
ELSEVIER

Finding related pages in the World Wide Web

Jeffrey Dean Ł,1, Monika R. Henzinger 2

Compaq Systems Research Center, 130 Lytton Ave., Palo Alto, CA 94301, USA

Accepted 1 March 1999

Abstract

When using traditional search engines, users have to formulate queries to describe their information need. This paper
discusses a different approach to Web searching where the input to the search process is not a set of query terms, but
instead is the URL of a page, and the output is a set of related Web pages. A related Web page is one that addresses the
same topic as the original page. For example, www.washingtonpost.com is a page related to www.nytimes.com,
since both are online newspapers.

We describe two algorithms to identify related Web pages. These algorithms use only the connectivity information
in the Web (i.e., the links between pages) and not the content of pages or usage information. We have imple-
mented both algorithms and measured their runtime performance. To evaluate the effectiveness of our algorithms,
we performed a user study comparing our algorithms with Netscape’s ‘What’s Related’ service (http://home.
netscape.com/escapes/related/). Our study showed that the precision at 10 for our two algorithms are 73%
better and 51% better than that of Netscape, despite the fact that Netscape uses both content and usage pattern information
in addition to connectivity information. 1999 Published by Elsevier Science B.V. All rights reserved.

Keywords: Search engines; Related pages; Searching paradigms

1. Introduction

Traditional Web search engines take a query as
input and produce a set of (hopefully) relevant pages
that match the query terms. While useful in many
circumstances, search engines have the disadvantage
that users have to formulate queries that specify their

Ł Corresponding author. Present address: mySimon, Inc., Santa
Clara, CA, USA. E-mail: jdean@mysimon.com
1 This work was done while the author was at the Compaq
Western Research Laboratory.
2 E-mail: monika@pa.dec.com

information need, which is prone to errors. This
paper discusses how to find related Web pages, a
different approach to Web searching. In our approach
the input to the search process is not a set of query
terms, but the URL of a page, and the output is a set
of related Web pages. A related Web page is one that
addresses the same topic as the original page, but is
not necessarily semantically identical. For example,
given www.nytimes.com, the tool should find other
newspapers and news organizations on the Web. Of
course, in contrast to search engines, our approach
requires that the user has already found a page of
interest.

 1999 Published by Elsevier Science B.V. All rights reserved.

390

Table 1
Example results produced by the Companion algorithm

Input: www.nytimes.com

www.usatoday.com USA Today newspaper
www.washingtonpost.com Washington Post newspaper
www.cnn.com Cable News Network
www.latimes.com Los Angeles Times newspaper
www.wsj.com Wall Street Journal newspaper
www.msnbc.com MSNBC cable news station
www.sjmercury.com San Jose Mercury News

newspaper
www.chicago.tribune.com Chicago Tribune newspaper
www.nando.net Nando Times on-line news

service
www.the-times.co.uk The Times newspaper

Recent work in information retrieval on the
Web has recognized that the hyperlink structure
can be very valuable for locating information
[1,3,4,8,12,16,17,20,22,23]. This assumes that if
there is a link from page v and w, then the author
of v recommends page w, and links often connect
related pages. In this paper, we describe the Com-
panion and Cocitation algorithms, two algorithms
which use only the hyperlink structure of the Web
to identify related Web pages. For example, Table 1
shows the output of the Companion algorithm when
given www.nytimes.com as input (in this case, the
results for the Cocitation algorithm are identical and
the results for Netscape are very similar, although
this is not always true).

One of our goals was to design algorithms with
high precision that are very fast and that do not
require a large number of different kinds of input
data. Since we have a tool that gives us access to
the hyperlink structure of the Web (the Connectivity
Server [2]), we focused on algorithms that only use
connectivity information to identify related pages.
Our algorithms use only the information about the
links that appear on each page and the order in which
the links appear. They neither examine the content
of pages, nor do they examine patterns of how users
tend to navigate among pages.

Our Companion algorithm is derived from the
HITS algorithm proposed by Kleinberg for ranking
search engine queries [12]. Kleinberg suggested that
the HITS algorithm could be used for finding related
pages as well, and provided anecdotal evidence that

it might work well. In this paper, we extend the
algorithm to exploit not only links but also their
order on a page (see Section 2.1.1) and present the
results of a user-study showing that the resulting
algorithm works very well.

The Cocitation algorithm finds pages that are
frequently cocited with the input URL u (that is, it
finds other pages that are pointed to by many other
pages that all also point to u).

Netscape Communicator Version 4.06 introduced
a related pages service that is built into the browser
[15] (see Section 2.3 for a more detailed discus-
sion). On the browser screen, there is a ‘What’s Re-
lated’ button, which presents a menu of related Web
pages in some cases. The ‘What’s Related’ algo-
rithm in Netscape is based on technology developed
by Alexa, Inc., and computes its answers based on
connectivity information, content information, and
usage information [14].

To compare the performance of our two algo-
rithms and Netscape’s algorithm, we performed a
user study on 59 URLs chosen by 18 volunteers.
Our study results show that the precision at 10 com-
puted over all 59 URLs of our two algorithms are
73% better and 51% better than Netscape’s. Not all
algorithms gave answers for all URLs in our study.
If we restrict the comparison to only the 37 URLs
for which all three algorithms returned answers, then
the precision at 10 of our two algorithms are 40%
and 22% better than Netscape’s algorithm. This is
surprising since our algorithms are based only on
connectivity information.

Netscape’s algorithm gives answers for about 17
million URLs [14], while our algorithms can give
answers for a much larger set of URLs (we have con-
nectivity information on 180 million URLs). This is
important because it means that we can give related
URL information for more URLs. Our algorithms
are also fast: in our environment, both average less
than 200 msec of computation per input URL.

The example shown in Table 1 is for a URL with a
very high level of connectivity (www.nytimes.com
contains 47,751 inlinks in our Connectivity Server),
and all three algorithms generally perform quite well
for well-connected URLs. Our algorithms can also
work well when there is much less connectivity, as
shown by the example in Table 2. This table shows
the answers for the Companion and Netscape algo-

391

Table 2
Comparison of the results of the Companion and Netscape algorithms

Input: linas.org/linux/corba.html

Companion Netscape

1 www.cs.wustl.edu/¾schmidt/TAO.html 0 labserver.kuntrynet.com/¾linux
1 dsg.harvard.edu/public/arachne 0 web.singnet.com.sg/¾siuyin
1 jorba.castle.net.au/ – www.clark.net/pub/srokicki/linux
1 www-b0.fnal.gov:8000/ROBIN – www.earth.demon.co.uk/linux/uk
1 www.paragon-software.com/products/oak 0 www.emry.net/webwatcher
1 www.tatanka.com/orb1.htm 0 www.interl.net/¾jasoneng/NLL/lwr
1 www.oot.co.uk/dome-index.html 0 www.jnpcs.com/mkb/linux
0 www.intellisoft.com/¾mark 1 www.linuxresources.com/
1 www.dstc.edu.au/AU/staff/mart... 0 www.liszt.com/
1 www.inf.fu-berlin.de/¾brose/jacorb 0 www.local.net/¾jgo/linuxhelp.html

A ‘1’ means that the page was valuable, a ‘0’ means that the page was not valuable, a ‘–’ means that the page could not be accessed.

rithms for linas.org/linux/corba.html, one
of the input URLs chosen by a user as part of our
user study. Alongside each answer is the user’s rat-
ing for each answer, with a ‘1’ meaning that the user
considered the page related, ‘0’ meaning that the
user considered the page unrelated, and ‘–’ meaning
that the user was unable to access the page at all.
The original page was about CORBA implementa-
tions for Linux, and there were 123 pages pointing
to this page in our Connectivity Server. Nine of the
ten answers given by the Companion algorithm were
deemed related by our user, while only one page
from Netscape’s set of answers was deemed related.
Most of Netscape’s answers were about the much
broader topic of Linux, rather than specifically about
CORBA implementations on Linux.

Section 2 presents our algorithms in detail and de-
scribes Netscape’s service, while Section 3 discusses
the implementation of our algorithms. Section 4 de-
scribes the user study we performed and presents its
results, and also provides a brief performance eval-
uation of our algorithms. Finally, Section 6 presents
our conclusions.

2. Related page algorithms

In this section we describe our two algorithms (the
Companion algorithm and the Cocitation algorithm),
as well as Netscape’s algorithm. Unlike Netscape’s
algorithm, both of our algorithms exploit only the
hyperlink-structure (i.e. graph connectivity) of the

Web and do not examine the information about
the content or usage of pages. Netscape’s algorithm
uses all three kinds of information to arrive at its
results.

In the sections below, we use the terms parent and
child. If there is a hyperlink from page w to page v,
we say that w is a parent of v and that v is a child of
w.

2.1. Companion algorithm

The Companion algorithm takes as input a starting
URL u and consists of four steps:
(1) Build a vicinity graph for u.
(2) Contract duplicates and near-duplicates in this

graph.
(3) Compute edge weights based on host to host

connections.
(4) Compute a hub score and an authority score for

each node in the graph and return the top ranked
authority nodes (our implementation returns the
top 10). This phase of the algorithm uses a mod-
ified version of the HITS algorithm originally
proposed by Kleinberg [12].

These steps are described in more detail in the
subsections below. Only step 1 exploits the order of
links on a page.

2.1.1. Step 1: building the vicinity graph
Given a query URL u we build a directed graph

of nodes that are nearby to u in the Web graph.
Graph nodes correspond to Web pages and graph

392

edges correspond to hyperlinks. The graph consists
of the following nodes (and the edges between these
nodes):
(1) u,
(2) up to B parents of u, and for each parent up to

BF of its children different from u, and
(3) up to F children of u, and for each child up to

FB of its parents different from u.
Here is how we choose these nodes in detail:

There is a stoplist STOP of URLs that are unrelated
to most queries and that have very high indegree.
Our stoplist was developed by experimentation, and
currently contains 21 URLs. Examples of nodes
that appear on our stoplist are www.yahoo.com and
www.microsoft.com/ie/download.html. If the
starting URL u is not one of the nodes on our
stoplist, then we ignore all the URLs on the stoplist
when forming the vicinity graph. If u does appear
on the stoplist, however, then we disable the stoplist
(i.e. set STOP to the empty list) and freely include
any nodes in the vicinity graph. We disable the
stoplist when the input URL appears on the stoplist
because many nodes on the stoplist are popular
search engines and portals, and we want to permit
these nodes to be considered when the input URL is
another such popular site.

Go back (B), and back-forward (BF): If u has
more than B parents, add B random parents not
on STOP to the graph; otherwise add all of u’s
parents. If a parent x of u has more than BF C 1
children, add up to BF=2 children pointed to by the
BF=2 links on x immediately preceding the link to
u and up to BF=2 children pointed to by the BF=2
links on x immediately succeeding the link to u
(ignoring duplicate links). If page x has fewer than
BF children, we add all of its children to the graph.
Note that this exploits the order of links on page x .

Go forward (F), and forward-back (FB): If u has
more than F children, add the children pointed to by
the first F links of u; otherwise, add all of u’s chil-
dren. If a child of u has more than BF parents, add
the BF parents not on STOP with highest indegree;
otherwise, add all of the child’s parents.

If there is a hyperlink from a page represented by
node v in the graph to a page represented by node
w, and v and w do not belong to the same host, then
there is a directed edge from v to w in the graph (we
omit edges between nodes on the same host).

In our experience, we have found that using a
large value for B (2000) and a small value for BF (8)
works better in practice than using moderate values
for each (say, 50 and 50). We have observed that
links to pages on a similar topic tend to be clustered
together, while links that are farther apart on a page
are less likely to be on the same topic (for example,
most hotlists are grouped into categories). This has
also been observed by other researchers [6]. Using a
larger value for B also means that the likelihood of
the computation being dominated by a single parent
page is reduced.

2.1.2. Step 2: duplicate elimination
After building this graph we combine near-dupli-

cates. We say two nodes are near-duplicates if (a)
they each have more than 10 links and (b) they have
at least 95% of their links in common. To combine
two near-duplicates we replace their two nodes by a
node whose links are the union of the links of the two
near-duplicates. This duplicate elimination phase is
important because many pages are duplicated across
hosts (e.g. mirror sites, different aliases for the same
page), and we have observed that allowing them to
remain separate can greatly distort the results.

2.1.3. Step 3: assign edge weights
In this stage, we assign a weight to each edge,

using the edge weighting scheme of Bharat and Hen-
zinger [3] which we repeat here for completeness.
An edge between two nodes on the same host 3 has
weight 0. If there are k edges from documents on
a first host to a single document on a second host
we give each edge an authority weight of 1=k. This
weight is used when computing the authority score
of the document on the second host. If there are l
edges from a single document on a first host to a
set of documents on a second host, we give each
edge a hub weight of 1=l. We perform this scaling to
prevent a single host from having too much influence
on the computation.

We call the resulting weighted graph the vicinity
graph of u.

3 We assume throughout the paper that the host can be deter-
mined from the URL-string.

393

2.1.4. Step 4: compute hub and authority scores
In this step, we run the imp algorithm [3] on the

graph to compute hub and authority scores. The imp
algorithm is a straightforward extension of the HITS
algorithm with edge weights.

The intuition behind the HITS algorithm is that a
document that points to many others is a good hub,
and a document that many documents point to is a
good authority. Transitively, a document that points
to many good authorities is an even better hub, and
similarly a document pointed to by many good hubs
is an even better authority. The HITS computation
repeatedly updates hub and authority scores so that
documents with high authority scores are expected to
have relevant content, whereas documents with high
hub scores are expected to contain links to relevant
content. The computation of hub and authority scores
is done as follows:

Initialize all elements of the hub vector H to 1.0.
Initialize all elements of the authority vector A

to 1.0.
While the vectors H and A have not converged:

For all nodes n in the vicinity graph N ,
A[n] :DP.n0;n/2edges.N/ H [n0]

ð authority weight.n0; n/
For all n in N

H [n] :DP.n;n0/2edges.N/ A[n0]
ð hub weight.n; n0/

Normalize the H and A vectors.

Note that the algorithm does not claim to find all
relevant pages, since there may be some that have
good content but have not been linked to by many
authors.

The Companion algorithm then returns the nodes
with the ten highest authority scores (excluding u
itself) as the pages that are most related to the start
page u.

2.2. Cocitation algorithm

An alternative approach for finding related pages
is to examine the siblings of a starting node u in
the Web graph. Two nodes are cocited if they have
a common parent. The number of common parents
of two nodes is their degree of cocitation. As an
alternative to the Companion algorithm, we have

developed a very simple algorithm that determines
related pages by looking for sibling nodes with the
highest degree of cocitation. The Cocitation algo-
rithm first chooses up to B arbitrary parents of u. For
each of these parents p, it adds to a set S up to BF
children of p that surround the link from p to u. The
elements of S are siblings of u. For each node s in
S, we determine the degree of cocitation of s with u.
Finally, the algorithm returns the 10 most frequently
cocited nodes in S as the related pages.

In some cases there is an insufficient level of coc-
itation with u to provide meaningful results. In our
implementation, if there are not at least 15 nodes
in S that are cocited with u at least twice, then we
restart the algorithm using the node corresponding to
u’s URL with one path element removed. For exam-
ple, if u’s URL is a.com/X/Y/Z and an insufficient
number of cocited nodes exist for this URL, then we
restart the algorithm with the URL a.com/X/Y (if
the resulting URL is invalid, we continue to chop
elements until we are left with just a host name, or
we find a valid URL).

In our implementation, we chose B to be 2000 and
BF to be 8 (the same parameter values we used for
our implementation of the Companion algorithm).

One way of looking at the Cocitation algorithm is
that it finds ‘maximal’ n ð 2 bipartite subgraphs in
the vicinity graph.

2.3. Netscape’s approach

Netscape introduced a new ‘What’s Related?’ fea-
ture in version 4.06 of the Netscape Communicator
browser. Details about the approach used to identify
related pages in their algorithm are sketchy. How-
ever, the What’s Related FAQ page indicates that
the algorithm uses connectivity information, usage
information, and content analysis of the pages to
determine relationships. We quote from the ‘What’s
Related’ FAQ page:

The What’s Related data is created by Alexa Internet.
Alexa uses crawling, archiving, categorizing and data
mining techniques to build the related sites lists for
millions of Web URLs. For example, Alexa uses links
on the crawled pages to find related sites. The day-to-
day use of What’s Related also helps build and refine
the data. As the service is used, the requested URLs
are logged. By looking at high-level trends, Netscape

394

and Alexa can deduce relationships between Web sites.
For example, if thousands of users go directly from site
A to site B, the two sites are likely to be related.

Next, Alexa checks all the URLs to make sure they are
live links. This process removes links that would try
to return pages that don’t exist (404 errors), as well as
any links to servers that are not available to the general
Internet population, such as servers that are no longer
active or are behind firewalls. Finally, once all of the
relationships are established and the links are checked,
the top ten related sites for each URL are chosen by
looking at the strength of the relationship between the
sites.

Each month, Alexa recrawls the Web and rebuilds the
data to pull in new sites and to refine the relationships
between the existing sites. New sites with strong re-
lationships to a site will automatically appear in the
What’s Related list for that site by displacing any sites
with weaker relationships.

Note that since the relationships between sites are
based on strength, What’s Related lists are not nec-
essarily balanced. Site A may appear in the list for
Site B, but Site B may not be in the list for Site A.
Generally, this happens when the number of sites with
strong relationships is greater than ten, or when sites
do not have similar enough content.

3. Implementation

In experimenting with these algorithms, we were
fortunate to have access to Compaq’s Connectivity
Server [2]. The Connectivity Server provides high
speed access to the graph structure of 180 million
URLs (nodes) and the links (edges) that connect
them. The entire graph structure is kept in memory
on a Compaq AlphaServer 4100 with 8 GB of main
memory and dual 466 MHz Alpha processors. The
random access patterns engendered by the connec-
tivity-based algorithms described in this paper mean
that it is important for most or all of the graph to
fit in main memory to prevent high levels of paging
activity.

We implemented a multi-threaded server that ac-
cepts a URL and uses either the Cocitation algorithm
or the Companion algorithm to find pages related to
the given URL. Our server implementation consists
of approximately 5500 lines of commented C code,
of which approximately 1000 lines implement the

Companion algorithm, 400 lines implement the Coc-
itation algorithm, and the remainder are shared code
to perform tasks such as parsing HTTP query re-
quests, printing results, and logging status messages.
We link our server code directly with the Con-
nectivity Server library, and access the connectivity
information by mmapping the graph information into
the address space of our server.

Our implementation of the Companion algorithm
has been subjected to a moderate amount of per-
formance tuning, mostly in designing the neighbor-
hood graph data structures to improve data-cache
performance. The implementation of the Cocitation
algorithm has not been tuned extensively, although it
does share a fair amount of code with the Compan-
ion algorithm, and this shared code has been tuned
somewhat.

4. Evaluation

In this section we describe the evaluation we
performed for the algorithms. Section 4.1 describes
our user study, while Section 4.2 discusses the results
of the study. Section 4.3 evaluates the run time
performance of our algorithms.

4.1. Experimental setup

To compare the different approaches, we per-
formed a user study. We asked 18 volunteers to supply
us with at least two URLs for which they wanted to
find related pages. Our volunteers included 14 com-
puter science professionals (mostly our colleagues at
Compaq’s research laboratories), as well as 4 peo-
ple with other professional careers. We received 69
URLs and used each of the algorithms to determine
the top 10 answers for each URL. We put the answers
in random order and returned them to the volunteers
for rating. The volunteers were instructed as follows:

We want to measure how well each algorithm per-
forms. To measure performance we want to know the
percentage of valuable URLs returned by each algo-
rithm. To be valuable the URL must be both relevant to
the topic you are interested in and a high quality page.
For example, if your URL was www.audi.com and you
get back a newsgroup posting where somebody talks
about his new Audi car, then the page was on topic, but

395

probably not high quality. On the other hand, if you get
www.jaguar.com as an answer, then it is up to you to
decide whether this answer is on topic or not.

Scoring:
0: Page was not valuable=useful
1: Page was valuable=useful
–: Page could not be accessed (i.e. did not exist, or

server was down)

Please ignore the order in which the pages are returned.
So if a later page contains similar content to an earlier
page please rate the latter page as if you had not
seen the earlier page. This will imply that we do not
measure how ‘happy’ you are with a set of answers
returned by an algorithm. Instead we measure how
many valuable answers each algorithm gives.”

4.2. User study results

We received responses rating the answer URLs
for 59 of the input URLs. These 59 input URLs
form the basis of our study. Table 3 shows how
many of these queries the algorithms answered and
how many answer URLs they returned. In many
cases, the algorithms returned links that our users
rated as inaccessible. The column labeled No. of
dead links shows the number of inaccessible pages
among all the answers for each algorithm. For the
purposes of our evaluation, we treat an inaccessible
link as a score of ‘0’, since inaccessible pages are
not valuable=useful.

The Cocitation algorithm returned results for all
but one of the URLs. The reason why it returned
results for almost all input URLs is that when in-
sufficient connectivity was found surrounding an in-
put URL (e.g. a.com/X/Y), the Cocitation algorithm
used a chopped URL as input (e.g. a.com/X). Al-
though we did not include this chopping feature in
our implementation of the Companion algorithm, it is
directly applicable and would enable the Companion

Table 3
Summary of all answers for the algorithms

Algorithm No. of URLs No. of No. of
with answers answers dead links

Companion 50 498 42
Cocitation 58 580 62
Netscape 40 364 29

algorithm to return answers for more URLs. We have
empirically observed that Netscape’s algorithm also
applies a similar chopping heuristic in some cases.

Table 4 contains a listing of the 59 URLs in our
study. For each URL, the three columns labeled Cp,
Ct, and N show the URLs for which the Companion,
Cocitation, and Netscape algorithms returned results,
respectively. The table also shows the number of
hyperlinks pointing to the URL in the Connectivity
Server (Inlinks). For the Companion algorithm, it
shows the number of nodes and edges in the vicinity
graph, as well as the wall clock time in milliseconds
taken to compute the set of related pages (computed
by surrounding the computation with gettimeof-
day system calls). For the cocitation algorithm, it
shows the number of siblings found, the number of
siblings cocited at least twice (Cocited), and the wall
clock time taken to compute the answers.

The three algorithms return answers for differ-
ent subsets of our 59 URLs. To compare these
algorithms, we can subdivide the URLs into sev-
eral groups. The intersection group consists of those
URLs where all algorithms returned at least one
answer. There were 37 URLs in this group. The
non-Netscape group consists of the URLs where
Netscape’s approach did not return any answers. It
consists of 19 URLs.

To quantify the performance of the three algo-
rithms, we now define two metrics. The precision at
r for a given algorithm is the total number of answers
receiving a ‘1’ score within the first r answers, di-
vided by r times the number of query URLs. Notice
that when an algorithm does not give any answers for
a URL, this is as if it gave all non-relevant answers
for that URL.

For a given URL u, the average precision for
u of an algorithm is the sum of the precision at
each rank where the answer of the algorithm for u
received a ‘1’ score divided by the total number of
the answers of the algorithm for u receiving a ‘1’
score. If the algorithm does not return any answers
for u, its average precision for u is 0. The overall
average precision for an algorithm is the sum of all
the average precisions for all the query URLs divided
by the total number of query URLs.

For each of the three groups of URLs (all, in-
tersection, and non-Netscape), Table 5 shows the
average precision and the precision at 10 for each

396

Table 4
User-provided URLs for evaluation (and statistics)

URL Cp Ct N In Companion algorithm Cocitation algorithm
links

Nodes Edges Time Siblings Cocited Time
(ms) (ms)

1. babelfish.altavista.digital.com/cgi...
p p p

29284 6382 10305 269 6601 1079 573
2. developer.intel.com/design/strong/t...

p p p
19 333 479 12 85 39 17

3. english-server.hss.cmu.edu/
p p p

3774 4197 8263 215 6630 2063 584
4. hack.box.sk/

p p p
1666 7963 14090 488 6099 1493 515

5. ieor.berkeley.edu/¾hochbaum/html/bo...
p p

5 64 73 4 49 15 17
6. linas.org/linux/corba.html

p p p
123 2028 4222 77 444 138 48

7. members.tripod.com/¾src-fall-regatt...
p

0 0 0 0 6800 1523 736
8. metroactive.com/music/

p p p
13 201 302 67 168 58 31

9. travelwithkids.miningco.com/
p p

99 744 1051 27 459 128 471
10. www-db.stanford.edu/¾wiener

p p
2 17 18 3 816 301 100

11. www.acf.dhhs.gov/
p p p

1822 5522 14967 394 3659 1401 424
12. www.adventurewest.com/pub/NASTC/

p p p
13 65 92 4 52 16 14

13. www.amazon.com/exec/obidos/cache/br...
p p

0 0 0 0 1149 411 262
14. www.anglia.ac.uk/¾systimk/Humour/Hi...

p
0 0 0 0 103 27 9

15. www.ayso26.org/
p

5 142 169 8 0 0 0
16. www.babynames.com/

p p p
528 2695 4781 110 1826 496 167

17. www.braintumor.org/
p p p

201 779 1763 35 551 212 68
18. www.bris.ac.uk/Depts/Union/BTS/Scri...

p p p
131 505 1084 162 379 152 72

19. www.carrier.com/
p p p

964 2755 5672 123 1837 580 165
20. www.chesschampions.com/kasparov.htm...

p p p
11 57 90 3 535 220 55

21. www.cl.cam.ac.uk/users/rja14/tamper...
p p p

119 741 1256 27 452 155 36
22. www.davecentral.com/

p p p
6909 4703 11391 263 4349 1148 477

23. www.duofold.com/stepout/ski-wsa.htm
p

0 0 0 0 185 66 25
24. www.ebay.com/

p p p
4658 4389 8660 199 5951 1314 493

25. www.etoys.com/
p p p

2579 2294 6153 111 3351 1005 427
26. www.fifa.com/

p p p
12815 6105 12360 349 6452 1452 522

27. www.focus.de/
p p p

7662 4881 14039 361 4208 1301 525
28. www.geocities.com/Paris/Metro/1324/

p p
11 92 138 7 39 15 30

29. www.geocities.com/TheTropics/2442/d...
p p

64 450 685 19 184 65 25
30. www.harappa.com/har/har0.html

p p p
38 235 318 86 202 37 23

31. www.harmony-central.com/MIDI/Doc/tu...
p p p

31 184 249 7 153 27 21
32. www.hotelres.com/

p p p
708 3072 6036 148 2380 889 196

33. www.innovation.ch/java/HTTPClient/
p p p

73 341 639 13 215 68 21
34. www.inquizit.com/

p p
12 62 95 4 54 18 15

35. www.israelidance.com/
p p p

40 210 323 9 173 40 16
36. www.jewishmusic.com/

p p p
399 1617 3111 66 1232 397 134

37. www.joh.cam.ac.uk/
p p

162 557 1027 23 409 114 37
38. www.levenger.com/

p p p
259 1367 2083 51 1116 274 87

39. www.mdl.sandia.gov/micromachine/gal...
p

0 0 0 0 143 61 15
40. www.midiweb.com/

p p p
1967 5304 15549 340 3370 1141 408

41. www.minimed.com/
p p p

217 778 1663 33 573 223 69
42. www.mit.edu/people/mkgray/net/

p p p
258 1138 2124 44 896 287 72

43. www.mot-sps.com/
p p p

391 883 1896 38 499 206 54
44. www.movielink.com/

p p p
12274 6205 11589 337 5622 1207 514

45. www.netusa1.net/¾spost/bench.html
p p

1 9 9 3 944 229 86
46. www.nsc.com/catalog/sg708.html

p p
0 0 0 0 2774 1149 333

47. www.odci.gov/cia/publications/factb...
p p p

3765 4352 8322 221 6708 1962 613
48. www.paccc.com/

p p p
18 409 625 15 64 21 7

49. www.perl.com/perl/index.html
p p p

14 53 92 4 39 18 5
50. www.pianospot.com/1700305.htm

p
0 0 0 0 39 23 85

397

Table 4 (continued)

URL Cp Ct N In Companion algorithm Cocitation algorithm
links

Nodes Edges Time Siblings Cocited Time
(ms) (ms)

51. www.rei-outlet.com /
p p

20 105 163 6 81 16 16
52. www.sddt.com/files/library/94headli...

p p p
9 31 66 3 3647 1260 386

53. www.sultry.arts.su.edu.au/links/lin...
p p

54 258 461 11 210 74 21
54. www.telemarque.com/articles/andrnch...

p p
0 0 0 0 607 241 61

55. www.trane.com/
p p p

900 2965 6201 140 2096 684 181
56. www.traxxx.de/

p p
1219 4607 10560 304 3355 1184 478

57. www.us-soccer.com/
p p p

1175 3458 8515 201 2344 865 230
58. www.wisdom.weizmann.ac.il/¾naor/puz...

p p
8 49 65 3 96 16 10

59. www.wwa.com/¾android7/pilot/index.h...
p

0 0 0 0 1846 709 214

algorithm. Fig. 1 shows the precision at r for each of
these groups of URLs in graphs a, b and c. Fig. 1a
and b illustrate that the Companion and Cocitation
algorithms substantially outperform Netscape’s al-
gorithm at all ranks, and the Companion algorithm
almost always outperforms the Cocitation algorithm.

The intersection group is the most interesting
comparison, since it avoids penalizing an algorithm
for not returning at least one answer. For the inter-
section group, Netscape’s algorithm achieves a preci-
sion at 10 of 0.357, while the Companion algorithm
achieves a precision at 10 of 0.501 (40% better), and
the Cocitation algorithm achieves a precision at 10
of 0.435 (22% better). The average precision in the
intersection group does not penalize an algorithm for
returning fewer than 10 answers. Under this met-
ric, the Companion algorithm is 32% better than
Netscape’s algorithm, while the Cocitation algorithm
is 20% better than Netscape’s algorithm.

In the group that includes all URLs, all three al-
gorithms had drops in their precision at 10 values.
There are two reasons for this. The first is that algo-
rithms were given a precision of 0 for a given URL if
they did not return any answers. This mostly affected

Table 5
Precision metrics for each algorithm for three groups of URLs

Algorithm All Intersection Non-Netscape

Average precision Precision at 10 Average precision Precision at 10 Average precision Precision at 10

Companion 0.541 0.417 0.666 0.501 0.540 0.401
Cocitation 0.518 0.363 0.605 0.435 0.434 0.325
Netscape 0.343 0.241 0.502 0.357 n=a n=a

the Netscape and Companion algorithms. The sec-
ond reason is that for the URLs in the non-Netscape
set, both the Companion and Cocitation algorithms
did not perform as well as they did for URLs in
the Intersection set. Despite these drops in absolute
average precision, the average precision of the Com-
panion algorithm is 57% better than that of Netscape,
and the average precision of the Cocitation algorithm
is 51% better than that of Netscape. Similar results
hold when examining average precision rather than
precision at 10.

To evaluate the statistical significance of our re-
sults, we computed the sign test and the Wilcoxson
sums of ranks test for each pair of algorithms [18].
These results are shown in Table 6 and show that
the difference between the Companion and Netscape
algorithms and between the Cocitation and Netscape
algorithms are statistically significant.

We also wanted to evaluate whether or not the
algorithms were generally returning the same results
for a given URL or whether they were returning
largely disjoint sets of URLs. Table 7 shows the
amount of overlap in the answers returned by each
pair of algorithms. The percentage in parentheses

398

1 10

r

0.0

0.2

0.4

0.6

0.8

1.0
P

re
ci

si
on

(a) All

Companion
Cocitation
Netscape

1 10

r

0.0

0.2

0.4

0.6

0.8

1.0

(b) Intersection

1 10

r

0.0

0.2

0.4

0.6

0.8

1.0

(c) Non-Netscape
Fig. 1. Precision at r for the three groups of URLs.

Table 6
Sign test and Wilcoxon sum of ranks test for algorithm pairs

Algorithm All Intersection Non-Netscape

Sign Rank sum Sign Rank sum Sign Rank sum

Companion better than Netscape <0.0001 0.0026 0.0041 0.0340 n=a n=a
Cocitation better than Netscape 0.0136 0.0164 0.1685 0.2340 n=a n=a
Companion better than Cocitation 0.1922 0.3898 0.0793 0.2628 0.2643 0.4180

Table 7
Overlap between answers returned by algorithms

Algorithm Companion Cocitation Netscape

Companion 253 (51%) 55 (11%)
Cocitation 253 (44%) 56 (10%)
Netscape 55 (15%) 56 (15%)

is the overlap divided by the total number of an-
swers returned by the algorithm in that row. As the
table shows, there is a large overlap between the
answers returned by the Companion and Cocitation
algorithms. This is not surprising, since the two
algorithms are both based on connectivity informa-
tion surrounding the input URL and since both use
similar parameters to choose the surrounding nodes.
There is relatively little overlap between the answers
returned by Netscape and the other two algorithms.

4.3. Run-time performance

In this section, we present data about the run-
time performance of the Companion and Cocitation
algorithms. Since we do not have direct access to
Netscape’s algorithm and only access it through the

public Web interface, we are unable to present per-
formance information for Netscape’s algorithm. All
measurements were performed on a Compaq Al-
phaServer 4100 with 8 GB of main memory and dual
466 MHz Alpha processors. The measured running
times are wall clock times from the time the input
URL is given to the server until the time the answers
are returned. These times do not include the time
taken to format the results as an HTML page, since
that was done by a server process running on another
machine (and the time to do this was negligible).

The average running time for the Companion
algorithm on the 50 URLs for which it returned
answers was 109 msec, while the average running
time for the Cocitation algorithm on the 58 URLs
for which it provided answers was 195 msec. The
performance of both these algorithms is sufficiently
fast that either one could handle a large amount
of traffic (close to 800,000 requests per day for
the Companion algorithm). Furthermore, the average
performance could probably be improved by caching
answers for frequently requested URLs.

Although we did not explicitly include this factor
in our user study, we have informally observed that
the subjective quality of answers returned for both

399

0 5000 10000 15000

Graph edges

0

100

200

300

400

C
om

pa
ni

on
 ti

m
e

(m
se

c)

(a)

0 2000 4000 6000

of siblings

0

200

400

600

C
oc

ita
tio

n
tim

e
(m

se
c)

(b)

Fig. 2. Graph size versus running time of Companion and Cocitation algs.

the Companion and the Cocitation algorithms does
not decrease when we somewhat decrease the param-
eter B (the number of inlinks considered) during the
building of the vicinity graph. This is important for
on-line services because it means that the graph size
could be reduced during times of high load, thereby
reducing the amount of time taken to service each
request. Under conditions of low load, the graph size
could be increased.

The Companion algorithm generally converges on
its answers within a few iterations (typically less than
10 iterations), but the number of iterations increases
with the graph size. Each iteration takes time that is
linear in the number of edges in the vicinity graph.
We plot the running time versus the number of graph
edges in Fig. 2a.

The running time of the Cocitation algorithm
is O.n log n/, where n is the number of siblings
examined for cocitation, since it sorts the siblings by
the degree of cocitation. This effect is illustrated in
Fig. 2b. In our experience, the running times for the
cocitation and companion algorithms are generally
correlated, since URLs which have a large number
of siblings to consider in the cocitation algorithm
also generally produce a large neighborhood graph
for processing in the companion algorithm.

5. Related work

Many researchers have proposed schemes for us-
ing the hyperlink structure of the Web [1,3,4,8,12,

16,17,20,22,23]. For the most part, this work does
not discuss the finding of related pages, with four
exceptions discussed below.

We know of only one previous work that exploits
the order of links: Chakrabarti et al. [6] use the links
and their order to categorize Web pages and they
show that the links that are near a given link in page
order frequently point to pages on the same topic.

Previous authors have suggested using cocitation
and other forms of connectivity to identify related
Web pages. Spertus observed that cocitation can in-
dicate that two pages are related [20]. That is, if
page A points to both pages B and C, then B and C
might be related. Various researchers in the field of
bibliometrics have also observed this [9–11,19], and
this observation forms the basis of our Cocitation
algorithm. The notion of collaborative filtering, al-
though it is based on user’s recommendations rather
than hyperlinks, also relies on this observation [21].
Pitkow and Pirolli [16] cluster Web pages based on
cocitation analysis. Terveen and Hill [22] use the
connectivity structure of the Web to find groups of
related Web sites.

Our companion algorithm descended from the
HITS algorithm developed by Kleinberg [12]. The
HITS algorithm was originally proposed by Klein-
berg as a way of using connectivity structure to iden-
tify the most authoritative sources of information on
a particular topic, where the topic was defined by the
combined link structure of a large number of starting
nodes on the topic. Kleinberg also proposed that the
HITS algorithm could be used to find related pages

400

when the topic was defined by just a single node.
The Companion algorithm used HITS algorithm as
a starting point and extended and modified it in four
main ways:
(1) Kleinberg suggested using the following graph

to find related pages: Take a fixed number (say
200) of parents of the given URL and call the set
consisting of the URL and these parents the start
set. Now build the graph consisting of all nodes
pointing to a node in the start set or pointed
to by a node in the start set. This means that
‘grandparents’ of u are included in the graph,
while nodes that share a child with u are not
included in the graph. We believe that the latter
nodes are more likely to be related to u than
are the ‘grandparent’ nodes. Therefore our vicin-
ity graph is structured to exclude grandparent
nodes but to include nodes that share a child
with u.

(2) We exploit the order of the links on a page
to determine which ‘siblings’ of u to include.
When we added this feature, the precision of our
algorithm improved noticably.

(3) The original HITS algorithm did not have edge
weights. We use edge weights to reduce the
influence of pages that all reside on one host,
since Bharat and Henzinger have shown that
edge weights improve the precision [3].

(4) We also merge nodes in our vicinity graph that
have a large number of duplicate links. Dupli-
cate nodes are not such a serious problem when
using the HITS or imp algorithms to rank query
results, since the start set consists of a large
number of URLs. However, when forming the
vicinity graph starting with just a single URL,
the influence of duplicate nodes is increased be-
cause duplicate nodes with a large number of out
links will quickly dominate the hub and authority
computation.

Kleinberg also showed that HITS computes the
principal eigenvector of the matrix AAT, where A is
the adjacency matrix of the above graph, and sug-
gested using non-principal eigenvectors for finding
related pages. Finally, he gave anecdotal evidence
that HITS might work well.

Consecutively, a sequence of papers [5,7] pre-
sented improvements on HITS and used it to popu-
late a given hierarchy of categories.

6. Conclusion

We have presented two different algorithms for
finding related pages in the World Wide Web. They
significantly outperform Netscape’s algorithm for
finding related pages. The algorithms can be imple-
mented efficiently and are suitable for use within a
large scale Web service providing a related pages
feature.

Our two algorithms can be extended to handle
more than one input URL. In this case, the algo-
rithms would compute pages that are related to all
input URLs. We are currently exploring these exten-
sions.

Acknowledgements

This work has benefited greatly from discussions
we have had with Krishna Bharat, Andrei Broder,
Puneet Kumar, and Hannes Marais. We are also
indebted to Puneet for his work on the Connec-
tivity Server. As some of the earliest users of the
server, Puneet answered our many questions and
implemented many improvements to the server in
response to our suggestions. We are also grateful to
Hannes Marais for developing WebL, a Web script-
ing language [13]. Using WebL, we were able to
quickly develop a prototype user interface for our
related pages server. Krishna Bharat, Allan Heydon,
and Hannes Marais provided useful feedback on ear-
lier drafts of this paper. Finally, we would like to
thank all the participants in our user study.

References

[1] G.O. Arocena, A.O. Mendelzon and G.A. Mihaila, Appli-
cations of a web query language, in: Proc. of the Sixth
International World Wide Web Conference, pp. 587–595,
Santa Clara, CA, April, 1997.

[2] K. Bharat, A.Z. Broder, M. Henzinger, P. Kumar and S.
Venkatasubramanian, The connectivity server: fast access
to linkage information on the Web, in: Proc. of the 7th
International World Wide Web Conference, pp. 469–477,
Brisbane, Qld, April 1998.

[3] K. Bharat and M. Henzinger, Improved algorithms for topic
distillation in hyperlinked environments, in: Proc. of the
21st International ACM SIGIR Conference on Research

401

and Development in Information Retrieval (SIGIR’98), pp.
104–111, 1998.

[4] S. Brin and L. Page, The anatomy of a large-scale hyper-
textual Web search engine, in: Proc. of the 7th International
World Wide Web Conference, pp. 107–117, Brisbane, Qld.,
April 1998.

[5] S. Chakrabarti, B. Dom, D. Gibson, S.R. Kumar, P. Ragha-
van, S. Rajagopalan and A. Tomkins, Experiments in topic
distillation, in: ACM–SIGIR’98 Post-Conference Workshop
on Hypertext Information Retrieval for the Web, 1998.

[6] S. Chakrabarti, B. Dom and P. Indyk, Enhanced hypertext
categorization using hyperlinks, in: Proc. of the ACM SIG-
MOD International Conference on Management of Data,
pp. 307–318, 1998.

[7] S. Chakrabarti, B. Dom, P. Raghavan, S. Rajagopalan, D.
Gibson and J. Kleinberg, Automatic resource compilation
by analyzing hyperlink structure and associated text, in:
Proc. of the Sixth International World Wide Web Confer-
ence, pp. 65–74, Santa Clara, CA, April 1997.

[8] J. Carriere and R. Kazman, WebQuery: Searching and visu-
alizing the web through connectivity, in: Proc. of the Sixth
International World Wide Web Conference, pp. 701–711,
Santa Clara, CA, April 1998.

[9] E. Garfield, Citation analysis as a tool in journal evaluation,
Science 178 (1972).

[10] E. Garfield, Citation Indexing, ISI Press, Philadelphia, PA,
1979.

[11] M.M. Kessler, Bibliographic coupling between scientific
papers, American Documentation 14 (1963).

[12] J. Kleinberg, Authoritative sources in a hyperlinked envi-
ronment, in: Proc. of the 9th Annual ACM–SIAM Sympo-
sium on Discrete Algorithms, pp. 668–677, January 1998.

[13] T. Kistler and H. Marais, WebL — A programming lan-
guage for the Web, in: Proc. of the 7th International World
Wide Web Conference, pp. 259–270, Brisbane, Qld., April
1998.

[14] Netscape Communications Corporation, ‘What’s Related
FAQ’ web page, http://home.netscape.com/escapes/related/f
aq.html

[15] Netscape Communications Corporation, ‘What’s Related’
web page, http://home.netscape.com/escapes/related/

[16] J. Pitkow and P. Pirolli, Life, death, and lawfulness on the
electronic frontier, in: Proc. of the Conference on Human
Factors in Computing Systems (CHI 97), pp. 383–390,
March 1997.

[17] P. Pirolli, J. Pitkow and R. Rao, Silk from a sow’s ear:

Extracting usable structures from the Web, in: Proc. of the
Conference on Human Factors in Computing Systems (CHI
96), pp. 118–125, April 1996.

[18] S.M. Ross, Introductory Statistics, McGraw-Hill, New
York, 1996.

[19] H. Small, Co-citation in the scientific literature: a new mea-
sure of the relationship between two documents, Journal
American Society Information Science 24 (1973).

[20] E. Spertus, ParaSite: Mining structural information on the
Web, in: Proc. of the Sixth International World Wide Web
Conference, pp. 587–595, Santa Clara, CA, April 1997.

[21] U. Shardanand and P. Maes, Social information filtering:
Algorithms for automating ‘Word of Mouth’, in: Proc. of
the 1995 Conference on Human Factors in Computing
Systems (CHI’95), 1995.

[22] L. Terveen and W. Hill, Finding and visualizing inter-site
clan graphs, in: Proc. of the Conference on Human Factors
in Computing Systems (CHI-98): Making the Impossible
Possible, pp. 448–455, ACM Press, New York, April 18–
23, 1998.

[23] L. Terveen and W. Hill, Evaluating emergent collabora-
tion on the Web, in: Proc. of ACM CSCW’98 Conference
on Computer-Supported Cooperative Work, pp. 355–362,
Social Filtering, Social Influences, 1998.

Jeffrey Dean received his Ph.D. from the University of Washing-
ton in 1996, working on efficient implementation techniques for
object-oriented languages under Professor Craig Chambers. He
joined Compaq’s Western Research Laboratory in 1996, where
he worked on profiling techniques, performance monitoring hard-
ware, compiler algorithms and information retrieval. In February,
1999, he joined mySimon, Inc., where he is currently working on
scalable comparison shopping systems for the World Wide Web.
His current research interests include information retrieval and
the development of scalable systems for the World Wide Web.
He is two continents shy of his goal of playing basketball on
every continent.

Monika R. Henzinger received her Ph.D. from Princeton Uni-
versity in 1993 under the supervision of Robert E. Tarjan. Af-
terwards, she was an assistant professor in Computer Science
at Cornell University. She joined the Digital Systems Research
Center (now Compaq Computer Corporation’s Systems Research
Center) in 1996. Her current research interests are information
retrieval on the World Wide Web and algorithmic problems
arising in this context.

