A class of index coding problems with rate $\frac{1}{3}$

Prasad Krishnan

Joint work with Lalitha V International Institute of Information Technology, Hyderabad

July 10-15, ISIT 2016

Outline

Groupcast Index Coding from the Interference Alignment perspective

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Known results for groupcast

Our result for rate 1/3 index codes

Outline

Groupcast Index Coding from the Interference Alignment perspective

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Known results for groupcast

Our result for rate 1/3 index codes

Groupcast index coding

► A broadcast channel between the source and *T* receivers

- Messages $\mathcal{W} = \{ W_i \in \mathbb{F}, i \in [1 : n] \}.$
- Demand set at receiver $j : D(j) \subseteq W$
- Side information at receiver $j: S(j) \subseteq W \setminus D(j)$

Linear Index Code and its Rate

Index code:

Map from $\{Messages\} \rightarrow \{L-length codewords\}$

- Rate $R = \frac{1}{L}$.
- Our results can be generalised to vector-linear index codes.

Interference alignment framework for index codes

- Index Coding map be $B_{L \times n}$; Transmitted vector is BW.
- Consider a sink j which demands message W_k .
- Sink j can cancel the contributions from S(j), obtaining

$$\sum_{i:i\notin S(j)} W_i \boldsymbol{b}_i = W_k \boldsymbol{b}_k + \sum_{i:i\notin S(j)\cup\{k\}} W_i \boldsymbol{b}_i$$

- Let $I(j,k) = \{W_i : i \notin S(j) \cup \{W_k\}\}.$
- Decoding is possible if b_k is independent of space spanned by vectors assigned to I(j, k) (interference constraints).
- Choose matrix B such that this is satisfied with least possible L (alignment opportunities).

Groupcast Index Coding from the Interference Alignment perspective

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Known results for groupcast

Our result for rate 1/3 index codes

- ► Tehrani et al, ISIT 2012, "Bipartite Index Coding".
- Maleki et al, "Index Coding An Interference Alignment Perspective", ISIT 2012, TIT Sep. 2014.
- Jafar, "Topological Interference Management Through Index Coding", IEEE TIT, Jan 2014 [Jaf].

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Known results for groupcast

Rate 1: Each receiver demands exactly one message, and has all others as side-information.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Rate $\frac{1}{2}$: [Jaf] via alignment and conflict graphs.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Alignment sets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rate $\frac{1}{2}$ result from [Jaf]

Theorem (Rate $\frac{1}{2}$)

An index coding problem is rate $\frac{1}{2}$ feasible if and only if there are no internal conflicts (conflicts within alignment sets).

(日) (日) (日) (日) (日) (日) (日) (日)

Outline

Groupcast Index Coding from the Interference Alignment perspective

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Known results for groupcast

Our result for rate 1/3 index codes

Our contribution

Main result (A rate $\frac{1}{3}$ feasible class of index coding problems)

A rate $\frac{1}{2}$ infeasible IC problem is rate $\frac{1}{3}$ feasible if every alignment set satisfies one of the following properties

- It doesn't have both forks and cycles (follows from [Jaf]).
- It is a type-2 alignment set with no restricted internal conflicts.

Theorem (Known from [Jaf])

A rate $\frac{1}{2}$ infeasible IC problem is rate $\frac{1}{3}$ feasible if no alignment set has both forks and cycles (i.e., $|I(j, k)| \le 3, \forall j, k$).

- Triangular interfering set: A set of three messages interfering at some receiver, with at least two of them in conflict
- Any two triangular interferers are 'adjacent' if they are meeting at conflict edges.
- Type-2 alignment set: A 'connected component' of such triangular interfering sets.

∃ ▶ ∢ ∃ ▶ ∃ ∽ ۹ (∿

- Triangular interfering set: A set of three messages interfering at some receiver, with at least two of them in conflict
- Any two triangular interferers are 'adjacent' if they are meeting at conflict edges.
- Type-2 alignment set: A 'connected component' of such triangular interfering sets.

ヨト ・ヨト - ヨー - のへで

- Triangular interfering set: A set of three messages interfering at some receiver, with at least two of them in conflict
- Any two triangular interferers are 'adjacent' if they are meeting at conflict edges.
- Type-2 alignment set: A 'connected component' of such triangular interfering sets.

■▶ ▲ ■ ◆ ● ◆ ●

- Triangular interfering set: A set of three messages interfering at some receiver, with at least two of them in conflict
- Any two triangular interferers are 'adjacent' if they are meeting at conflict edges.
- Type-2 alignment set: A 'connected component' of such triangular interfering sets.

∃ ► < ∃ ►</p>

- Triangular interfering set: A set of three messages interfering at some receiver, with at least two of them in conflict
- Any two triangular interferers are 'adjacent' if they are meeting at conflict edges.
- Type-2 alignment set: A 'connected component' of such triangular interfering sets.

The condition on the type-2 alignment set

Type-2 alignment set with no *restricted internal conflicts*. Type-2 alignment set is rate $\frac{1}{2}$ feasible. Type-2 alignment set can be assigned vectors from a two dimensional space with all its internal conflicts resolved.

The condition on the type-2 alignment set

A necessary condition for rate $\frac{1}{3}$

Theorem A

An IC problem is rate $\frac{1}{3}$ feasible only if any type-2 alignment can be allocated vectors from a two dimensional vector space with all its internal conflicts resolved.

・ロト・雪ト・雪ト・雪・ 今日・

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣�?

The condition on the type-2 alignment set

Restricted IC problem and restricted conflicts

- For W' ⊂ W, the IC problem restricted to W' considers all demands and side-information only within W' at receivers.
- Restricted alignment graphs, Restricted conflict graphs.
- Restricted internal conflicts: Conflicts within restricted alignment sets.

The condition on the type-2 alignment set

Type-2 alignment set can be assigned vectors from a two dimensional space with all its internal conflicts resolved. \uparrow (Projection to \mathbb{F}^2)

IC problem restricted to type-2 alignment set is rate $\frac{1}{2}$ feasible (Rephrasing)

Type-2 alignment set with no restricted internal conflicts.

 All alignment sets are one of three types. Assign vectors differently in each case.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- All alignment sets are one of three types. Assign vectors differently in each case.
- ► Alignment set which has no three messages interfering at any receiver: Assign a random 3 × 1 vector to each message.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- All alignment sets are one of three types. Assign vectors differently in each case.
- ► Alignment set which has no three messages interfering at any receiver: Assign a random 3 × 1 vector to each message.
- Alignment set which consists only of three messages interfering at any receiver without any conflicts in-between: Assign the same random vector to all messages.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- All alignment sets are one of three types. Assign vectors differently in each case.
- ► Alignment set which has no three messages interfering at any receiver: Assign a random 3 × 1 vector to each message.
- Alignment set which consists only of three messages interfering at any receiver without any conflicts in-between: Assign the same random vector to all messages.
- Alignment set which is a type-2 alignment set without restricted internal conflicts: For each restricted alignment set, assign one randomly generated vector from a 2D space.

Open problems

- Solving the rate $\frac{1}{3}$ problem.
- Generalize to other rates.

Thank you!