.

イロン 不良 とくほう イヨン 二日

Interference alignment framework for index codes

- Index Coding map be $B_{l \times n}$; Transmitted vector is BW.
- Consider a sink j which demands message W_k .
- Sink j can cancel the contributions from S(j), obtaining

$$\sum_{i:i\notin S(j)} W_i \boldsymbol{b}_i = W_k \boldsymbol{b}_k + \sum_{i:i\notin S(j)\cup\{k\}} W_i \boldsymbol{b}_i$$

- Let $I(j,k) = \{W_i : i \notin S(j) \cup \{W_k\}\}.$
- Decoding is possible if **b**_k is independent of space spanned by vectors assigned to I(j, k) (interference constraints).
- Choose matrix *B* such that this is satisfied with least possible *l* (alignment opportunities).

3 Forbidden Configurations for Rate $\frac{1}{3}$ (Necessary Conditions)

4 Rate $\frac{1}{3}$ feasible configurations (Sufficient condition)

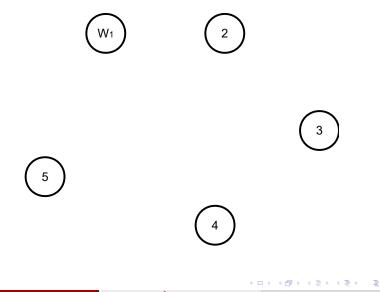
イロト イポト イヨト イヨト

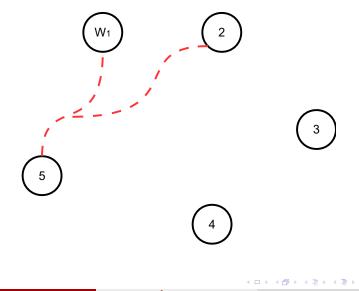
- Tehrani et al, ISIT 2012, "Bipartite Index Coding".
- Maleki et al, "Index Coding An Interference Alignment Perspective", ISIT 2012, TIT Sep. 2014.

- Tehrani et al, ISIT 2012, "Bipartite Index Coding".
- Maleki et al, "Index Coding An Interference Alignment Perspective", ISIT 2012, TIT Sep. 2014.
- Jafar, "Topological Interference Management Through Index Coding", IEEE TIT, Jan 2014.
- *Rate 1/2* (**solved**) and *Rate 1/3* (achievability shown for very special subclass)
- via *alignment* and *conflict* graphs polynomial complexity algorithm succeeds with high prob (large field).

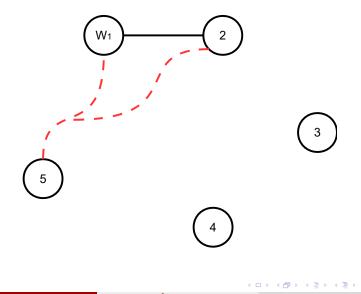
イロト 不得下 イヨト イヨト 二日

- Tehrani et al, ISIT 2012, "Bipartite Index Coding".
- Maleki et al, "Index Coding An Interference Alignment Perspective", ISIT 2012, TIT Sep. 2014.
- Jafar, "Topological Interference Management Through Index Coding", IEEE TIT, Jan 2014.
- *Rate 1/2* (**solved**) and *Rate 1/3* (achievability shown for very special subclass)
- via *alignment* and *conflict* graphs polynomial complexity algorithm succeeds with high prob (large field).
- Prasad Krishnan and Lalitha V, "A class of index coding problems with rate 1/3", ISIT 2016 (more general results on achievability and converse).

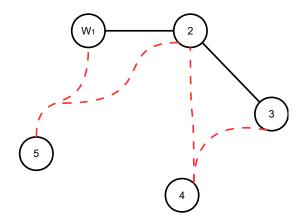

イロト 不得下 イヨト イヨト 二日


- Tehrani et al, ISIT 2012, "Bipartite Index Coding".
- Maleki et al, "Index Coding An Interference Alignment Perspective", ISIT 2012, TIT Sep. 2014.
- Jafar, "Topological Interference Management Through Index Coding", IEEE TIT, Jan 2014.
- *Rate 1/2* (**solved**) and *Rate 1/3* (achievability shown for very special subclass)
- via *alignment* and *conflict* graphs polynomial complexity algorithm succeeds with high prob (large field).
- Prasad Krishnan and Lalitha V, "A class of index coding problems with rate 1/3", ISIT 2016 (more general results on achievability and converse).

Current results


Subsume all known results on necesary and sufficient conditions for rate 1/3.

Prasad Krishnan (IIIT-H)



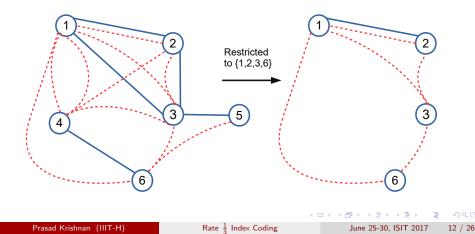
3

3

10 / 26

Hyperedge $\{W_5, \{W_1, W_2\}\}$ means

- $\{W_1, W_2\}$ interfere at (a receiver demanding) W_5 .
- $\{W_1, W_2\}$ and W_5 are *in conflict*.


Prasad Krishnan (IIIT-H)

Rate $\frac{1}{2}$ Index Coding

June 25-30, ISIT 2017 11 / 26

Restricted IC problem and restricted conflicts (ISIT 2016)

- For W' ⊂ W, the IC problem restricted to W' considers all demands and side-information only within W' at receivers.
- Restricted alignment graphs, Restricted conflict hypergraphs.

③ Forbidden Configurations for Rate $\frac{1}{3}$ (Necessary Conditions)

4 Rate $\frac{1}{3}$ feasible configurations (Sufficient condition)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Strictly Rate $\frac{1}{L}$ subsets

Let ${\mathbb I}$ be an index coding problem with message set ${\mathcal W}.$

Strictly Rate $\frac{1}{l}$ Subset

A subset $\mathcal{W}' \subseteq \mathcal{W}$ is called Strictly Rate $\frac{1}{I}$ if

dim(space of vectors allocated to \mathcal{W}')= *L*.

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

Strictly Rate $\frac{1}{L}$ subsets

Let ${\mathbb I}$ be an index coding problem with message set ${\mathcal W}.$

Strictly Rate $\frac{1}{l}$ Subset

A subset $\mathcal{W}' \subseteq \mathcal{W}$ is called Strictly Rate $\frac{1}{L}$ if

• in any rate $\frac{1}{3}$ code (if it exists),

dim(space of vectors allocated to \mathcal{W}')= L.

Rate 1/3 necessary condition: The Restricted-IC problem to a strictly rate 1/2 set must have a rate 1/2 solution. (poly time to check by [Jaf]).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Strictly Rate $\frac{1}{L}$ subsets

Let ${\mathbb I}$ be an index coding problem with message set ${\mathcal W}.$

Strictly Rate $\frac{1}{l}$ Subset

A subset $\mathcal{W}' \subseteq \mathcal{W}$ is called Strictly Rate $\frac{1}{L}$ if

• in any rate $\frac{1}{3}$ code (if it exists),

dim(space of vectors allocated to \mathcal{W}')= L.

Rate 1/3 necessary condition: The Restricted-IC problem to a strictly rate 1/2 set must have a rate 1/2 solution. (poly time to check by [Jaf]).

Strictly Rate $\frac{1}{I}$ Infeasible Subset

A subset $\mathcal{W}' \subseteq \mathcal{W}$ is called Strictly Rate $\frac{1}{L}$ infeasible if

• in any rate $\frac{1}{3}$ code, dim(space of vectors allocated to $\mathcal{W}') \neq L$.

Prasad Krishnan (IIIT-H)

Strictly rate 1/2 subsets - A Key Idea

Generating Large Strictly Rate 1/2 sets from Smaller ones

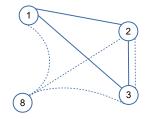
Prasad Krishnan	(IIIT-H)	
-----------------	----------	--

3

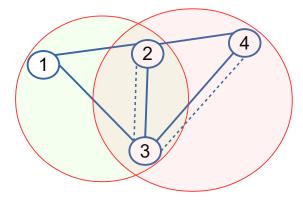
Strictly rate 1/2 subsets - A Key Idea

Generating Large Strictly Rate 1/2 sets from Smaller ones

Let $W_i : i = 1, 2, ..., r \ (r \ge 2)$ be strictly rate $\frac{1}{2}$ sets of an index coding problem I with message set W, such that the sets


•
$$\mathcal{W}_1 \cap \mathcal{W}_2$$

• $(\mathcal{W}_1 \cup \mathcal{W}_2) \cap \mathcal{W}_3$


•
$$\left(\cup_{i=1}^{r-1}\mathcal{W}_i\right)\cap\mathcal{W}_r.$$

are strictly rate 1 infeasible. Then the set $\bigcup_{i=1}^{r} \mathcal{W}_i$ must be strictly rate $\frac{1}{2}$.

イロッ イボッ イヨッ イヨッ 二日

Figure: Triangular Interfering Set

Prasad Krishnan (IIIT-H)

3. 3

17 / 26

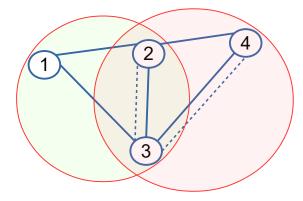
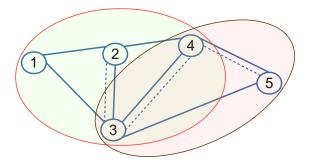



Figure: Two Triangular Interf Sets with a common conflict edge Leading to a larger Strictly Rate 1/2 Subset

∃ → 3

18 / 26

< □ > < ---->

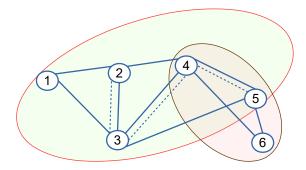
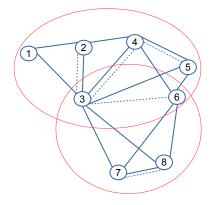



Figure: Maximal collection of 'Adjacent' Triangular Interfering sets: Type-2 Set

Can go on to get larger strictly rate 1/2 sets...

Figure: Maximal collection of Type-2 Sets: Xtype-2 Set

20 / 26

Can go on to get larger strictly rate 1/2 sets...

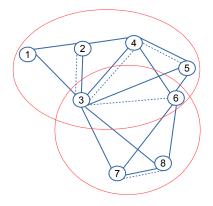
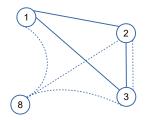


Figure: Maximal collection of Type-2 Sets: Xtype-2 Set

Rate 1/3 necessary condition: The Restricted-IC problem to a strictly rate 1/2 set must have a rate 1/2 solution. (poly time to check by [Jaf]).

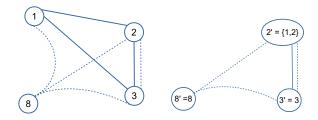
Prasad Krishnan (IIIT-H)

Rate $\frac{1}{2}$ Index Coding



- 2 Known results for groupcast
- 3 Forbidden Configurations for Rate $\frac{1}{3}$ (Necessary Conditions)

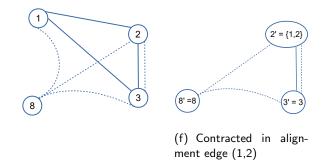
4 Rate $\frac{1}{3}$ feasible configurations (Sufficient condition)


3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

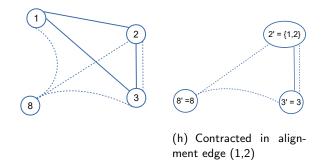
æ

イロト イヨト イヨト イヨト



(d) Contracted in alignment edge (1,2)

-


- < A

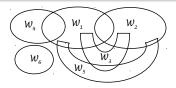
3

Maximal Contraction: Successive contractions until no more is possible (every alignment edge has an associated conflict edge).

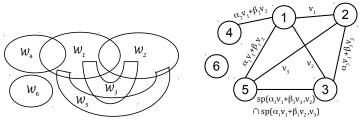
22 / 26

Maximal Contraction: Successive contractions until no more is possible (every alignment edge has an associated conflict edge).

Code for Contracted problem \rightarrow Code for original problem


Let \mathbb{I}' be a contraction of \mathbb{I} . Any scalar linear index coding solution of rate R for \mathbb{I}' can extended to a scalar linear index coding solution of rate R for

∏.


A general feasible configuration - Sufficiency result

An IC problem \mathbb{I} is rate $\frac{1}{3}$ feasible if there exists a maximal contraction \mathbb{I}' of \mathbb{I} such that the following conditions hold:

- (a) IC problem restricted to any Xtype-2 set in \mathbb{I}' must have a rate $\frac{1}{2}$ solution.
- (b) No three Xtype-2 sets have a message vertex in common.
- (c) For any two distinct Xtype-2 sets W_i, W_j , if $W_i \cap W_j \neq \phi$, then there is no conflict between any two messages in $W_i \cap W_j$.

Proof Argument for Sufficiency

(i) Xtype-2 Sets

(j) Intersection Graph of Xtype-2 sets

- $\bullet\,$ Random assignment of vectors from $\mathbb{F}^3,$ but with constraints.
- Works with high prob, for large $|\mathbb{F}|$.

24 / 26

- Rate 1/3 checking NP Hard for fixed field size (Peeters, 1996). What about $|\mathbb{F}|\to\infty?$
- More forbidden structures, feasible structures.
- Other rational rates.

R. Peeters, 'Orthogonal Representations over Finite Fields and the Chromatic Number of Graphs', 1996, Combinatorica.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >