
A Fast Parameter-Free Preconditioner for Structured
Grid Problems

Abhinav Aggarwal
Google London

Email: abhinavagg96@gmail.com

Sivam Kakkar
CSTAR, IIIT,H, Hyderabad

Email: shivam543@gmail.com

Pawan Kumar
CSTAR, IIIT,H, Hyderabad

Email: pawan.kumar@iiit.ac.in

Abstract—A fast, robust, parallel, and parameter free version
of a frequency filtering preconditioner is proposed for linear
systems corresponding to diffusion equation on a structured grid.
Proposed solver is faster than the state-of-the-art solvers.

Index Terms—Multithreading, Large Sparse Linear System,
Conjugate Gradient Method, Preconditioner

I. INTRODUCTION

We consider the problem of solving large sparse linear
systems of the form

Ax = b, A ∈ Rm×m, b ∈ Rm, (1)
which arises, for example, during the numerical solution of
the following diffusion equation

−div(κ(x)∇u) = f in Ω,

u = 0 on ∂ΩD,

∂u

∂n
= 0 on ∂ΩN .

(2)

Here Ω is the interior of the domain, and ∂ΩD and ∂ΩN

are the Dirichlet and Neumann boundaries respectively. Such
problems appear as subproblems to wide variety of numeri-
cal simulations in fluid dynamics, material science, etc. On
a structured grid, the discretization schemes such as finite
difference, finite element, and finite volume methods lead to a
“nested” block tridiagonal matrix. Exploiting this structure is
essential to obtaining a scalable and memory efficient solver.
To know more about other solvers for this problem, see [1].

II. THE PROPOSED FILTERING PRECONDITIONER

A matrix arising from a finite difference of finite element
discretization on a structure 3D grid leads to a nested tridi-
agonal structure. Let the plane block be denoted by D̂i, the
line blocks by Di, and the cell blocks by D̃i. Similarly, let
us denote the interface unknowns for plane blocks be denoted
by L̂i, Ûi, line blocks by Li, U i, and so on. The blocks are
twisted around middle block row, see [1]. We next define the
preconditioner that exploits this nested tridiagonal structure.

A. Construction of Twisted Filtering Preconditioner

To expose parallelism in the proposed Filtering Decomposi-
tion (called NTD), In actual implementation, we only need to
store the bands of A. To create the preconditioner, we first con-
sider the block LU factorization A = (P + L3)(I + P−1U3).
The A in this equation is already known to us, and on
simplifying the right hand side, and solving for diagonal
blocks Pi of P, we get the following recurrence solution for

Pi

Pi =



D̂1, i = 1,

D̂i − L̂i−1
3 (P−1

i−1)Û i−1
3 , i = 2, · · · , j − 1,

D̂nz, i = nz,

D̂i − L̂i
3(P−1

i+1)Û i
3, i = nz − 1, · · · , j + 1,

D̂i − L̂i−1
3 (P−1

i−1)Û i−1
3 − L̂i

3(P−1
i+1)Û i

3, i = j.

(3)

In the above iteration, as i increases, Pi tends to be-
come denser, hence, it is costly to compute terms such as
L̂i−1
3 (P−1i−1)Û i−1

3 . Moreover, storing Pi is costly, hence, we
will replace P−1i by its sparse approximation. Reusing the
notation Pi for approximated Pi, we define the following
approximation to Pi

Pi =



D̂1, i = 1,

D̂i − L̂i−1
3 (2βi−1 − βi−1Pi−1βi−1)Û i−1

3 ,

i = 2, · · · , j − 1,

D̂nz, i = nz,

D̂i − L̂i
3(2βi+1 − βi+1Pi+1βi+1)Û i

3,

i = nz − 1, · · · , j + 1,

D̂i − L̂i−1
3 (2βi−1 − βi−1Pi−1βi−1)Û i−1

3

−L̂i
3(2βi+1 − βi+1Pi+1βi+1)Û i

3, i = j.

(4)

Here j is the block row index where the twist happens, βi are
diagonal matrices defined as

βi = diag((P−1
i−1Û

i−1)./(Û i−1t̂i)),

where t̂i is a vector of all ones, and 2βi−1 − βi−1Pi−1βi−1,
or 2βi+1 − βi+1Pi+1βi+1 for the lower half is claimed to be
a better approximation to (Pi)

−1. Note that the product on
the rhs no longer equals A after substituting P−1 with it’s β
approximated form. After approximation, we define the NTD
preconditiner BNTD as follows

BNTD = (P + L3)(I + P−1U3). (5)
Since β′is are diagonals, the sparsity pattern of Pi is same as
that of D̂i. Hence, like D̂i blocks, the individual Pi blocks are
themselves nested block tridiagonal, we can obtain a further
factorization as follows

P = (T + L2)(I + T−1U2). (6)
As for Pi blocks before, we have the following recurrence
solution for Ti blocks

Ti =



D1, i = 1,

Di − L
i−1
2 (2βi−1 − βi−1Ti−1βi−1)U

i−1
2 ,

i = 2, · · · , j − 1,

Dnz, i = nz,

Di − L
i
2(2βi+1 − βi+1Ti+1βi+1)U

i
2,

i = nz − 1, · · · , j + 1,

Di−L
i−1
2 (2βi−1 − βi−1Ti−1βi−1)U

i−1
2

−Li
2(2βi+1 − βi+1Ti+1βi+1)U

i
2, i = j,

(7)



where j is the block row index, β′is are diagonal matrices
defined as βi = diag((T−1i−1U

i−1
)./(U

i−1
t̄i)), where t̄i is

vector of all ones, and as shown above, we consider the
approximation 2βi−1 − βi−1Ti−1βi−1 for upper half, and
similarly the approximation 2βi+1 − βi+1Ti+1βi+1 for the
lower half is claimed to be a better approximation to (Ti)

−1.
Again sparsity pattern of Ti is same as D̄i, i.e., the Ti

blocks are themselves pointwise tridiagonal matrices, and can
be approximated similarly as follows:

T = (M + L1)(I +M−1U1). (8)
Since T is block diagonal with tridiagonal blocks, the above
factorization is exact. We obtain the recurrence for Mi as
follows:

Mi =



D̃1, i = 1,

D̃i − L̃i−1
1 M−1

i−1Ũ
i−1
1 , i = 2, · · · , j − 1,

D̃nz, i = nz,

D̃i − L̃i
1M

−1
i+1Ũ

i
1, i = nz − 1, · · · , j + 1,

D̃i−L̃i−1
1 M−1

i−1Ũ
i−1
1 − L̃i

1M
−1
i+1Ũ

i
1, i = j,

(9)

where j is the row index, and M−1i−1 (or M−1i+1) is reciprocal
of Mi−1 (or Mi+1). Note that during construction of the
preconditioner, we only need to store the bands as vectors
with proper padding by zeros. Also, note that to extract these
bands, we do not construct the matrices T, P, and B. We
only extract these bands during the recurrence for Ti and
Pi. Also, the outermost bands `3 and u3 are same as the
outermost bands of A. We note that due to twists, there is
two way parallelism in computing Pi, Ti, and Mi, hence a
total of 8-way parallelism. We found it more efficient to use
SIMD operations for recurrence for Mi, see [1] for details.
Due to the twists, solves and setup can now be done in parallel.
For more parallelism, the solver can be used as a subdomain
solver inside additive Schwarz, or other structured domain
decomposition solver. See [1] for details.

III. EXPERIMENTAL DETAILS

All the results shown have been obtained by running the
experiments on intel i7-7700K CPU with 4 physical cores,
64 GB DDR4 RAM. The compiler version used is gcc 7.3
with -march=native and -O3 flags.

1) Test Matrices: We consider Type-1, Type-2, and Type-3
matrices. Details can be found in [1].

2) Smoothing high frequency components of error:: As
in multigrid, we use incomplete LU factorization of given
matrix A with no fill-in as a smoother and combine it with
NTD preconditioner described previously. The combination
preconditioner denoted by Bc can be defined as follows:

B−1
c = B−1

NTD +B−1
ILU0 −B

−1
NTDAB

−1
ILU0, (10)

where BILU0 denotes the ILU preconditioner [2].
3) Parallel Solve with Preconditioner:: From the equation

(10) above, we notice that solving with the preconditioner Bc
requires solving with BNTD and BILU0, and a matrix vector
multiplication with the given coefficient matrix A. We have
showed how to solve with BNTD on a quad core in previous
sections. The solve with BILU0 requires triangular solves, i.e.
forward sweep followed by a backward sweep, which are
inherently sequential in nature. To address this bottleneck,
instead of doing ILU0 for full matrix A, we do an ILU0 of a
block diagonal approximation Ã of matrix A, where

Ã = blkD(A(1 : M, 1 : M), A(M + 1 : N,M + 1 : N)),

Setup Time

1 2 30
500
1000
1500
2000 NTDHYPREAGMGHSLILU0

Fig. 1. Setup Time for Various Solvers

Solve Time

1 2 30
100
200
300
400 NTDHYPREAGMGHSLILU0

Fig. 2. Solve Time for Various Solvers

where M = floor(N/2), and blkD stands for block diagonal.
Such an approximation does not lead to any degradation in the
performance of the combination preconditioner, and allowed
us to engage two threads during the construction and solve
phase of BILU0. For the matrix times vector operation, we have
implemented a parallel banded matrix vector multiply routine
engaging 4 threads, further leveraging SIMD operations inside
each thread. Please refer to [1].

4) Parameters for conjugate gradient:: For detail on pa-
rameters used for solvers, please refer to [1].

IV. NUMERICAL EXPERIMENTS

The number of unknowns of the linear system is 43 Million.
The figures 1 and 2 show clearly that the proposed solver

NTD is fastest solve times for all types of the problems. In
setup times, it is as fast as AGMG. In total time, it is fastest
on type-1, and comparable to AGMG for type-2 and type-3
problems. Also, the iterations are plotted in Fig 3. Note that
bar plots for setup and solve times corresponding to HSL for
type-1 matrix is missing due to an error thrown when running.
Also, compared to other methods, our method does not require
parameter tuning. We choose best parameters for others.

REFERENCES

[1] A. Aggarwal, S. Kakkar, P. Kumar, Multithreaded Filtering Precondi-
tioner for Diffusion Equation on Structured Grid, arXiv 1909.09771v1,
2020

[2] Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS publishing
company, Boston, MA, 1996.

Iterations

1 2 30
50
100
150
200 NTDHYPREAGMGHSLILU0

Fig. 3. CG Iterations for Various Solvers


