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In navigation that involves several moving agents or robots that are not in possession of
each other’s plans, a scheme for resolution of collision conflicts between them becomes
mandatory. A resolution scheme is proposed in this paper specifically for the case where
it is not feasible to have a priori the plans and locations of all other robots, robots can
broadcast information between one another only within a specified communication dis-
tance, and a robot is restricted in its ability to react to collision conflicts that occur outside
of a specified time interval called the reaction time interval. Collision conflicts are re-
solved through velocity control by a search operation in the robot’s velocity space. The
existence of a cooperative phase in conflict resolution is indicated by a failure of the search
operation to find velocities in the individual velocity space of the respective robots in-
volved in the conflict. A scheme for cooperative resolution of conflicts is modeled as a
search in the joint velocity space of the robots involved in conflict when the search in the
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individual space yields a failure. The scheme for cooperative resolution may further in-
volve modifying the states of robots not involved in any conflict. This phenomenon is
characterized as the propagation phase where cooperation spreads to robots not directly
involved in the conflict. Apart from presenting the methodology for the resolution of con-
flicts at various levels (individual, cooperative, and propagation), the paper also formally
establishes the existence of the cooperative phase during real-time navigation of multiple
mobile robots. The effect of varying robot parameters on the cooperative phase is pre-
sented and the increase in requirement for cooperation with the scaling up of the number
of robots in a system is also illustrated. Simulation results involving several mobile robots
are presented to indicate the efficacy of the proposed strategy. © 2005 Wiley Periodicals, Inc.
1. INTRODUCTION

Robotic navigation for single-robot systems has been
traditionally classified into planning and reactive
based approaches. A scholarly exposition of various
planning methodologies can be found in ref. 1. A
similar exposition for dynamic environments is pre-
sented by Fujimora.2 Multi-robot systems has become
an active area of research since they facilitate im-
proved efficiency, faster responses due to spread of
computational burden, augmented capabilities, and
discovery of emergent behaviors that arise from in-
teraction between individual behaviors. Multiple mo-
bile robot systems find applications in many areas
such as material handling operations in difficult or
hazardous terrains,3 fault-tolerant systems,4 covering
and exploration of unmanned terrains,5 and in cargo
transportation.6 Collaborative collision avoidance
(CCA) between robots arises in many such multi-
robot applications where robots need to crisscross
each other’s path in rapid succession or come to-
gether to a common location in large numbers.
Whether it is a case of navigation of robots in a rescue
and relief operation after an earthquake or while
searching the various parts of a building or in the case
of a fully automated shop floor or airports where
there are only robots going about performing various
chores, CCA becomes unavoidable.

The paper presents a novel three-tiered collabo-
rative resolution strategy based on velocity control.
The strategy is implemented in a distributed fashion
across all robots in the system. In the first tier a robot
attempts to resolve its conflict with another robot
without anticipating a similar response from its coun-
terpart. In other words each robot tries to resolve its
conflict under the impression the other robot is care-
less or dumb. We call this as individual resolution
where a conflict is said to be resolved if either of the
two robots involved in the conflict resolves it inde-
pendently. At the second tier robots involved in the
conflict modify their velocities in a synchronized
fashion such that the conflict is resolved. The second
tier is resorted only when individual resolution fails.
The second tier is also denoted as the cooperative
phase of resolution where each robot makes an action
by anticipating the action of the other. When the co-
operative phase fails the third tier of resolution is
adopted where cooperation spreads to robots that are
not a part of the conflict and their help is sought in
resolving the conflicts between the robots actually in-
volved. The term cooperative is not a misnomer for it
helps in achieving the following capabilities:

1. Avoid collision conflicts in a manner that con-
flicting agents do not come too near while
avoiding one and another where and when-
ever possible. Thus agents take action in a
fashion that benefits one another apart from
avoiding collisions.

2. Provides a means of avoiding conflicts in situ-
ations where a single agent is unable to resolve
the conflict individually.

3. Serves as a pointer to areas in the possible
space of solutions where a search for solution
is likely to be most fruitful.

Mathematically the individual resolution is charac-
terized as a search in the velocity space of the respec-
tive robots involved in the conflict. When the search
fails to yield a solution a search is resorted in the joint
space of the robots involved in the conflict, which
characterizes the cooperative phase. A formal depic-
tion of the existence of the cooperative phase during
navigation of a system of mobile robots is also pre-
sented and the effects of parametric variations on this
phase are portrayed.

The rest of the paper is organized as follows. Sec-
tion 2 places the work in the context of related works
found in the literature and presents a brief literature
review. Section 3 formulates the problem and the pre-
mises based on which the problem is formulated. Sec-
tion 4 mathematically characterizes the three phases
or tiers of resolution briefly mentioned above. Section
5 presents the algorithm while Section 6 validates the
efficacy of the algorithm through simulation results.
Section 7 discusses the limitations of the current ap-



Krishna et al. : Reactive Navigation of Multiple Moving Agents • 251
proach and its future scope and ramifications and
Section 8 winds up with concluding remarks.

2. PLACING IN CONTEXT OF OTHER WORK

In a manner similar to single-robot systems that are
classified as planning or deliberative and reactive ap-
proaches, multi-robot navigation algorithms are tra-
ditionally classified as centralized7–10 or
decentralized.11–13 In centralized approaches a single
processor computes the plans for all the robots and
the robots are controlled from a unified command. In
the decentralized approach each robot computes its
own plan and coordination between robots occurs
when conflicts are detected while plans are ex-
changed and broadcast. The tradeoffs between the
two approaches are well documented in the litera-
ture. In the case of a centralized approach that com-
putes all possible conflicts over entire trajectories the
number of collision checks to be performed and the
planning time tend to increase exponentially as the
number of robots in the system increases. Also, the
requirement that all the world knowledge be local-
ized at a single place often turns out to be not prac-
tical. Complete recalculation of paths is required even
if one of the robot’s plans is altered or environment
changes. However, centralized approaches can guar-
antee completeness and optimality of the method.
Decentralized approaches, on the other hand, are less
computationally intensive as the computational bur-
den is distributed across the agents and, in principle,
the computational complexity of the system can be
made independent of the number of agents in it. It is
more tolerant to changes in the environment or alter-
ations in objectives of the agents. However, they are
intrinsically incapable of satisfying optimality and
completeness criterion.

A number of recent approaches try to provide al-
gorithms that combine the advantages of both the ap-
proaches. Li and Chou14 present a grouping strategy
based on the hierarchical sphere tree that groups ro-
bots dynamically. Though the approach is purely a
centralized one, the grouping strategy reduces plan-
ning time greatly for a large number of robots. The
method is especially suitable in cases where the ro-
bots are crowded at their starting and goal configu-
rations. Guo and Parker15 present a distributed algo-
rithm that provides for optimality. The algorithm is
distributed in that each robot computes its own plan
and the computations for optimal collision-free mo-
tion in the form of the modified velocity profile is
done on each robot. A performance index based on
the velocity profile is also computed for each robot
and is broadcast to all other robots along with the ve-
locity profile. All the robots adopt the profile corre-
sponding to the minimum performance index as the
optimal profile. Since each robot ends up calculating
the velocity profiles for every other robot along their
entire trajectories, the computational feasibility of the
proposed method when the number of robot in-
creases is in question. The complexity of the search
space is also exponential in the number of robots in
the system. In ref. 16 a methodology that is central-
ized within a network and distributed across net-
works is proposed. Networks get formed when ro-
bots are within a distance where communication is
possible between them. A plan merging protocol
(PMP) is presented in ref. 17 as a solution for the
deadlock problem that occurs in distributed ap-
proaches.

The approach presented in this paper does not re-
quire the exchange or broadcast of complete plans as
is the case with the typical decentralized
approaches,11,12,15 nor does it rely on assigning priori-
ties to robots such as in refs. 8 and 12. The approach
is based on changing velocities of the robots involved
in a conflict in a synchronized fashion that is termed
as cooperative resolution.

The present work is novel and different from oth-
ers as the resolution of collision conflicts is attempted
at three levels, namely the individual, cooperative,
and propagation levels. Functionally cooperation is a
methodology for pinning down velocities in the joint
solution space of velocities of the robots involved in
conflict when there exists no further solution in the
individual solution spaces of those robots. When joint
actions in the cooperative phase are not sufficient for
conflict resolution, assistance of other robots that are
in a conflict-free state at that instant is sought by the
robots in conflict by propagating descriptions of the
conflicts to them. When such free robots are also un-
able to resolve the conflict collision is deemed inevi-
table. The concept of propagating conflict resolution
requests to robots not directly involved in a conflict is
not found mentioned in robotics literature. Such kind
of transmission of requests to robots, though not in-
voked frequently, is, however, helpful in resolving a
class of conflicts which otherwise would not be pos-
sible as our simulation results reveal.

The method presented here is more akin to a real-
time reactive setting where each robot is unaware of
the complete plans of the other robots and the model
of the environment. The work closest to the present is
a scheme for cooperative collision avoidance by Fuji-
mora’s group18 and a distributed fuzzy logic ap-
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proach as reported in ref. 19. Their work is based on
devising collision avoidance for two robots based on
orientation and velocity control and extending this
strategy for the multi-robot case based on the usual
technique of priority-based averaging (PBA). How-
ever, we have proved in an earlier effort of ours20 that
such PBA techniques fail when individual actions
that get weighted and averaged in the PBA are con-
flicting in nature. The work of Lumelsky21 is of rela-
tion here in that it does not entail broadcast of plans
to all other robots. It describes an extension of one of
the Bug algorithms to a multi-robotic setting. There is
not much mention of cooperation or collaborative ef-
forts between the robots except in the limited sense of
‘‘reasonable behavior’’ that enables shrinking the size
of the collision front of a robot that is sensed by an-
other one.

Also of relevance here is the method of Guo and
Parker15 briefly discussed earlier. Their method in-
volves first computing the complete plans for indi-
vidual robots using a D* algorithm. Collisions are
checked in the coordination diagram, which is the
diagram obtained by decomposing the paths and ve-
locities of each robot in the workspace (similar to
Kant and Zucker22) and combining all the mappings
to the N-dimensional space called the coordination dia-
gram (CD). Collision areas in the CD are mapped as
static obstacles and the D* algorithm is used sequen-
tially on robots based on decreasing priority and
collision-free paths recomputed. The method is simi-
lar to ours in that the eventual algorithm churns out
velocity profiles for all robots in the workspace that
are collision-free. However, since the entire path from
the current location until the destination is evaluated
for collision checks and computation of velocity pro-
files, the algorithm is prone to become intensive as
the number of robots increase. Consequently, the
scope of the algorithm to replan trajectories during
real-time is severely limited with authors reporting 2
min of velocity planning on a SPARC60 workstation.
Hence all trajectories need to be planned before ex-
ecution. On the contrary, since the current algorithm
considers collisions only within a given T samples
into the future, it is capable of generating collision-
free trajectories for several robots in real-time with
trajectories recomputed every time a space-time col-
lision is detected during execution.

As mentioned before, conflict resolution through
cooperation and propagation is pertinent to many ap-
plications that entail a number of robots that criss-
cross each other in quick succession or in situations
where robots find themselves coming together to get
across an intersection from various directions which
would otherwise result in a logjam.23 In many such
situations it is not reasonable to expect that the infor-
mation about all such robots be maintained and their
actions controlled from a central command nor does
exchange or broadcast of their entire plans to one an-
other at the time of eye contact appear intuitive.

3. PROBLEM FORMULATION AND PREMISES

The following premises have been made for algo-
rithm development and simulations:

�a� Each robot Ri is assigned a start and goal locations
and it has access to its current state and its current
and aspiring velocities. The current state of Ri is rep-
resented as � i��vci ,vni ,� i� where vc , vn repre-
sent its current and aspiring velocities and � its cur-
rent motion direction.

�b� All robots are circular and described by their radius.
�c� Robots are capable of broadcasting their current

states to each other. They do so only to those robots
that are within a particular range of communication.

�d� Robots accelerate and decelerate at constant rates
that are the same for all robots. Hence a robot Ri can
predict when another robot R j would attain its as-
piring velocity vn from its current velocity vc .

Assumption (a) is a standard assumption made in a
typical mobile robot system. In general, sensor-based
localization algorithms are used to correct discrepan-
cies between the expected estimate and the actual
readings reported by sensors. Current and future ve-
locity estimates obtained through such techniques
have been used to achieve desired results such as in
ref. 24, where the authors report a successful real-time
algorithm for fast navigation. The circularity assump-
tion has been commonly used in literature15,16,19 es-
sentially due to the fact that many indoor robots are
circular. In any case circularity does not have any
bearing on the three-tiered resolution strategy pre-
sented in this paper. Its only effects are in the manner
in which collision checks are to be performed. As-
sumption (c) is also common to multi-robotic systems
with successful implementations.15,18 Assumption (d)
is done essentially to facilitate certain simplicity in
the approach to reduce the amount of data transfer
between robots. The algorithm’s performance would
not be affected if the rates of acceleration and decel-
eration vary between robots, provided they are com-
municated to one another.

3.1. Formalizing a Collision Conflict (CC)

Since robots are not point objects, a collision is not
merely a space-time collision, i.e., two or more robots
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reaching the same point at same time. Rather a CC is
one that is spread over an interval of time and hence
robots are prohibited from moving over a range of ve-
locities for avoiding it. The CC is formalized here for
the simple case of two robots moving at constant ve-
locities.

Shown in Figure 1 are two robots R1 and R2 of
radii r1 and r2, whose states are �1�(vc1 ,vn1 ,�1)
and �2�(vc2 ,vn2 ,�2), respectively, where vc1 , vc2
are the current velocities while vn1 , vn2 are the as-
piring velocities for R1 and R2, respectively. Point C
in the figure represents the intersection of the future
paths traced by their centers. For the purpose of col-
lision detection, one of the robots R1 is shrunk to a
point and the other R2 is grown by the radius of the
shrunken robot.

The points of interest are the centers C21 and C22
of R2 where the path traced by the point robot R1 be-
comes tangential to R2. At all points between C21 and
C22 R2 can have a potential collision with R1. C21
and C22 are at distances (r1�r2)cos ec(��1��2�) on ei-
ther side of C. The time taken by R2 to reach C21 and
C22 given its current state (vc2 ,vn2 ,�2) is denoted by
t21 and t22 . Similar computations are made for R1
with respect to R2 by making R2 a point and growing
R1 by r2. Locations C11 and C12 and the time taken
by R1 to reach them, t11 and t12 , are thus computed.
A collision conflict or CC is said to be averted be-
tween R1 and R2 if and only if �t11 ,t12���t21 ,t22�
�	 . The locations C11, C12, C21, and C22 are
marked in Figure 1.

A direct collision conflict (DC) between robots R1
and R2 is said to occur if R1 occupies a space between
C11 and C12 when the center of R2 lies between C21
and C22 at some time t.

A robot is concerned only about its time nearest
CC with another robot within a given reaction time tr
that is same for all robots. A uniform tr across all ro-

Figure 1. Two robots R1 and R2 with radii r1 and r2
along with their current states are shown. When R1 is
shrunk to a point and R2 grown by radius of R1, C21 and
C22 are centers of R2 where the path traced by R1 be-
comes tangential to R2.
bots facilitates commutativity in collision relations,
i.e., if R1 has a CC with R2 in tr so does R2 with re-
spect to R1.

4. THREE PHASES OF RESOLUTION

Conflict resolution between robots is attempted in
three phases or three tiers as mentioned in Section 1.
The modality of choosing the velocity determines
which of the three phases is being adopted for reso-
lution.

Consider the set ST , representing the set of all
possible solutions that resolve conflicts among the ro-
bots involved. Each member of the set si is an ordered
tuple of velocities represented as si
��v1i ,v2i , . . . ,vNi�, for each of the N robots involved
in the conflict. The set is infinite and also not count-
able and hence the subscript i in si is used only for
notational convenience. The robots avoid the conflict
by attaining these velocities in the stipulated time tu-
plet �t1i ,t2i , . . . ,tNi� corresponding to the velocity tu-
plet. For ease of representation we denote each si
�ST by the velocity tuplet alone under the implicit
assumption that these velocities are attained in the
stipulated times as specified by the corresponding
time tuplet.

The cooperative space is represented by the set
SC�ST , i.e., the cooperative space is a subset of the
total solution space and where every robot involved
in the conflict is required to modify its current veloc-
ity to avoid the conflict. In other words, robots
modify the velocity in such a manner that each of the
robots involved has a part to play in resolving the
conflict. Or, if any of the robots had not modified its
velocity, it would have resulted in one or more col-
lisions among the set of robots involved in the con-
flict.

The cooperative phase in navigation is defined by
the condition SC�ST , where each robot has no other
choice but to cooperate in order to resolve conflicts. In
individual resolution robots choose velocities in the
space of SI�ST�SC , where the entailment for every
robot to cooperate does not exist. When SI�	 , the
null set, we say the navigation has entered the coop-
erative phase.

Figure 2(a) shows evolution of trajectories of two
robots, marked R1 and R2, moving orthogonal to one
another. The arrows show the location of the two ro-
bots at time t�0 sample. The robots move with iden-
tical speed of vR1�vR2�2.5 units. The states of the
two robots are represented as �1�(vR1 ,vR1,0) and
�2�(vR2 ,vR2 ,�90). The equality in the current and
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Figure 2. (a) Two robots approach each other along orthogonal directions. The locations of the robot at time t�0 is
shown marked by arrows. (b) The range of possible velocities for either of the robots R1 and R2 shown along the x and
y axis. The inner rectangle represents the area where the robots need to cooperatively find a solution for the pair of
velocities �vR1�2.5, vR2�2.5�. (c) At t�25 the conflict area occupies the entire possible space of velocities. (d) Search is
limited to quadrants 2 and 4 where robot actions are complementary.
aspiring velocities merely indicates that the robot
moves with uniform velocity and is not a loss of gen-
erality from the case when the aspiring velocity dif-
fers from the current. The subsequent discussion
holds equally for the case when the current and as-
piring velocities differ. Corresponding to this location
of the robots at the beginning of their trajectories, Fig-
ure 2(b) depicts the total space of velocities bounded
within the outer rectangle (shown thick) whose
length and breadth are 5 units, respectively. In other
words, each robot can have velocities in the interval
[0,5] units. The abcissa represents the range for one of
the robots (R1) and the ordinate the range for the
other (R2). The center of the figure marked as O in-
dicates the location corresponding to their respective
velocities of 2.5 units each. The strips of shaded re-
gion represent those velocities not reachable from O
due to the limits of acceleration and deceleration. The
inner rectangle, marked ABCD, represents the region
of velocities where a possible solution can be found if
and only if both robots alter their velocities. For
vR1�2.5 corresponding to R1’s velocity on the ab-
cissa, R2 must possess a velocity, which lies either
above or below the segments AB and CD of the rect-
angle when projected onto the ordinate. Similarly for
vR2�2.5 on the ordinate, robot R1 must possess a ve-
locity either to the right or left of the segments BC and
AD when projected onto the abcissa to avert collision.
We denote the velocities that make R1 reach the ve-
locities at D and C from O as v11 and v12 , respectively,
while the velocities that make R2 reach A and D from
O are denoted by v21 and v22 , respectively. With ref-
erence to Figure 1, v11 and v12 correspond to velocities
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that enable R1 to reach C11 and C12 in the time R2
reaches C22 and C21, respectively, without changing
its current aspiring velocity from vR2 .

4.1. Characterizing the Individual Phase

A pair of robots R1 and R2, which have a DC between
them are said to be in individual phase of navigation
if the conflict is resolved by either of the following
two means:

(i) R1 controls its velocity to v12 such that it is
able to get past C12 before R2 reaches C21
with its aspiring velocity as vR2 or R1 controls
its velocity to v11 such that it does not reach
C11 before R2 reaches C22 without changing
its aspiring velocity from vR2 .

(ii) R2 controls its velocity to v22 such that it is
able to get past C22 before R1 reaches C11
with its current aspiring velocity as vR1 or R2
controls its velocity to v21 such that it does
not reach C21 before R1 reaches C12 without
changing its aspiring velocity from vR1 .

In both cases it would suffice that only one of the two
robots controls or modifies its aspiring velocity. This
indeed is the crux of the individual phase where at
least one of the two robots is able to individually
avoid the conflict without requiring the other to take
action. Thus the range of velocities that permit indi-
vidual resolution of conflict by R1 is given by: v
��0,v11���v12 ,v1M� , where v1M represents the maxi-
mum permissible velocity for R1, which is 5 units in
Figure 2(b). They are given by v11�vc1�a�mt22

��(vc1�a�mt22)
2�(vc1

2�2a�ms). Here s denotes
the distance from R1’s current location to C11, a�m is
the maximum possible deceleration, and t22 is the
time taken by R2 to reach C22 given its current state
�2 . In the same vein the velocity that causes R1 to be
ahead of C12 when R2 reaches C21 under maximum
acceleration, am , is given by

v12�vc1�amt21���vc1�amt21�
2��vc1

2�2ams��,

where s�, the distance from R1’s current location to
C12, can also be written as s��s�(r1�r2)cos ec(��1
��2�) and t21 is the time taken by R2 to reach C21
given its current state �2 . In a similar fashion veloci-
ties v21 and v22 are computed. Thus some of the pos-
sible sets of solutions from the set ST are enumerated
as
s1��v11 ,vR2�, s2��v12 ,vR2�, s3��vR1 ,v21�,

s4��vR1 ,v22�, s5��v11 ,v22�, s6��v21 ,v12�.

From the above list the first four solutions involve
change in velocities of only one of the robots while
the last two solutions involve change in velocities of
both the robots. The last two solutions are examples
of collaboration even in the individual phase as ro-
bots involve in a combined effort to avoid conflict
even though they are not entailed to do so. The col-
laboration in the individual phase achieves the first
capability mentioned in Section 1 of avoiding con-
flicts in a manner that conflicting agents do not come
too near while avoiding one and another. Amongst
the last two solutions (s5 ,s6), that one is selected
which involves minimal change from the current
state of the respective robots. The last two solutions
indicate that collaboration involves complementary
decision making since, as one of the robots accelerates
from its current velocity, the other decelerates.

Henceforth, for any robot the lower velocity is
denoted as v1 and the higher velocity by v2 with the
robot index dropped for notational simplicity. In
other words, the lower and upper velocities are de-
noted as v1 and v2 instead of v21 and v22 for R2 or
instead of vI1 , vI2 for RI.

It is to be noted that the phrase that a robot
change or modify its velocity is more precisely stated
as the robot control or modify its aspiring velocity.

4.2. The Cooperative Phase

The area enclosed within the rectangle ABCD of Fig-
ure 2(b) is termed as conflict area for the pair of ve-
locities �vR1 ,vR2� for time t�0 and denoted as
CA(vR1 ,vR2 ,t�0). Let Vr1��vl1 ,vh1� represent the
range of velocities for which there is a collision for
robot R1 when R2 possesses a velocity vR2 . Similarly
let Vr2��vl2 ,vh2� represent the range of velocities for
which there is a collision for robot R2 when robot R1
possesses a velocity vR1 . We define the conflict area
for the velocity pair �vR1 ,vR2� for a given time t as
CA(vR1 ,vR2 ,t)��vR1 ,vR2�vR1�Vr1 ,vR2�Vr2�. The
velocities vl1 , vh1 for R1 and vl2 , vh2 for R2 are ar-
bitrarily close to their respective upper and lower
control velocities v1 , v2 that are used for resolving
conflicts. In other words �vl1�v1��
 for R1, �vl2
�v1��
 for R2 and similarly �vh1�v2��
 , �vh2�v2�
�
 where 
 is any arbitrarily low value. With
progress in time, if control actions to avoid conflicts
were not resorted, the conflict area expands to occupy
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Figure 3. (a) The velocity axis of the robot whose current velocity is at O. Shaded portions represent inaccessible
velocities or regions of conflict in the velocity space with other robots. (b) RN propagates requests to R1 and R2 on the left
due to conflicts with lower velocities and on the right to R3 due to higher velocity. (c) Propagation can result in a
generalized multiple tree or forest structure whose links represent the flow of conflicts between robots.
the entire space of possible velocities. This is shown
in Figure 2(c) where the conflict area fills up the entire
velocity space. Any combination of velocities outside
the rectangle ABCD now falls inside the shaded bor-
der strips, which are not accessible from O due to the
limits imposed by acceleration and deceleration.
Hence individual resolution of conflicts by any one of
the robots is ruled out since the upper and lower ve-
locities v1 and v2 for both R1 and R2 now lie inside
the shaded area.

Since the upper and lower velocities are situated
well inside the shaded area, the velocity pairs corre-
sponding to the vertices ABCD of the conflict area is
unknown. Hence a cooperative search ensues for
finding the pair of velocities that would resolve the
conflict. Cooperation between robots averts an ex-
haustive search and restricts it two quadrants 2 and
4 [Figure 2(d)] of the conflict area where robot actions
are complementary and yield best results for conflict
resolution. Since a search is nonetheless time inten-
sive, the rules (i) and (ii) mentioned earlier where ro-
bots resort to maximum acceleration and deceleration
in a complementary fashion offer the boundary value
solutions. A failure of the solutions at the bounds im-
plies a failure anywhere inside and a pointer to resort
to conflict propagation as the last resort.

A pair of robots R1 and R2 is said to be in coop-
erative phase of navigation if and only if they are able
to resolve the collision conflict between the two
through either of the following rules:

(i) R1 is able to get past C12 under maximum ac-
celeration before R2 can get to C21 under
maximum deceleration.
(ii) R2 is able to get past C22 under maximum ac-
celeration before R1 can get to C11 under
maximum deceleration.

The difference between the above rules and those
mentioned in Section 4.1 is that in Section 4.1 R1 finds
a control velocity that avoids conflict with R2 under
the premise that R2 would not alter its aspiring ve-
locity. Similarly R2 finds a control velocity under the
impression R1 is dumb. However, in the cooperative
phase R1 anticipates a modification in the aspiring
velocity of R2 such as in rule 1 where R2 modifies its
state (and hence its aspiring velocity) such that it
reaches C12 under maximum deceleration. Under
this anticipation of change in R2’s control action R1
tries to attain the corresponding control velocity that
would avoid conflict.

4.3. The Propagation Phase

Figure 3(a) shows the velocity axis for a robot RN.
RN’s current velocity is shown as O in the figure. The
portions of the velocity axis shown shaded are those
portions of the velocity forbidden from the current
state of RN either because they are not reachable or
they conflict with other robots. For example, portions
AB and FG on the axis are not reachable while por-
tions BC, CD, and EF conflict with robots R1, R2, and
R3, respectively. At O, RN enters into a new conflict
with a robot RM. Individual resolution of RN’s con-
flict with RM results in conflict with R1 on the lower
side and enters a forbidden region on the upper side.
Similarly RM’s individual resolution leads to conflict
with other robots or results in access of forbidden re-
gions. When RN cooperates with RM to resolve the
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conflict, it again results in conflict with R2 on the
lower side and R3 on the upper side. In such a sce-
nario RN propagates a cooperation request to R1, R2,
and R3. The tree structure of Figure 3(b) depicts this
propagation. All nodes on the left of RN are requests
arising due to lower aspiring velocities while nodes
on the right of RN are requests that arise due to
higher aspiring velocities. This convention would be
followed for all robots involved in the propagation
phase. Thus robot RN’s resolution of its DC (direct
conflict) with RM results in indirect conflict (IDC)
with robots R1, R2, and R3 and hence RN is consid-
ered to be in IDC with R1, R2, and R3. When R1 or R2
try to collaborate in conflict resolution of RN by
changing their aspiring velocities it can lead to fur-
ther conflict with other robots to whom requests are
transmitted by R1 or R2 for collaboration. Thus
propagation can be recursive and results in a multiple
tree-like or forest data structure shown in Figure 3(c).
A graph-like propagation is avoided since a robot-
node that has already propagated a request to an-
other node below does not entertain any new re-
quests.

Thus any robot has the following functionalities
with regard to propagating cooperation which are
taken up for discussion below:

• Transmit requests
• Receive requests
• Reply to requests
• Receive replies

Transmitting requests: A robot RT transmits as a re-
quest to another robot RR a packet that contains the
following information:

Source: The robot that originally sourced the
request.
T-robot: The robot that is currently transmit-
ting the request, which is itself (RT).
R-robot: The robot to which the request is
transmitted (RR).
V-aspire: The velocity which the transmit-
ting robot RT would aspire to have in order
to avoid conflict which it has currently with
some robot, R1, but which results in conflict
with the robot to which the request is trans-
mitted, RR.
t-collide: The minimum time to collision that
RT currently has with R1.
Mode: If the aspiring velocity V-aspire is
higher than RT’s current velocity, then mode
takes the tag high else it is assigned the tag
low.
S-mode: If the S-mode has the tag high, then
it indicates that RT and RR would be the
right descendants of the source robot, else it
indicates that they are left descendants.

RT transmits a request to RR only if RR is in a state
of entertaining requests, else the request is not trans-
mitted to RR. A robot RR accepts a request to collabo-
rate to resolve RT’s DC with another robot only if RR
itself is not involved in a DC.

Receiving requests: A robot RR can receive single
or multiple requests. A robot that receives requests
from more than one robot to participate in its conflict,
such as C receives requests from A and X in Figure
3(c) prioritizes the requests in order of time to colli-
sion of A and C with the robots with which A and C
are in conflict. The requests are processed in the order
of their priorities. If a request could be resolved, a
success reply is propagated back to the robot that
transmitted the request. A success reply indicates that
RR intends to modify its aspiring velocity with re-
spect to that request. Hence it cannot modify its ve-
locity to the remaining requests it has received and
hence propagates a failure back to the remaining ro-
bots that had requested RR. If a request is not solved,
it is either propagated to another robot or a failure is
transmitted back to the robot that transmitted. Unless
all the requests had resulted in a failure being trans-
mitted, RR does not entertain any new request for
that sample. In other words, if RR has managed to
solve at least one request or passed at least one to an-
other robot, it does not accept any new request for
that sample. A sample is one complete execution of
the entire reactive loop or module across all robots.

Replying requests: A request is replied back as a
success or failure to the robot that transmitted in the
manner described in the previous paragraph.

Receiving replies: A robot RT that had transmitted
requests to other robots receives a success or failure
reply from the robots to which it had transmitted. If
a success reply is received, RT sees whether the reply
is from its left or right child. From the side on which
the success was received a check is made if all other
robots that had received the request from RT with re-
spect to that particular aspiring velocity of RT have
also replied a success. If all other children with re-
spect to that v-aspire from that side (left or right ac-
cordingly) have propagated a success, then RT propa-
gates a success to the parent whose request to RT has
now succeeded. It removes links with all its remain-
ing children since it has already achieved a success on
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one of its v-aspire, which would become its new as-
piring velocity. To its remaining parents it propagates
a failure reply. On the other hand, if RT receives a fail-
ure reply from its left or right child, it propagates a
failure reply to RT’s parent responsible for that re-
quest. Simultaneously it removes all other children
on the particular side from which the failure reply
was received with respect to that aspiring velocity.

This process of replying requests and receiving
replies is recursed back till the original source or the
root.

5. THE ALGORITHM

A robot can find itself involved in the following kinds
of conflicts:

Mutual direct conflict (MDC): A pair of robots R1,
R2 are said to be in MDC with one another if R1’s first
direct conflict (DC) in reaction time tr is with R2 and
R2’s first DC in reaction time tr is with R1.

Nonmutual Direct Conflict (NMDC): A robot R1 is
said to be in NMDC with R2 when R1’s first DC in tr
is with R2 while R2’s first DC in tr is, however, not
with R1 but with some other robot R3.

Indirect conflict (IDC): A robot R1 is said to be in
IDC with R2 if R1 has no MDC or NMDC at that in-
stant and has received a request for resolving R2’s
conflict with some other robot R3.

The broad steps of the overall algorithm are de-
lineated below. Each step of the algorithm itself is fur-
ther discussed later.

For any robot RI do the following steps:

1. If RI has time nearest conflict within tr with an-
other robot RJ then do steps 1a to 1c.

1a. vnI←IresConf(RI,RJ); Obtain the next
aspiring velocity of RI, vnI , through
IresConf module which attempts individual
resolution of the conflict of RI.
1b. If step 1a fails to resolve conflict and RI’s
conflict with RJ is of type MDC then obtain
vnI as vnI←CResMDC(RI,RJ); CResMDC
module attempts a cooperative resolution of
the conflict between RI and RJ.
1c. If step 1a fails and RI’s conflict with RJ is
of type NMDC then obtain vnI as vnI
←CResNMDC(RI,RJ); CResNMDC mod-
ule attempts a cooperative resolution of the
non-mutual conflict between RI and RJ.
1d. If either of the steps 1a or 1b or 1c leads
to further conflicts with other robots propa-
gate descriptions of the conflicts to those ro-
bots.
2. If RI has received a request from RK to solve
RK’s DC with some other RM and RI itself has no
DC with any other robot then obtain vnI as vnI

←ResIDC(RI,RK); ResIDC module attempts to
resolve the indirect conflict between RI and RK.
3. Move RI on its current direction with its new
aspiring velocity vnI .
4. If RI has reached its target then halt navigation
else repeat from step 1.

Every robot in the system maintains for itself a data
structure termed Vlist. Vlist stores the areas in the ve-
locity space of that robot that are either forbidden or
conflicting given its current state. The velocity space
of a robot is the set of all velocities that can be attained
within its maximum permissible velocity as imposed
by its motor ratings. Hence for a robot RI whose
maximum permissible velocity is vMI , the velocity
space is the set of all velocities vRI that belong to
�0,vMI� . This set is denoted by VS(RI). Thus the ve-
locity space of the robot is also the velocity axis
shown in Figure 3(a). Vlist is the data structure that
maintains the end points of the shaded regions
shown in Figure 3(a). A shaded region is considered
forbidden if that region is not accessible for the robot
from its current state. A shaded region is termed con-
flicting when aspiring for a velocity in that region by
RI yields conflicts with another robot. The set of all
conflicting regions is denoted as VC(RI) and the set
of all forbidden regions by VF(RI). The set of all pro-
hibited regions, VP(RI), is given by VP�VC�VF ,
where the qualifier RI is omitted for ease of expres-
sion. The set V̄P is the set of all collision-free velocities
for R1, given its current state as � I . Based on this data
structure the various modules of the algorithm func-
tion as follows:

IresConf(RI,RJ) module: The module for indi-
vidual resolution of RI’s conflict with RJ computes
the next aspiring velocity for RI, vnI , that is conflict
free if it exists.

Let tIC , tJC represent the time taken by RI to reach
the point C shown in Figure 1, which is the intersec-
tion point of the future paths traced by the centers of
RI and RJ. The following steps characterize this mod-
ule:

1. Given � I the lower and higher velocities
for RI, v1 and v2 are computed.
2. If v1�VC find the highest velocity lesser
than v1 that is collision free if it exists and
denote that as the new lower velocity v1 .
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3. If v2�VC find the lowest velocity higher
than v2 that is collision free if it exists and
denote that as the new higher velocity v2 .
4. If v1�VP and v2�VP do steps 4a and 4b

4a. If tIC�tJC set vnI←v2 ; If RI reaches
C faster than RJ then assign the higher
velocity as its next aspiring velocity.
4b. If tIC�tJC set vnI←v1 ; If RI reaches
C slower than RJ then assign the lower
velocity as its next aspiring velocity.

5. If v1�VP and v2�VP set vnI←v1 ; Since
only the lower velocity is collision free as-
sign that as the next aspiring velocity.
6. If v1�VP and v2�VP set vnI←v1 ; Since
only the higher velocity is collision free as-
sign that as the next aspiring velocity.

Similar computations are made for RJ. A check for
noncomplementary actions is made to look out for
both RI and RJ being assigned their respective higher
or lower velocities, which could once again lead to a
conflict. In such a case the old aspiring velocity is re-
assigned to the robot that needs to accelerate or de-
celerate by a larger amount than the other.

Steps 2 and 3 are explained through Figure 4,
which shows an illustrative velocity axis for robot RI.
Shaded regions AB and JK represent forbidden re-
gions while other shaded regions are conflicting. The
current velocity of the robot is marked as O on the
axis. Shaded regions BC and DE on the lower side of
O conflict with robots R1 and R2 while regions FG
and HI conflict with R3 and R4 on the upper side. The
current aspiring velocity of the robot, however, col-
lides with a new robot RJ that has not been indicated
on the velocity axis.

If the lower velocity v1 belongs to the shaded re-
gion DE, step 2 of IresConf module finds a conflict-
free velocity that is just to the left of D and away from
D by some threshold value. Similarly, if higher veloc-
ity v2 falls in the shaded region FG, step 3 finds a
conflict-free velocity that is just to the right of G.

CresMDC(RI,RJ) module: The module for coop-

Figure 4. (a) An illustrative velocity axis. Shaded regions
AB and JK are forbidden while other shaded regions are
conflicting. (b) Illustrating indirect resolution of conflict in
the propagation phase.
erative resolution of RI’s conflict with RJ computes
the next aspiring velocity for RI, vnI , that is conflict-
free if it exists.

Computation for RI:

1. If tIC�tJC
1a. If v1�VC find vcfI , the lowest free
velocity for RI on the higher side of the
shaded region where v1 falls.
1b. Find tI1 , time taken by RI to reach
the point CI1 (same as point CI1 in Fig-
ure 1) assuming vcfI as the next aspiring
velocity.
1c. If v1�VF find tI1 as the time taken
by RI to reach the point CI1 under maxi-
mum deceleration.

2. Corresponding to the condition tIC�tJC
RJ evaluates for itself steps 2a to 2c:

2a. If v2�VC find vcfJ , the highest free
velocity for RI on the lower side of the
shaded region where v2 falls.
2b. Find tJ2 , time taken by RJ to reach
the point CJ2 (same as point C22 in Fig-
ure 1) assuming vcfJ as the next aspiring
velocity.
2c. If v2�VF find tJ2 as the time taken
by RJ to reach the point CJ2 under maxi-
mum deceleration.

3. RI and RJ exchange tI1 and tJ2 .
4. If tI1�tJ2 assign vcfJ as the next aspiring
velocity for RJ and vcfI as the next aspiring
velocity of RI.
5. If tI1�tJ2 steps 1 to 4 are repeated with
steps 1 and 2 swapped, i.e., RI tries to find a
velocity on the higher side while RJ com-
putes on the lower side that would satisfy
the condition tI2�tJI .

Steps 1a and 2a need further discussion. Step 1a con-
siders the lower velocity v1 as a possible candidate
for vnI . Since v1 is in conflict with some other robot
and since it is already in the cooperative resolution
module it implies search for a collision-free velocity
further lower than v1 has already failed in the indi-
vidual resolution module. Hence a new velocity v1
that is lower than the current velocity at O but is
higher than the v1 , which is currently in conflict, is
found. With respect to Figure 4(a), if v1 falls in shaded
region BC conflicting with R1, individual resolution
would fail for there’s no free velocity space on the left
of BC. Hence step 1a finds a velocity that is just to the
right of C that is conflict-free with R1 and other robots
on the velocity axis but would still collide with RJ, the
robot with which the conflict has been currently de-
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tected. Similarly step 2a does the same operation on
the higher side for RJ. Steps 1b and 2b describe the
cooperative resolution that occurs when velocities
straight away fall in forbidden regions, which was
also discussed in Section 4.2. Step 4 checks if v1 and
v2 as computed in 1a and 2a (or 1b and 2b) would
resolve the conflict between RI and RJ. This condition
is given by tI1�tJ2 or, in other words, the condition
that RI reaches CI1 after RJ reaches CJ2. Step 5 checks
for the case that the computed velocities do not re-
solve the conflict, in which case the process is re-
peated with RI searching on the higher side and RJ on
the lower side.

ResNMDC module: This module is very similar to
the ResMDC module except with a delay where the
robot RI that has a NMDC with RJ waits for RJ to re-
solve its MDC before modifying its aspiring velocity.

ResIDC(RR,RT,V-aspire(RT),Mode(RT),Source):
ResIDC module involves the robot RR currently not
in any kind of direct conflict with another robot to
modify its current aspiring velocity in a manner such
that the transmitting robot RT can have V-aspire as its
next aspiring velocity. V-aspire enables RT to avoid its
direct conflict with some other robot RK with which
it currently experiences a conflict. Since V-aspire
would in future conflict with RR, RT requests RR for
cooperation. The ResIDC module is described graphi-
cally through Figure 4(b). Robot RT with current ve-
locity at O has its lower aspiring velocity fall in the
shaded region AB conflicting with robot RR. A thick
vertical line at the location L shows the location of the
lower velocity. Robot RT requires its aspiring velocity
to be at L to avoid its current direct conflict with RK.
Hence RR tries to modify its aspiring velocity such
that the shaded velocity comes on the left or right of
L as indicated by the two arrows in Figure 4(b), such
that the velocity at L becomes collision-free. If RR suc-
ceeds in modifying its aspiring velocity such that L
becomes collision-free, it transmits a success reply to
RT. If these operations result in further conflicts with
other robots, a request to cooperate is propagated to
them. If RR’s dynamic capabilities as imposed by its
limits of acceleration fail to make the velocity at L
collision-free, RR transmits a failure reply to RT.

The maintenance of the forest structure of Figure
3(c) and the role of every robot-node in creating new
links, deleting existing links, and other associated op-
erations is not discussed here for brevity.

6. SIMULATION RESULTS

This section on simulation results is organized as fol-
lows. Initially the existence of the cooperative phase
in a multi-robot navigation system is portrayed in
Section 6.1 and the effects of parametric variations on
the time span of the cooperative phase are presented.
This section is the simulation counterpart of Section
4.2 where the existence of the cooperative phase was
illustrated as the expansion of the conflict area to oc-
cupy the entire space of possible velocities. In Section
6.2 the inevitability of cooperative phase is discussed.
Section 6.3 presents results of a multi-bodied system
and illustrates the effects of scaling up of the number
of robots on the requirement to cooperate and propa-
gate.

6.1. Portraying the Existence through Simulation

The existence of the cooperative phase in navigation
and its time span of existence vis-à-vis the angular
separation between robot heading angles, (��1
��2�), for the two-bodied case is first presented. Ro-
bots are made to approach each other at various an-
gular separations and the percentage of solution
space available for choosing control velocities that
could avoid collision is computed. The percentage
availability of solution space for an individual robot
is computed as (LUS /LT)•100, where LUS is the
length of the line that is not shaded on the velocity
axis and LT refers to the total length of the velocity
axis.

However, the robots do not chose these velocities
but continue to proceed until the solution space dries
up completely, indicating the onset of cooperative
phase. If the robots continue to navigate without en-
tering into a cooperative scheme for collision avoid-
ance, a stage arises where even cooperation would
not prevent collision. This final phase is termed as the
destructive phase, where the robots inevitably have
to collide into each other.

Figure 5(a) depicts a two-bodied case where the
robots approach each other with an angular separa-
tion of 90 deg. Figure 5(b) illustrates a graph that
takes discrete values on the y-axis versus sampling
instants on the x-axis. Sampling instants denote the
onset of a new reactive loop of the algorithm. The de-
lays are appropriately introduced in the algorithm to
make the time-length of every reactive cycle and
hence every sample constant. For all the simulations
portrayed in this section (6.1) the maximum velocity
of either of the robots is 5 pixels per sample and the
maximum acceleration for both the robots is 2 units.
The discrete values on the ordinate (y-axis or vertical
axis) of Figure 4(b) indicate the various phases of ro-
bot navigation. An ordinate value of 0 denotes the in-
dividual phase where the robot can avoid collision in-
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Figure 5. (a) Two robots approach each other with separation of 90 deg. (b) The various phases of navigation versus
sampling instants for an angular separation of 90 deg between robot heading angles. (c) Percentage availability of solution
space versus sampling instants. (d) Phases of navigation versus sampling instants for an angular separation of 45 deg
between robots. (e) Percentage availability of the solution space does not overlap precisely in this case for the two robots
and hence the demarcation between the two plots.
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dividually without entering into cooperation. An
ordinate value 1 signifies the cooperative phase of navi-
gation where the solution space has dried up and the
robots needs to cooperate for averting collision. Fi-
nally, value 2 on the ordinate implies the destructive
phase where the robots inevitably need to collide or
have already collided.

In Figure 5(b) the individual phase spans for 86
sampling instants from the start of navigation while
the cooperative phase extends for only two instants
after which the robots enter their destructive phase.
Figure 5(c) depicts the percentage availability of so-
lution space for choosing control velocities corre-
sponding to the various navigational states of the ro-
bot in Figure 5(b). It is evident from Figure 5(c) that
the range of options available in the solution space
decreases with time and hits zero in the 86th sample
where correspondingly in Figure 5(b) the robot enters
the cooperative phase of navigation on that instant.
Equivalently, the conflict area expands to occupy the
entire space of possible velocities as depicted in 2c.
Figures 5(d) and 5(e) depict the phases of navigation
and the availability of solution space when robot
pairs approach one another with an angular separa-
tion of 45 deg, while Figures 5(f) and 5(g) depict the
same for a separation of 15 deg. These figures indicate
that the cooperative phase onsets earlier as the angu-
lar separation decreases and correspondingly the
range of options on the solution space reduces to zero
faster. The span of the cooperative phase also in-
creases with decrease in angular separation and in
Figure 5(f) it becomes rather prominent. It is also
worthwhile to note in Figures 5(e) and 5(g) the per-
centage availability of the solution space does not
overlap precisely for the robot pair over sampling in-
stants, hence the appearance of two distinct plots cor-
responding to the two robots. In Figure 5(e) the per-
centage availability of solution space hits zero for one
of the robots ahead of the other. However, the system
itself enters a cooperative phase only when the indi-
vidual solution space exhausts for both the robots.
The analysis indicates that the need to resort to co-
operative phase for conflict resolution would increase
when robots approach one another with reduced
angles of separation. This is expected since the dis-
tance between C11 and C12 (C21 and C22) increases
as the angular separation between the robots de-
creases. With increasing distances the conditions (i)
and (ii) for individual resolution of conflicts men-
tioned in Section 4.1 becomes more difficult to meet.
Equivalently, the percentage of individual solution
space becomes less for the same reaction time for con-
sidering conflicts.
6.2. When Does Cooperation Become Inevitable?

The focus thus far has been on establishing the exis-
tence of a cooperative phase during navigation. A
question may be asked while the existence of a coop-
erative phase during navigation is not denied, how
essential is the need for it.

6.2.1. Requirement for Cooperation in Two-Bodied
System

For the two-bodied system discussed in the last sec-
tion cooperation could have been avoided if robots
took preemptive actions before the onset of the coop-
erative phase. Table I illustrates under what set of pa-
rameters did an invocation of a cooperative scheme
for collision avoidance became unavoidable. The
table suggests for the case of 90 deg separation in ro-
bot heading directions cooperation becomes inevi-
table only when the robot’s reaction time is consid-
erably reduced to 5 s and when it possesses awful
dynamic capabilities such as when it cannot acceler-
ate faster or decelerate slower than 0.15
pixels/sample2. However when the angular separa-
tion was 15 deg even default parameters entailed the
cooperative phase. Hence the requirement of a coopera-
tive scheme in real-time navigation is not artificial even for
a simple two-bodied system.

Apart from its inevitability, cooperation also en-
ables robots to avoid conflicts without coming too
near to one another. The three snapshots in Figure
6(a) depict the closest distance of approach in a simu-
lation of two robots. The leftmost snapshot is the case
where both robots take complementary action with
the left robot decelerating and the top accelerating.
The next two snapshots are when only one of the ro-
bots acts to resolve the conflict. In the second the left
decelerates while in the third the top accelerates. The
distance between the two robots at the point of closest
approach is maximal when robots take complemen-

Table I. Robot parameters for which cooperation be-
comes mandatory for the two-bodied case.

Angular
Separation
(degrees)

Reaction
Time

(seconds)

Maximum
Acceleration,
Deceleration

pixels/s2
Maximum velocity

(pixels/s)

90 5 0.15,−0.15 5

45 5 0.45,−0.45 3

15 12 2,−2 1
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Figure 6. (a) The left-most snapshot depicts conflict resolution when both robots involved take appropriate actions while
in the next two only one of the robots changes its aspiring velocity to avoid conflicts. (b) Velocity profiles for the two
robots in the left-most snapshot of (a). The complementary nature of actions can be seen as one of the robots accelerates
to a higher velocity and the other decelerates to a lower one.
tary actions. Figure 6(b) shows the velocity profile for
the two robots for the case when cooperation is re-
sorted through complementary actions. The peak and
the trough in the profiles indicate that one accelerates
and the other decelerates to resolve the conflict.

6.3. The Multi-Bodied Scenario

For all the simulations portrayed in this section the
maximum velocity of either of the robots is 5 pixels/
sample and the maximum acceleration for both the
robots is 2 pixels/sample2. The reaction time tr is
fixed at 12 samples. All robots are capable of commu-
nicating to one another within a range of 100 pixels.

Figure 7(a) shows an instant during the naviga-
tion of a system of five robots where robots 1 and 3 are
unable to resolve their conflicts between them indi-
vidually as well as cooperatively as cooperative so-
lutions lead to indirect conflict with robot 4. Hence 1
and 3 propagate a request to resolve their conflict to
4, thereby embarking on the propagation phase as the
last attempt to resolve their conflicts. Robot 4 accepts
requests from 1 and 3 and is able to solve the request
of 1 by modifying its current velocity such that 1 and
3 are able to avoid their mutual direct conflicts. This
scenario is depicted in Figure 7(b) where 4 moves
faster in such a way 1 and 3 are able to avoid their
mutual direct conflict. Figure 7(c) shows the space-
time evolution of trajectories for the robots of Figures
7(a) and 7(b). The x and y axes indicate the regions in
the x-y plane occupied by a robot every time it
samples the environment. Robot samples of the en-
vironment in time are shown along the z axis as sam-
pling instants. The five solid lines of the figure cor-
respond to the trajectories of the five robots. The
figure shows that the robot trajectories do not overlap
in space-time, confirming that all collision conflicts
were resolved by the algorithm.

Figure 8 shows a sequence of snapshots during
the navigation of a system of eight robots. The se-
quence is ordered left to right with the second row
sequence following the first row. The traces of the ro-
bot are shown by thin lines rather than by the size of
the robot. The rightmost snapshot in the first row and
the leftmost snap shot in the second row are instances
when propagation phase was effected for conflict
resolution. The first and the last snapshots represent
the initial and final configurations of the robots.

Figure 9 shows yet another sequence of six snap-
shots of a system of nine robots arranged in the same
order as in Figure 8. The first and the last snapshots
are the initial and final configurations of the nine ro-
bots. The robots are labeled 1 to 9 in the first and last
figures. The traces of the robots are not shown for
clarity. The initial and final configurations resemble a
clocklike structure. In other words a robot placed at
position 3 on a clock needs to get to a goal location
which is near 9 and a robot placed near 9 initially has
its goal configuration near 3. These examples depict
simulations with increasing difficulty as the number
of robots increases and all of them converge towards
a common junction. Hence the trajectory of every ro-
bot intersects with every other robot and hence the
number of collision conflicts of the total system is



264 • Journal of Robotic Systems—2005
Figure 7. (a) A snapshot of a system of five robots. (b) Robots 1 and 3 propagate requests to resolve their conflicts to robot
4, which accepts the request and moves faster such that 1 and 3 are able to avoid their mutual direct conflict.
(c) Space-time evolution of trajectories for the five-robot system.
high. It is also worth emphasizing that robots con-
sider collision conflicts only within a reaction time of
12 samples by which time the robots have converged
sufficiently close to one another.

The sequence of snapshots shown in Figure 10
highlight a more difficult example involving 11 ro-
bots at similar initial and final configurations as in
Figure 9. When the number of robots was increased
beyond 11 some of the conflicts could not be resolved
and hence collisions were encountered between the
robots. The second of these snapshots represents the
instant when robots first begin to react to each other’s
presence by embarking on a strategy for resolving
conflicts.

6.3.1. Effects of Scaling on the Requirement to
Cooperate and Propagate

In Section 6.2 the inevitability of cooperation with re-
spect to a two-bodied system was discussed. As the
number of robots increases and if their navigation
course leads to frequent crisscrossing of each other’s
path, the entailment to cooperate and propagate also
increases. For instance, for the five-bodied system
shown in the previous section there was one occur-
rence of propagation whereas in the seven-bodied
system there were two such occurrences. Table II de-
picts the average number of such occurrences to co-
operate and propagate over various simulation runs
as the number of robots in the system is scaled up.
The initial and final configurations in these runs were
not similar to those in Figures 9 and 10. One such
snapshot involving a simulation of 30 robots is shown
in Figure 11. The results suggest that the necessity to
cooperate and propagate in a multi-robotic system in-
creases when the system scales up to a large number
of robots. It is to be noted the number of attempts to
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Figure 8. Sequence of snapshots arranged from left to right with the second row following the depicting navigation of a
system of eight robots. The third and fourth snapshots depict instances where propagation of conflicts was resorted for
conflict resolution.

Figure 9. Sequence of snapshots during navigation of a system of nine robots.
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Figure 10. Sequence involving 11 robots. The second of the snapshots indicates the instance when robots begin to react
to each other’s presence.
cooperate signifies the number of times the robots
had to enter the cooperative phase of navigation
when individual resolution failed.

7. NAVIGATION EXPERIMENTS

This section shows two navigation experiments using
ActiveMedia’s Amigobots as the robots to verify the
proposed resolution scheme. The Amigobot contains

Table II. The effect of scaling up on the need to cooperate
and propagate conflicts.

No. of
robots

No. of attempts
to cooperate

No. of conflict
propagations

10 2 2

15 4 3

20 8 4

30 12 5
all basic components for robotics sensing and navi-
gation in a real world environment such as battery
power, motors and wheels, position encoders, and so-

Figure 11. A snapshot during navigation of 30 robots.
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Figure 12. (a)–(c) Collision avoidance sequence between two Amigobots. The robot on the left in the second figure slows
down while that on the right hastens to avoid one another.
nar transducers managed via an onboard Hitachi H8
microcontroller. The communication between the ro-
bot and the client computer happens through a wire-
less serial Ethernet. The control algorithm makes use
of the classes and methods provided by ARIA (Ac-
tivMedia Robotics Interface for Application) Java
Wrapper to interface with the methods that provide
for low level control of the robot. Each robot to be
controlled is invoked as a separate thread within the
algorithm. Robots become aware of each other’s
states through shared objects between the threads.

For our experiments the maximum translational
speed was limited at 75 cm/s. Collisions were con-
sidered within a reaction time, tr , of 10 s into the fu-
ture. The first experiment is portrayed through Fig-
ures 12(a)–12(c). Figure 12(a) represents the instance
when robots detect the collision within tr . Figure
12(b) depicts the robot on the left slowing down while
the robot on the right is speeding up to clear one an-
other safely. Figure 12(c) is a few instants after the
clearance. The second experiment involves four ro-
bots [Figures 13(a)–13(c)] requiring to get past a com-
mon intersection. Figure 13(a) is the instance when all
four robots have detected collision with at least one of
the other robots. Figures 13(b) and 13(c) show snap-
shots during the collision avoidance sequence among
the four robots.
8. LIMITATIONS AND SCOPE

The main limitation of this approach is that complete
collision-free resolution of conflicts cannot be guaran-
teed as is the case with typical reactive approaches
that do not resort to planning as a strategy for avoid-
ing conflicts. In fact, these limitations are also re-
ported in approaches that take to reactive strategies
for resolving conflicts.10,18,19 For example, simulation
results show the occurrence of conflicts even for the
case of five robots.18 In our approach the number of
conflicts tends to increase as the number of robots in
the system increases and they crowd or converge to-
wards a common junction that needs to be crossed. In
such cases the angular separation between the direc-
tions of approach of several robots becomes small
and hence the possibility to collide increases. The
situation is largely alleviated by the following mea-
sures:

• Increase the reaction time between robots
whose angular separation is very low. By mak-
ing reaction time as a function of angular sepa-
ration we have found that the number of con-
flicts can be essentially reduced.

• For robots whose angular separation is less, an
orientation control scheme in combination
Figure 13. (a)–(c) Collision avoidance sequence between four Amigobots.
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Figure 14. (a) Robots 1 and 0 detect conflict between each other. Robots 0 and 2 are not aware of each other. (b) Robot 0
accelerates and 1 decelerates, which results in collision between 0 and 2. (c) Collision between 0 and 2 averted through an
act of benevolence of 1.
with velocity control can be employed for re-
ducing collisions. However, orientation con-
trol can also increase instances of collision
when the number of robots is large and they
tend to crowd or converge towards narrow ar-
eas.

• A trivial solution is to bring to a halt all the ro-
bots involved in a conflict and through some
priority scheme navigate them one after an-
other.

8.1. Social Cues in Multi-robotic Systems

One of the main areas that has been identified for ex-
panding the scope of this effort is the role of social
cues and sociality in real-time navigation of several
robots. For example, robots that are benevolent in
transferring critical information to other robots at the
apt instance can help avoid hidden collisions and al-
leviate the performance of the entire system. Benevo-
lence among robots is particularly helpful when the
communication range between robots is restricted to
very small distances. In the example briefed below,
robots communicate to one another only within a
range of 50 pixels and the kinematic and dynamic ca-
pabilities of the robots are restricted.

Figure 14(a) depicts a situation where the robots
numbered 0 and 1 are in collision. In the normal
scheme of collision avoidance robot 1 accelerates and
robot 2 decelerates, which, however, results in colli-
sion between robots 0 and 2 in the future as shown in
Figure 14(b). At the time of decision making robots 0
and 2 are out of the field of vision of each other and
robot 0 is not aware of the consequence of its decision
made with respect to robot 1. However, robot 1 is in
the knowledge of both robots 0 and 2 as they are
within its range of vision. Robot 1 can anticipate the
future collision between robot 0 and 2 and hence
modify the decision-making strategy. It could suggest
0 to decelerate while itself accelerates; this would
avoid the future collision between 0 and 2. We call
this an act of benevolence where 1 comes forward and
changes its own preferred mode of action (that of de-
celerating) to avert collision between 2 and 0. The act
of benevolence avoids collision between 0 and 2 in
Figure 14(c).

9. CONCLUSIONS

A novel distributed three-tiered approach for coordi-
nated cooperative collision avoidance for a multi-
robot system from a reactive navigation standpoint
has been presented and the simulation results con-
firm the efficacy of the proposed model. Robots re-
solve conflicts at three levels, namely, individual, co-
operative, and propagation phases. The approach is
particularly suitable for a large number of robots
moving about in shop floors, factories, airports, and
the like where a priori knowledge of the plans of all
other robots in the system is not made available for
every robot in lieu of computational complexity. Es-
tablishing the existence of a cooperative phase in
navigation as well as ascertaining the entailment of
cooperation in two robotic and multi-robotic systems
involving several robots has also been a contribution
of this effort. Cooperative phase needs to be invoked
when individual resolution of collision conflicts does
not yield a control action in the individual solution
spaces of the robot. Cooperation can be considered as
a search for control actions (here velocities) in the
joint space of the system of robots involved in con-
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flicts. The results reported also indicate that the need
to cooperate and propagate conflicts increases as the
system scales up to a large number of robots. Future
areas of work include incorporating a cooperative
orientation control scheme and the investigation of
various social cues such as benevolence and decep-
tion in conflict resolution in a multi-robot system.
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