
A FAST PARAMETER-FREE PRECONDITIONER FOR STRUCTURED GRID PROBLEMS
ABHINAV AGGARWAL, SHIVAM KAKKAR, PAWAN KUMAR

GOOGLE, LONDON AND IIIT, HYDERABAD
DEPARTMENT OF COMPUTER SCIENCE

INTRODUCTION
We consider the problem of solving large sparse linear systems of the
form

Ax = b, A ∈ Rm×m, b ∈ Rm, (1)

which arises, for example, during the numerical solution of the following
diffusion equation

−div(κ(x)∇u) = f in Ω,

u = 0 on ∂ΩD,

∂u

∂n
= 0 on ∂ΩN .

(2)

Here Ω is the interior of the domain, and ∂ΩD and ∂ΩN are the Dirichlet
and Neumann boundaries respectively. Such problems appear as sub-
problems to wide variety of numerical simulations in fluid dynamics,
material science, etc. On a structured grid, the discretization schemes
such as finite difference, finite element, and finite volume methods lead
to a “nested" block tridiagonal matrix. Exploiting this structure is essen-
tial to obtaining a scalable and memory efficient solver. To know more
about other solvers for this problem, see [1].

OBJECTIVES
To design fast and memory efficient linear solver for structured linear
system.

GRAPHICAL RESULTS

Setup Time

1 2 3
0

500

1000

1500

2000
NTD
HYPRE
AGMG
HSL
ILU0

Figure 1: Comparison of setup times for various solvers.

Solve Time

1 2 3
0

100

200

300

400
NTD
HYPRE
AGMG
HSL
ILU0

Figure 2: Comparison of solve times for various solvers..

Total Time

1 2 3
0

500

1000

1500

2000

2500
NTD
HYPRE
AGMG
HSL
ILU0

Figure 3: Comparison of total time (setup+solve) for various solvers.

Iterations

1 2 3
0

50

100

150

200
NTD
HYPRE
AGMG
HSL
ILU0

Figure 4: Comparison of iterations for various solvers.

REFERENCES

[1] A. Aggarwal, S. Kakkar, P. Kumar, Multithreaded Filtering Preconditioner for Diffusion Equation on Structured Grid, arXiv 1909.09771v1, 2020

[2] Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS publishing company, Boston, MA, 1996.

ONGOING RESEARCH
The ongoing research is on testing the proposed solver as subdomain solver in structured domain decomposition methods.

NUMERICAL EXPERIMENTS
All the results shown have been obtained by running the experiments on intel i7-7700K CPU with 4 physical cores, 64 GB DDR4 RAM. The compiler
version used is gcc 7.3 with -march=native and -O3 flags.
We consider Type-1, Type-2, and Type-3 matrices. Details can be found in [1].
As in multigrid, we use incomplete LU factorization of given matrixAwith no fill-in as a smoother and combine it with NTD preconditioner described
previously. The combination preconditioner denoted by Bc can be defined as follows:

B−1
c = B−1

NTD +B−1
ILU0 −B

−1
NTDAB

−1
ILU0, (3)

where BILU0 denotes the ILU preconditioner [2].
From the equation (3) above, we notice that solving with the preconditioner Bc requires solving with BNTD and BILU0, and a matrix vector multiplica-
tion with the given coefficient matrix A. We have showed how to solve with BNTD on a quad core in previous sections. The solve with BILU0 requires
triangular solves, i.e. forward sweep followed by a backward sweep, which are inherently sequential in nature.
To address this bottleneck, instead of doing ILU0 for full matrix A, we do an ILU0 of a block diagonal approximation Ã of matrix A.
Such an approximation does not lead to any degradation in the performance of the combination preconditioner, and allowed us to engage two threads
during the construction and solve phase of B
ILU0.
For the matrix times vector operation, we have implemented a parallel banded matrix vector multiply routine engaging 4 threads, further leveraging
SIMD operations inside each thread. Please refer to [1].
Parameters for conjugate gradient: For detail on parameters used for solvers, please refer to [1].
The number of unknowns of the linear system is 43 Million.
The figures 1 and 2 show clearly that the proposed solver NTD is fastest solve times for all types of the problems. In setup times, it is as fast as AGMG.
In total time, it is fastest on type-1, and comparable to AGMG for type-2 and type-3 problems. Also, the iterations are plotted in Fig 4. Note that bar
corresponding to HSL for type-1 matrix is missing, because the code error for this method for this type. Also, compared to the methods, our method
does not require parameter tuning. For other methods, we choose best parameters.
For detailed analysis of experimental results and the state-of-the-art solvers, see the detailed report [1].

PROPOSED METHOD
A matrix arising from a finite difference of finite element discretization
on a structure 3D grid leads to a nested tridiagonal structure. Let the
plane block be denoted by D̂i, the line blocks by Di, and the cell blocks
by D̃i. Similarly, let us denote the interface unknowns for plane blocks be
denoted by L̂i, Ûi, line blocks byLi, U i, and so on. The blocks are twisted
around middle block row, see [1]. We next define the preconditioner that
exploits this nested tridiagonal structure.
To expose parallelism in the proposed Filtering Decomposition (called
NTD), In actual implementation, we only need to store the bands of A.
To create the preconditioner, we first consider the block LU factorization
A = (P +L3)(I+P−1U3). The A in this equation is already known to us,
and on simplifying the right hand side, and solving for diagonal blocks
Pi of P, we get the following recurrence solution for Pi

Pi =



D̂1, i = 1,

D̂i − L̂i−1
3 (P−1

i−1)Û i−1
3 , i = 2, · · · , j − 1,

D̂nz, i = nz,

D̂i − L̂i
3(P−1

i+1)Û i
3, i = nz − 1, · · · , j + 1,

D̂i − L̂i−1
3 (P−1

i−1)Û i−1
3 − L̂i

3(P−1
i+1)Û i

3, i = j.

(4)

In the above iteration, as i increases, Pi tends to become denser, hence,
it is costly to compute terms such as L̂i−1

3 (P−1i−1)Û i−1
3 . Moreover, stor-

ing Pi is costly, hence, we will replace P−1i by its sparse approximation.
Reusing the notation Pi for approximated Pi, we define the following
approximation to Pi

Pi =



D̂1, i = 1,

D̂i − L̂i−1
3 (2βi−1 − βi−1Pi−1βi−1)Û i−1

3 ,

i = 2, · · · , j − 1,

D̂nz, i = nz,

D̂i − L̂i
3(2βi+1 − βi+1Pi+1βi+1)Û i

3,

i = nz − 1, · · · , j + 1,

D̂i − L̂i−1
3 (2βi−1 − βi−1Pi−1βi−1)Û i−1

3

−L̂i
3(2βi+1 − βi+1Pi+1βi+1)Û i

3, i = j.

(5)

THE PROPOSED METHOD CONTINUED
Here j is the block row index where the twist happens, βi are diagonal
matrices defined as

βi = diag((P−1
i−1Û

i−1)./(Û i−1t̂i)),

where t̂i is a vector of all ones, and 2βi−1 − βi−1Pi−1βi−1, or 2βi+1 −
βi+1Pi+1βi+1 for the lower half is claimed to be a better approximation
to (Pi)

−1. Note that the product on the rhs no longer equals A after
substituting P−1 with it’s β approximated form. After approximation,
we define the NTD preconditiner BNTD as follows

BNTD = (P + L3)(I + P−1U3). (6)

Since β′is are diagonals, the sparsity pattern of Pi is same as that of D̂i.

Hence, like D̂i blocks, the individual Pi blocks are themselves nested
block tridiagonal, we can obtain a further factorization as follows

P = (T + L2)(I + T−1U2). (7)

As for Pi blocks before, we have the following recurrence solution for Ti
blocks

Ti =



D1, i = 1,

Di − L
i−1
2 (2βi−1 − βi−1Ti−1βi−1)U

i−1
2 ,

i = 2, · · · , j − 1,

Dnz, i = nz,

Di − L
i
2(2βi+1 − βi+1Ti+1βi+1)U

i
2,

i = nz − 1, · · · , j + 1,

Di−L
i−1
2 (2βi−1 − βi−1Ti−1βi−1)U

i−1
2

−Li
2(2βi+1 − βi+1Ti+1βi+1)U

i
2, i = j,

(8)

where j is the block row index, β′is are diagonal matrices defined as βi =

diag((T−1i−1U
i−1

)./(U
i−1

t̄i)), where t̄i is vector of all ones, and as shown
above, we consider the approximation 2βi−1 − βi−1Ti−1βi−1 for upper
half, and similarly the approximation 2βi+1−βi+1Ti+1βi+1 for the lower
half is claimed to be a better approximation to (Ti)

−1.
Again sparsity pattern of Ti is same as D̄i, i.e., the Ti blocks are them-
selves pointwise tridiagonal matrices, and can be approximated simi-
larly as follows:

T = (M + L1)(I +M−1U1). (9)

Since T is block diagonal with tridiagonal blocks, the above factorization
is exact. We obtain the recurrence for Mi as follows:

Mi =



D̃1, i = 1,

D̃i − L̃i−1
1 M−1

i−1Ũ
i−1
1 , i = 2, · · · , j − 1,

D̃nz, i = nz,

D̃i − L̃i
1M

−1
i+1Ũ

i
1, i = nz − 1, · · · , j + 1,

D̃i−L̃i−1
1 M−1

i−1Ũ
i−1
1 − L̃i

1M
−1
i+1Ũ

i
1, i = j,

(10)

where j is the row index, and M−1i−1 (or M−1i+1) is reciprocal of Mi−1 (or
Mi+1). Note that during construction of the preconditioner, we only
need to store the bands as vectors with proper padding by zeros.
Also, note that to extract these bands, we do not construct the matrices
T, P, andB.We only extract these bands during the recurrence for Ti and
Pi.Also, the outermost bands `3 and u3 are same as the outermost bands
of A. We note that due to twists, there is two way parallelism in comput-
ing Pi, Ti, and Mi, hence a total of 8-way parallelism. We found it more
efficient to use SIMD operations for recurrence for Mi, see [1] for details.
Due to the twists, solves and setup can now be done in parallel. For more
parallelism, the solver can be used as a subdomain solver inside additive
Schwarz, or other structured domain decomposition solver. See [1] for
details.


