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Abstract

We present in this paper a methodology for computing the maximum velocity profile over a trajectory planned for a mobile robot. Environment
and robot dynamics as well as the constraints of the robot sensors determine the profile. The planned profile is indicative of maximum speeds
that can be possessed by the robot along its path without colliding with any of the mobile objects that could intercept its future trajectory. The
mobile objects could be arbitrary in number and the only information available regarding them is their maximum possible velocity. The velocity
profile also enables one to deform planned trajectories for better trajectory time. The methodology has been adopted for holonomic and non-
holonomic motion planners. An extension of the approach to an online real-time scheme that modifies and adapts the path as well as velocities to
changes in the environment such that both safety and execution time are not compromised is also presented for the holonomic case. Simulation
and experimental results demonstrate the efficacy of this methodology.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Several strategies exist for planning collision-free paths
in an environment whose model is known [9]. However,
during execution, parameters such as robot and environment
dynamics, and sensory capacities need to be incorporated for
safe navigation. This is especially so if the robot navigates in
an area where there are other mobile objects such as humans.
For example in Fig. 1, the robot would be required to slow down
as it approaches the doorway, in anticipation of mobile objects
emerging from there, even if it does not intend to make a turn
through the doorway.

A possible means to tackle the above problem at
the execution stage is to always navigate the robot at
very low speeds. In fact, reactive schemes such as the
nearness diagram approach [11] operate the robot at minimal
velocities throughout the navigation. However, incorporating
the computation of a velocity profile at the planning stage
would circumvent not only the problem of conservative
velocities throughout navigation but would also allow for a
modification of the trajectory to achieve lower time (Fig. 2).
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We present in this paper a novel proactive strategy that in-
corporates robot and environment dynamics as well as sensory
constraints into a collision-free motion plan. By proactive we
mean that the robot is always in a state of expectation regarding
the possibility of a mobile object impinging onto its path from
regions invisible to its sensor. This proactive state is reflected
in the velocity profile of the robot, which guarantees that in the
worst-case scenario, the robot will not collide with any of the
moving objects that can interfere with its path. The ability of
the algorithm to compute a priori velocities for the entire tra-
jectory accounting for objects moving in arbitrary directions is
the essential novelty of this effort.

As is always the case, planned paths and profiles need
constant modification at the execution stage due to changes
in the environment. For example a profile and path that was
planned for an environment with a closed doorway needs to be
modified during real time if the doorway is found open. Also
addressed in this article is the problem portrayed in Fig. 3.
Given an initial trajectory planned for a particular environment,
how does the robot modify its trajectory while new objects (not
necessarily intersecting the robot’s trajectory) are introduced
into the environment such that the basic philosophy of ensuring
safety as well as reducing time lengths of the path continue to
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Fig. 1. A safe robot has to slow down while approaching the doorway.

Fig. 2. A longer path can be faster due to higher speed.

Fig. 3. How does the robot adapt its path in the presence of new segments (a, b)
and (c, d) while maintaining safe velocities?

be respected? Simulation and experimental results are presented
to indicate the efficacy of the scheme. In [1] we reported
how the maximum velocity profiles can be computed for any
generic planner and in [8] we presented initial simulation and
experimental results of the reactive version of [1].

Related work can be cited in the areas of modifying
global plans using sensory data obtained during execution
for overcoming uncertainty accumulated during motions [3]
and those that try to bridge the gap between planning and
uncertainty [10] or planning and control [7,2]. The velocity
obstacle concept [13,5] bears resemblance to the current
endeavour in that they involve selection of a robot velocity
that avoids any number of moving objects. The difference is
that in the present approach the only information about the
mobile object available is the bound on velocity. The direction
of motion and the actual velocities are not known during
computation of the velocity profile. The work of Stachniss [14]
also involves considering the robot’s pose and velocities at
the planning phase. A path is determined in the (x, y) space
and a subgoal is chosen. A sequence of linear and angular
velocities, (v, w), is furnished until the subgoal is reached.
In [12] a policy search approach is presented that projects a low
dimensional intermediate plan to a higher dimensional space
where the orientation and velocity are included. As a result
better motion plans are generated that enable better execution
of the plan by the robot. The current effort has similarities
to [12], at the planning level but also extends it to a suitable
reactive level in the presence of new obstacles encountered
during execution. Similarly the dynamic window approach [16]
and the global dynamic window method of Brock et al. [17]
both incorporate the dynamics and the kinematics of the robot
for a reactive collision avoidance system. Incorporating the
dynamics and searching in the space of velocities overcome
the problems of purely geometric methods. However, these
methods do not speak of modifying the path in order to reduce
its time-length and the dynamics of the environment does not
affect the computation of the velocity profile, which makes our
approach different from those mentioned above.

2. Problem definition

The following problems are addressed in the paper, given:

• A robot R modelled as a disc and equipped with an
omnidirectional sensor having a limited range Rvis. We
call Cvis the visibility circle, centred at the robot’s position
with radius Rvis. The paths of R are sequences of straight
segments or straight segments connected with circular arcs
of radius ρ in case of a non-holonomic robot. The robot’s
motion is subject to dynamic constraints simply modelled
by a bounded linear velocity v ∈ [0, vrm] and a bounded
acceleration a ∈ [−a−m, am]. The maximum possible
deceleration a−m need not equal the maximum acceleration
am .

• A workspace cluttered by static polygonal obstacles Oi .
The static obstacles can hide possible mobile objects whose
motions are not predictable; the only information is their
bounded velocity vob.

Problem 1. Given a robot’s path τ(s) computed by a standard
planner [9], determine the maximal velocity profile vτ(s) such
that, considering the constraints imposed by its dynamics, the
robot can stop before collision occurs with any of the mobile
objects that could emerge from regions not visible to the
robot at position s ∈ τ(s). For example, the velocity profile
dictates that the robot in Fig. 1 slow down near the doorway
in expectation of mobile objects from the other side. We call
M P = (τ (s), vτ (s)) a robust motion plan. The velocity
profile allows us to define the time T (τ ) required for the robust
execution of path τ :

T (τ ) =

∫ L

0

ds

vτ (s)
.

Problem 2. Modify the planned trajectory such that the overall
trajectory time T (τ ) is reduced. For example, the path of Fig. 2,
albeit longer than the one of Fig. 1, is traversed in a shorter time.

Problem 3. Adapt the path and velocities reactively in the
presence of new objects not a part of the original workspace
such that the criteria of safe velocities and reduced time of path
continue to be respected. This is illustrated in Fig. 3.

3. From path to robust motion plan

The procedure for computing the maximum velocity profile
vτ (s) delineated in Sections 3.1, 3.2 and 3.3 addresses the first
problem. The constraints imposed by the environment on the
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Fig. 4. Mobile objects may appear anywhere on Cvis’s contour.

robot’s velocity are due to two categories of mobile objects.
The first category consists of mobile objects that could appear
from anywhere outside the boundary of the visibility circle Cvis.
The second category involves mobile objects that could emerge
from shadows created in Cvis due to stationary objects.

3.1. Velocity constraints due to the environment

No obstacles in Cvis

In the simple case where the robot’s position is such that
no static obstacle lies inside Cvis, a moving object may appear
(at time t = 0) anywhere on Cvis’s boundary (Fig. 4). Let
Vrb denote the maximum possible robot velocity due to a
mobile object at the boundary. At time t0 = vrb/a−m (i.e.,
when the robot is stopped), the distance crossed by the object
is dobj (vrb) ≤ vobvrb/a−m . Avoiding any potential collision
imposes that Rvis ≥ drb(vrb) + dobj (vrb), where drb =

v2
rb/2a−m . The condition relates vrb to the sensor’s range Rvis

as:

vrb = −vob +

√
v2

ob + 2a−m Rvis. (1)

Influence of shadowing corners
Static obstacles lying inside Cvis may create shadows (e.g.,

see the grey region of Fig. 5) which contain mobile objects.
The worst-case situation occurs when the mobile object remains
unseen until it arrives at the shadowing corner of a polygonal
obstacle. Since the mobile object’s motion direction is not
known it is best modelled for a worst-case scenario as an
expanding circular wave of radius vobt centred at (d, θ)

(X (t) − d cos θ)2
+ (Y (t) − d sin θ)2

= v2
obt2.

Let us first consider that the robot’s path τ is a straight
segment. Considering that the intersections between the circular
wave and the robot’s segment path should never reach the robot
before it stops at time t0 = vrs/a−m yields the following
velocity constraint:

v4
rsv − 4(a−md cos θ + v2

ob)v
2
rsv + 4a2

−md2
≥ 0. (2)

Here vrsv is the maximum possible robot velocity due to the
shadowing vertex under consideration. The solution of Eq. (2)
gives vrsv , as a function of (d, θ).

This solution only exists under the condition vob >√
a−md(1 − cos θ), i.e., when the object’s velocity vob is

sufficiently high to interfere with the robot’s halting path.
Otherwise, the shadowing corner does not constrain the robot’s
Fig. 5. Mobile objects may also appear from the shadows of static obstacles.

Fig. 6. Shadowing corners: among the three vertices of V(p), only s2 and s3
create shadows (the line going through s1 is not tangent to the left obstacle).

velocity, which can be set to vrm , the maximum bound on
robot’s velocity.

Similar reasoning can be applied to the case where the
robot traverses a circular arc path of radius ρ. This case,
however, leads to a nonlinear equation that needs to be solved
numerically to derive the maximal velocity [4]. The expression
that needs to be solved for computing the maximum velocity at
a given point on a circular arc is of the form:

((v2
rsvv

2
ob)/a2

−m) + 2ρ2 cos(v2
ob/2a−mρ)

+ 2dρ sin((v2
ob/2a−mρ) − θ) = d2

+ 2ρ2
− 2dρ sin θ. (3)

3.2. Computing the shadowing corners

The problem of determining the set of shadowing corners
needed for the velocity computation in Section 3.1 is the
problem of extracting those vertices of the polygonal obstacle
to which a ray emitted from the robot’s centre is tangential
(Fig. 6). The set of shadowing corners can be easily extracted
from an algorithm that outputs the visibility polygon [15] as a
sorted list of vertices.

3.3. Computing the velocity profile vτ (s)

While the methodology for computing the maximum
velocity profile delineated here is essentially for a holonomic
path, its extension to the non-holonomic case is not very
difficult.

1. A holonomic path τ , consisting of a sequence of straight
line segments ab, bc, cd (Fig. 7), is deformed into a
sequence of straight lines and clothoids to ensure continuity
of velocities at the bends [6]. The maximum deviation from
an endpoint to its clothoidal arc (depicted as e in Fig. 7)
is dependent on the nearest distance to an object from the
endpoint under consideration.
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Fig. 7. A holonomic path deformed into a sequence of straight segments and
clothoidal arcs.

2. The linear velocity along a clothoid is a constant and
the maximum possible linear velocity considering robot
dynamics alone is calculated for each of the clothoidal
arc a1b0, b1c0 according to [6] and is represented as
vc(a1), vc(b1).

3. The straight segment aa1 is discretized into M equally
spaced points, excluding the endpoints of the segment,
namely a and a1. We denote the first such point as a1
and the last such point as aM . The point of entry into the
clothoid, namely a1, is also denoted as aM+1.

4. For each of the N points, ai , the steps 4a to 4e are repeated.
4a. The maximum possible velocity that a robot could have

such that it can come to a halt before colliding with objects
that enter into the robot’s field of vision from the boundary
is computed as vrb(ai ) according to Eq. (1).

4b. The velocity of the robot due to stationary obstacles inside
the robot’s field of vision that create shadows is computed
as vrsv(ai ) according to Eq. (2). The minimum of all the
velocities due to such vertices is found and denoted as
vrs(ai ).

4c. The maximum possible velocity of the robot at ai due to the
environment is then computed as

vre(ai ) = min(vrb(ai ), vrs(ai )). (4)

4d. The velocity of the robot at ai due to its own dynamics is
given by

vrd(ai ) =

√
v2

r (ai−1) + 2ams(ai , ai−1). (5)

The above equation is computed if vre(ai ) > vr (ai−1).
Here s(ai , ai−1) represents the distance between the points
ai and ai−1. am represents the maximum acceleration of the
robot.

4e. The eventual velocity at ai is given by

vr (ai ) = min(vrd(ai ), vre(ai ), vrm). (6)

Here vrm represents the maximum robot velocity permissi-
ble due to servo motor constants.

5. The velocity at the endpoint a1 is computed as vr (a1) =

min(vr (a1), vc(a1)) and this would be the linear velocity
with which the robot would traverse the clothoid.

6. Steps 6a and 6b are performed by going backwards on each
of the N points from aN to a1.

6a. If vr (ai ) > vr (ai+1) then the modified maximum possible
velocity at ai is computed as

vrd(ai ) =

√
v2

r (ai+1) + 2a−ms(ai , ai+1). (7)

6b. Finally, the maximum safe velocity at ai is given as
vr (ai ) = min(vr (ai ), vrd(ai )).
7. Repeat steps 3 to 6 for all the remaining straight segments to
obtain the maximal velocity profile over a given trajectory τ

as vτ (s) = {vr (a), vr (a1), . . . , vr (aN ), vr (a1), vr (b1), . . .,
vr (d)}.

3.4. Modifying the planned trajectory for lower time

The knowledge of the maximum velocity profile over a
trajectory is utilized to tackle the problem posed in Section 2 of
reducing the overall trajectory time of the path. The procedure
for reducing the trajectory time at the planning stage involves
random deformation of the planned path and evaluating time
along this path. The modified path becomes the new trajectory
if the time along it is less than that along the original trajectory.
The process is continued until over a finite number of attempts
no further minimization of trajectory time is possible. Prior
to delineating the algorithm it is to be noted that the set of
all collision-free space of the workspace is denoted as Cfree
and the current trajectory of the robot as τc(s). A point of
discretization on a trajectory discretized into N parts is denoted
as p(si ), i ∈ {1, 2, . . . , N }. The corresponding configuration of
the robot at those points is denoted by q(si ). The algorithm is
given as Algorithm 1.
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Fig. 8. Memorization of previous scenes.

Step 8 of the algorithm is carried out by searching for
a collision-free configuration which would displace the path
away from the shadowing vertex responsible for the lowest
velocity at si . Step 11 adapts the displaced path as the new
current path if its trajectory time is less than that of the
current path. Nattempts is the number of unsuccessful attempts
at minimizing the trajectory time before the algorithm halts.

3.5. Remembering sensor information

The computation of the velocity profile at a given point on
the robot’s trajectory incorporates the robot’s field of vision
at that point. This field can change appreciably between two
successive instances of computation. For example, in Fig. 8 the
robot at position a has full field of vision of the corridor that
is transverse to the robot’s trajectory. However, at position b
the robot is blind to the zone shown in a darker shade of grey.
Hence it needs to slow down as it moves further down to c since
it envisages the possibility of a moving object approaching it
from the corners of the stationary objects. These corners are the
starting areas of the robot’s blindzone at b.

However, if the robot could remember the earlier scene
it could use this when computing its velocity profile during
execution of the planned path. In such a case, if the robot
did not see any moving objects in close proximity at a it can
make use of this information at b to have a velocity profile
from b that is greater than the one computed in the absence
of such information. Fig. 8 shows (in darker shade) the zone
remembered by the robot. The contour of the remembered area
represents the blindzone of the robot at b, from where mobile
objects can emanate. The area in a lighter shade of grey is
the visibility polygon for the robot at b. With the passage of
time the frontier of the remembered area shrinks due to the
advancement of the imagined mobile objects from the initial
frontier. The details of this scheme are given below.
Remembering is fruitful when a non-shadowing vertex
begins to cast a shadow, thereby hiding regions which were
previously visible. The set of all vertices that are currently
visible, shadowing and were at some prior instant visible, non-
shadowing is denoted by V sns. For every vertex ve ∈ V sns a
corresponding vertex is associated and called the blind vertex.
The blind vertices are of three categories explained in Fig. 9
where the vertex a, non-shadowing for the robot at p, becomes
shadowing when the robot is at q. Correspondingly the vertex
c of the triangular obstacle which was visible and shadowing
when the robot was at p becomes invisible when the robot
moves to q. Simultaneously one of the other endpoints of a,
namely b, would also become inevitably invisible at q. Vertices
like b fall in the second category. If b was already outside Cvis
at p the intersection of Cvis with the segment ab, namely o, is
identified as the third category of blind vertex. The set of all
such vertices is denoted by V bs. These vertices are advanced
by a distance vob1t where 1t is the time taken by the robot
between p and q to new virtual locations along the line that
connects those vertices to a. At q the velocity is computed
due to the closest of the vertices in the set V bs at their virtual
locations instead of a, which is otherwise the vertex for which
Eq. (2) is computed. Such a trend continues until the distance
between the robot to the closest hypothetical vertex is less than
the actual distance of the robot to a.

The remembering part of the algorithm is given in
Algorithm 2. The set of all visible shadowing vertices is
denoted by V sh.

4. From plan to execution

The velocity profile, vτ (s), is a sequence of maximum
velocities calculated at discretized locations along the trajectory
τ(s). The locations at which the velocity profile at the execution
stage is computed are not the same locations as where the
profile was computed during planning, due to odometric and
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Fig. 9. Three categories of blind vertices.

Fig. 10. Effect of an obstacle on the robot’s velocity, possibly hiding mobile
objects at locations a and b.

motor constraints. Moreover, if there are changes in the
environment it entails modifying the trajectory and hence the
velocities. During execution it is computationally expensive to
compute the profile for the entire remaining trajectory, hence
the profile is computed for the next finite distance, given
by dsafe = dmax + ndsamp, where dmax = v2

rm/(2 ∗ a−m)

represents the distance required by the robot to come to a
halt while it moves with the maximum permissible velocity
afforded by motor constants. And dsamp = vrm tsamp is the
maximum possible distance that the robot can move between
two successive samples (time instants) of transmitting motion
commands, where time between two samples is tsamp.

The main issue here is what should be the distance over
which the velocity profile needs to be computed during
execution such that it is safe. A velocity command is not
considered safe if it is less than the current velocity and not
attainable within the next sample. The velocity is constrained
by the environment as well as robot’s own dynamics and hence
their roles are studied below.

Effect of environment

Mobile objects that can emerge from corners in a head-
on direction cause the greatest change in velocity over
two samples. Fig. 10 shows one such situation, where the
rectangular object casts a shadow and is susceptible to hiding
mobile objects. Let the current velocity of the robot at a due to
the object be v1. Let the velocity at a distance, s, from a, at b
(Fig. 10) due to the object be v2.

The velocities at a and b are given by

va = −vob +

√
v2

ob + 2a−md, (8)

vb = −vob +

√
v2

ob + 2a−m(d − s). (9)
Hence

v2
a − v2

b = 2a−ms

+ 2vob

(√
v2

ob + 2a−m(d − s) −

√
v2

ob + 2a−md

)
. (10)

Evidently the second term on the right-hand side of
Eq. (10) is negative, since the second square root term is more
positive than the first. Hence v2

a − v2
b ≤ 2a−ms. Therefore

the velocity at b, vb can be attained from the velocity at
a, va under maximum deceleration, dm , irrespective of the
maximum velocity of the mobile object or the robot’s own
motor constraints. This was intuitively expected since the
robot’s velocity at any location is the maximum possible
velocity that guarantees immobility before collision; its velocity
at a subsequent location permitted by the environment would
be greater than or equal to the velocity at the same location
obtained under maximum deceleration from the previous
location. In other words, for safeness of velocity going purely
by environmental considerations it would suffice to calculate
the velocity, for the next sampling distance alone, for without
loss of generality, d = dsamp.

Effect of robot’s dynamics

The robot needs to respect the velocity constraints imposed
while nearing the clothoidal arcs and eventually while coming
to the target. The robot can reach zero velocity from its
maximum velocity over a distance of dmax, computed before.
Hence dmax + dsamp represents the safe distance over which the
velocities need to be computed.

4.1. Online path adaptation for better trajectory time

The third of the problems outlined in Section 2 is tackled
here. During navigation the robot in general comes across
objects hitherto not a part of the map. The robot reacts to
these new objects in line with the basic philosophy of safety as
well as time reduced paths. The adaptation proceeds by finding
locations over a finite portion of the future trajectory where
drops in velocity occur and pushing the trajectory away from
those vertices of the objects that caused these drops to areas
in free space where higher velocities are possible. A search is
made through the newly found locations of higher velocities for
a time-reduced path.

Generalized procedure
The generalized procedure for adapting the path in the

presence of new objects is delineated through Fig. 11.

1. On the trajectory segment that is currently traversed, AB in
Fig. 11, enumerate the vertices of objects that reduce the
velocity of the robot.

2. The positions are found on AB where the influence of
vertices is likely to be maximal.

3. These positions are pushed by distances dp = k(vl − vr ),
where vl and vr are the velocities at that location on the path
due to the most influential vertices on the left and right of



250 K. Madhava Krishna et al. / Robotics and Autonomous Systems 54 (2006) 244–255
Fig. 11. A trajectory in the presence of new objects. The points marked with
crosses represent locations through which a path is searched for reduced time
of trajectory.

the path. These new locations are denoted as p1, p2, p3, p4
(Fig. 11) and maintained as a list provided the velocity at
the new locations is higher than the original ones. p6 is the
farthest point on the robot’s trajectory visible from its current
location at A.

4. On this set of locations A, p1, p2, p3, p4, p5, p6 starting
from the current location at A, find a trajectory sequence
shorter in time than the current sequence of A, B, p6 if it
exists.

5. The steps 1 to 4 are repeated until the robot reaches the
target.

It should be noted that when a collision with an object is
detected, a collision-free location is first found that connects the
current location with another location on the original trajectory
and this new collision-free path is further adapted for a time-
reduced path if it exists. Also note that while the velocities
are computed over a distance dsafe, that part of the remaining
trajectory that is visible from the current location is considered
for adapting to a better time-length.

5. Planning results and analysis

In this section the results of incorporating the velocity
profile computation as a consequence of considering robot and
environment dynamics and sensor capacities at the planning
stage and the subsequent adaptation of paths to better time of
trajectory is analysed. Fig. 12 shows the path computed by a
typical holonomic planner [9] and its corresponding velocity
profile. The velocity corresponding to the robot’s location on
the trajectory (shown as a small circle) is marked by a straight
line labelled m on the profile. The dark star-shaped polygon
centred at the robot depicts the visibility of the robot at that
instant and is called the visibility polygon. The figure is a
snapshot of the instant when the robot begins to decelerate to a
velocity less than half the current velocity as it closes down on
the vertex a marked in the figure. Evidently from the visibility
polygon the vertex a casts a shadow, and the closer the robot
gets to it, the slower the velocity must be.

Fig. 13 is the time-reduced counterpart of Fig. 12. The
snapshot is once again at a location close to vertex a. Staying
away from a permits nearly maximum velocity. The dip
observed in the profile due to vertex a is negligible. Similarly
staying away from other vertices such as b allows for a
trajectory time of 21.79 s compared to 26.30 s for Fig. 12.
Modification of the trajectory for shorter time proceeds along
Fig. 12. Path computed by a typical planner and its velocity profile shown on
the top. The robot’s velocity corresponding to its location on the trajectory is
shown by a vertical line on the profile and labelled as m.

Fig. 13. Path obtained after adaptation to reduced time-length.

the lines of Section 3.4. For the two examples discussed, the
robot’s maximum acceleration and deceleration was fixed at
1 m/s2, maximum velocity at 1 m/s and the sensor range at 7 m.
The maximum bound on the object’s velocities was 1.5 m/s.

Figs. 14 and 15 depict the planned trajectory and velocity
profiles before and after reduction of trajectory time for our
laboratory environment. The time-reduced trajectory is shorter
by more than 8 s as it widens its field of view by moving away
from the bends while turning around them.

5.1. Effect of remembering on trajectory time

Fig. 16 shows an environment with four corridors named 1,
2, 3 and 4 with planned path obtained by minimizing time. It
also portrays the robot’s field of vision as it enters corridor 3.
The velocity profile for the above path is shown in Fig. 17. The
location of the robot corresponding to its location in Fig. 16 is
shown through the vertical line. The locations of the robot as
it decelerates when its field of view of each of the corridors
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Fig. 14. Planned trajectory before adaptation to a reduced time.

Fig. 15. Time-reduced trajectory at planning stage.

vanishes is also marked with the respective numbers on the
profile.

Though the path of Fig. 16 is minimized in time its velocity
profile still shows decelerations in the vicinity of the corridors.
This is due to the phenomenon discussed in Section 3.5 where
the robot becomes blind to many parts of the environment it had
seen at the preceding instant. Fig. 18 shows the robot’s field
of vision at an instant after the one shown in Fig. 16. There
is a marked decrease in its field of vision at the latter instant
Fig. 16. Robot’s field of view as it enters corridor 3.

Fig. 17. Velocity profile for the Fig. 16. The corresponding position of the robot
is shown as a vertical line. Decelerations near the corridors are also marked with
the same numbers.

Fig. 18. Robot’s field of vision at an instant that immediately follows the
instance of Fig. 16.

Fig. 19. Velocity profile obtained after incorporation of memory.

that results in the robot reducing its velocity in anticipation of
moving objects from the blindzones depicted in the velocity
profile.

However, when the robot is able to remember the previous
images, the need to decelerate is nullified and the trajectory
time is further reduced. Fig. 19 illustrates this where the
decelerations shown in the velocity profile of Fig. 17 at
locations 1, 2, 3 and 4 are now absent.
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Fig. 20. A simple planned trajectory and its velocity profile.

6. Experimental results

6.1. Velocity profiles

In this section the velocity profiles obtained during the
planning and execution stages are compared in the absence
of any new objects during execution. Fig. 20 shows a simple
planned trajectory and the corresponding velocity profile for
our laboratory environment. Some of the obstacles are filled in
grey and others are shown as segments (in grey). The robot is
shown as a small circle and the star-shaped polygon in black
represents the field of vision of the robot at that location.
The vertical line, marked m, in the velocity profile represents
the velocity of the robot corresponding to its position on the
trajectory. The profile shows a subsequent drop in velocity, a
consequence of the robot getting closer to the region marked d,
to which it is blind.

Fig. 21 compares the planned and executed (in simulation)
velocity profile. The executed trajectory tallied to a time of
12.28 s in comparison with 12.25 s for the planned profile.
These figures illustrate that the executed profiles and execution
times are close to the planned profiles and times while there are
no changes in the environment.

Figs. 23 and 24 show the execution by the Nomad XR4000
(Fig. 22) of paths computed by a standard planner. Fig. 23
corresponds to the original path computed by the planner and
Fig. 24 is its time-reduced counterpart.

The velocity profiles during execution of the two paths are
shown in Fig. 25. Some of the bigger drops in the unreduced
profile are absent in the reduced profile as the robot avoids
turning close to the obstacles that form the bends. The path
of Fig. 24 got executed in 12.9 s while the path in Fig. 23
was executed in 13.98 s. The figures are meant as illustrations
of the theme that trajectories deformed to shorter time-lengths
at planning stage are also executed in shorter time during
implementation than their unreduced versions.
Fig. 21. The planned and executed velocity profile in simulation. The ordinate
measures velocity in m/s and the abscissa time in seconds.

Fig. 22. The Nomad XR4000 used in our experiments at LAAS.

Fig. 23. Execution of the original planned path.

6.2. Online adaptation of paths for better trajectory time

This section presents results of the algorithm in the presence
of newly added objects that affect the velocities of the robot
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Fig. 24. Execution of the time-reduced path.

Fig. 25. The top profile corresponds to the path executed in Fig. 23 and the
bottom to Fig. 24. The planned and executed velocity profile in simulation. The
ordinate measures velocity in m/s and the abscissa time in seconds.

in real time. Fig. 26 shows a path where the robot avoids
the two new segments S1 and S2 intersecting the original
planned trajectory but does not adapt its path for better time.
The velocity profile for the same is shown in Fig. 27. Fig. 28
is the counterpart of Fig. 29 where the robot adapts its path
to a better time-length reactively. The big dips in the velocity
profile of Fig. 27 are considerably filtered in Fig. 29 as the robot
avoids the obstacles with larger separation. The time-reduced
execution tallied to 10.9 s while the unreduced version was
executed in 12.5 s. The trajectory time at planning was 7.9 s.
The above graphs are those obtained in simulation.

Fig. 30 shows the unreduced executed path by the XR4000
Nomadic robot in our laboratory at LAAS. The obstacles in
the original map are shown by black lines, while the segments
perceived by the SICK laser are shown in lighter shades of grey.
Some of these segments get mapped to the ones in the map
and the others are considered new segments. This is done by a
segment-based localization algorithm. The segments of concern
here are those which form a box-shaped obstacle marked B in
Fig. 26. A simulated execution in the presence of two new segments S1 and S2
along with the corresponding velocity profile. The path is not adapted to better
time-length. Start and goal locations marked as S and T .

Fig. 27. Velocity profile for the execution of Fig. 26.

Fig. 28. Path of Fig. 26 adapted to better time-length.
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Fig. 29. Velocity profile for the execution of Fig. 28.

Fig. 30. Unreduced path executed by the Nomad XR4000. The vertex d of the
new box-shaped object B forces a slow down near it.

Fig. 30. The vertex d of this obstacle casts a shadow on the
robot’s sensory field, which forces it to slow down at those
locations due to Eq. (2). The execution time for this unreduced
path is 10.6 s.

The time-reduced counterpart is shown in Fig. 31 that tallied
to 9.6 s. The original planning time was 8.8 s in the absence
of the box-shaped object. The corresponding velocity profile is
shown in Fig. 32.

7. Conclusions and scope

A proactive safe planning algorithm and its reactive version
that facilitates real-time execution has been presented. The
proactive nature of the algorithm stems from the computed
Fig. 31. Time-reduced path executed by the Nomad XR4000. Increasing linear
and angular separation from vertex d facilitates a higher speed.

Fig. 32. Velocity profile for the path executed by the Nomad in Fig. 31. The
planned and executed velocity profile in simulation. The ordinate measures
velocity in m/s and the abscissa time in seconds.

velocity profile, vτ (s), that guarantees immobility of the robot
before collision with any of the possible mobiles that could
interfere with its future trajectory from regions blind to its
sensor. The proactivity does not however come at the cost of
the robot’s velocity or trajectory time. The knowledge of vτ (s)
computed over the trajectory τ(s) further facilitates reduction
of the overall trajectory time T (τ ) by adaptation of the initially
planned path. Analysis of the scheme at the planning stage
depicts that the robot can have a velocity profile that achieves
its maximum possible velocity for a sustained duration without
many dips, provided it stays away from doorways and narrow
passages along its path. Remembering of previous scenes also
enhances the robot’s performance through reduced trajectory
time and a more uniform velocity profile.

A reactive extension of the scheme that facilitates real-
time simulation and implementation is also presented. The
scheme maintains the underlying philosophy of computing safe
velocities and modification of paths for better trajectory time.
Simulation and experimental results at real time corroborate
our earlier results obtained at the planning stage (that by
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keeping away from vertices of objects that could hide mobiles
the robot could move at higher velocities and obtain better
time-lengths) and thus the efficacy of the overall strategy is
vindicated. The minimum distance over which the velocities
need to be computed on the remaining trajectory during real
time such that the computed velocities are safe is theoretically
established. This avoids repetitive computation of velocities
over the entire remaining trajectory for every motion command,
thereby reducing computational intensity and facilitating real-
time implementation. The methodology could be useful in the
context of personal robots moving in areas where interference
with mobile humans, especially aged ones, is generally
expected.

The immediate scope of this work involves incorporating
the memory phenomena at the reactive level such that higher
speeds are possible. The methodology needs to be validated
in the presence of mobile objects that actually impinge on the
path from blindzones with a provision for the robot to avoid
the objects without halting, and continuing to respect safety
considerations as well as minimizing trajectory time.
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