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 Abstract – We present a methodology for optimal target 
detection in a multi sensor surveillance system. The system 
consists of mobile sensors that guard a rectangular surveillance 
zone crisscrossed by moving targets. Targets penetrate the 
surveillance zone with poisson rates at uniform velocities. Under 
these conditions we present a motion strategy computation for 
each sensor such that it maximizes target detection for the next T 
time-steps. A coordination mechanism among sensors ensures 
that overlapping and overlooked regions of observation among 
sensors are minimized. This coordination mechanism is 
interleaved with the motion strategy computation to reduce 
detections of the same target by more than one sensor for the 
same time-step. To avoid an exhaustive search in the joint space 
of all the sensors the coordination mechanism constrains the 
search by assigning priorities to the sensors and thereby 
arbitrating among sensory tasks. A comparison of this 
methodology with other multi target tracking schemes verifies its 
efficacy in maximizing detections. “Sample” and “time-step” are 
used equivalently and interchangeably in this paper. 
 

Index Terms- multi sensor system, optimal target detection, 
sensor network, sensor surveillance, multi-agent system 

 
I INTRODUCTION 

 
We present a framework for maximizing target detections 

in a surveillance system consisting of multiple mobile sensors 
(i.e., robots). The sensors collectively guard a rectangular 
surveillance zone crisscrossed by moving targets. A-priori 
information about targets is the knowledge of their poisson 
rates of entry. Current knowledge about all targets within the 
sensing range of a sensor is available to the sensor in the form 
of the target’ velocity information and motion direction. While 
current information is used in deterministically computing the 
best places to be at in the subsequent time steps, it does not 
take into account the changes in the environment that occur 
due to consistent flow of target traffic into and out of the 
surveillance zone. Knowledge of the statistics of target entry 
and exit on the other hand are used to compute the statistically 
optimal places to be at in the future from a given location, but 
does not consider the current information gleaned through 
sensor observations. Hence a combination of both current 
target information and target statistics is used to compute a 
motion strategy of a sensor that maximizes the number of 
detections for the next T time steps.  
 Computing the best strategy from its individual 
perspective can result in motions for each sensor with 
overlapping regions of observation. A priority based 

coordination mechanism is interleaved with the motion 
strategy computation to reduce detections of the same target 
by more than one sensor. To avoid an exhaustive search in the 
joint space of all the sensors the coordination mechanism 
constrains the search by assigning priorities to the sensors. 
Hence while optimal from a single sensor’s perspective the 
algorithm is not optimal across all sensors – a choice that one 
is reasonable to assume in light of prevailing real time 
demands. The details of this method are presented in section 3 
of this paper. Extensive simulation results confirm the efficacy 
of this strategy in the form of tabular comparisons presented in 
section 4. 
 Multi-sensor surveillance finds applications such as in 
border patrol, guarding of secured areas, search and rescue 
and warehouse surveillance [1, 2]. It involves detection of 
multiple intrusions and/or tracking through coordination 
between the sensors. Detection and target tracking has been 
researched from multiple viewpoints. Some efforts have 
focused on the problem of identifying targets from a given set 
of data through particle filters [3], and probabilistic methods 
[4]. The problem of data association or assigning sensor 
measurements to the corresponding targets were tackled by 
Joint Probabilistic Data Association Filters by the same 
researchers such as in [3]. Kluge and others [5] use dynamic 
timestamps for tracking multiple targets. Krishna and Kalra 
[6] presented clustering based approaches for target detection 
and further extended it to tracking and avoidance. The focus 
of these approaches has been on building reliable estimators 
for predicting target trajectories that is different from the 
objective of this effort to maximize target detections. 

In the context of distributed task allocation and sensor 
coordination Parker proposed a scheme for delegating and 
withdrawing robots to and from targets through the 
ALLIANCE architecture [7]. The protocol for allocation was 
one based on “impatience” of the robot towards a target while 
the withdrawal was based on “acquiescence”. Jung and 
Sukhatme [8] present a strategy for tracking multiple intruders 
through a distributed mobile sensor network and a strategy for 
maximizing sensor coverage[8, 9]. Lesser’s group have made 
significant advances to the area of distributed sensor networks 
[10] and sensor management [11]. In [12] Parker presents a 
scheme called A-CMOMMT where the goal is to maximize 
the number of targets observed over a time interval of length 
T  based on the same philosophy of behavior-based control as 
in [7]. The authors of this paper present their scheme for 
resource allocation and coordination in a distributed sensor 



system through a set of fuzzy rules in [13] and further 
compare various resource allocation strategies in terms of their 
detection performance in [14]. The author of [15] has looked 
at the problem of static placement of sensors in known 
polygonal environments and [16] describes a distributed 
sensor approach to target tracking using fixed sensor 
locations. The current approach is disparate from those of 
[15,16] in that in the current scheme the sensors are mobile. 

Among the approaches that we have encountered the 
closest to this are [12] and [8]. In [12] a behavior-based 
approach, A-CMOMMT, is compared with three other 
heuristic approaches where the sensor’s motion strategy is 
arbitrary or random in the first, stationary (the sensor does not 
move) in the second and based on local force control in the 
third. In [8] a motion strategy for tracking multiple targets 
based on density estimates is presented. The robot attempts to 
maximize target detections by maintaining itself at a particular 
distance from the center of gravity of currently observed 
targets. In these approaches since no assumption is made 
regarding target arrival statistics the motion strategy does not 
guarantee sensors move to best possible locations to optimize 
their detections.  

In contrast, our approach presents a constrained optimal 
scheme that moves the sensor to regions in the surveillance 
region to maximize detections over the next T samples. The 
optimality of this approach comes with the tradeoff of apriori 
knowledge regarding target statistics. Nonetheless this 
situation is not new in robotic and multi-robotic literature 
where optimal path planning and scheduling algorithms 
require prior knowledge of the workspace in which they 
operate in terms of their static and dynamic contents vis-à-vis 
behavior based approaches that do not guarantee optimality or 
completeness but require no prior knowledge.  
 

III. THE METHODOLOGY 
 
A.  Description of Surveillance Zone, Sensors and Targets: 
 

We consider the surveillance system depicted in figure 1. 
The sides of the outer rectangle or the biggest rectangle in 
figure 1 form the boundary of the surveillance zone – the area 
enclosed by it is the area of interest where sensors attempt to 
optimize their rates of detection. The shaded circles are 
effective sensor ranges in their starting positions. The field of 
vision (FOV) of a sensor is 360 degrees. The squares with 
thick boundaries in figure 1 with the sensors at their center are 
the inscribed squares of the circular FOV of a sensor. In other 
words, the diameter of the FOV of a sensor is the diagonal of 
one such inscribed square. Purely from the point of view of 
facilitating easier computations the sensor considers only 
those targets that lie within its inscribed square as targets 
within its FOV. It needs to be emphasized that this 
simplification does not have any bearing on the overall 
philosophy of this approach. In the results section the efficacy 
of this method is verified by uniformly applying this same 
condition across all other approaches that are compared and 
the extension to a case of circular FOV is merely one of more 

involved but computable computations. The entire 
surveillance region is discretized into a lattice of cells. The 
cells are represented as the small squares inside the FOV of 
the leftmost and topmost sensor. The dashed lines along the 
length and breadth indicate that the cells proceed to fill the 
entire surveillance zone. At each of the cell locations various 
aspects of target statistics are computed that are described 
later. The crosses outside the surveillance zone are the source 
points from where targets emanate as per Poisson statistics. 
Targets percolate from each of those sources into that 
horizontal or vertical half-plane that contains the surveillance 
zone. Therefore, all targets coming from a particular source 
will be contained with an angular span of π radians. 
Furthermore, the following assumptions are made for sensors 
and targets 

• A sensor can detect all targets within its FOV or 
occlusion relations are not considered. 

• The takeoff angle of a target from its source point is 
uniformly distributed in [ ]π,0  

• All targets move with the same uniform velocity 
within the surveillance zone along linear trajectories, 
which can be ascertained by the sensor. 

The last assumption allows that the statistical values of 
various parameters computed at every cell in the lattice to take 
a unique value rather than a probability distribution. In case of 
a distribution the expected values of the parameters need to be 
made use of. 
B  Problem Statement and Approach 
 

The problem attacked in this paper is stated as follows. 
Given: 
• SN : The set of all sensors in the system, 

{ }sS snssN ,...,1,0= , where si denotes the sensor with 
label i , ordered in a sequence. Hence sn  the label of the 
last enumerated sensor is also the number of sensors in 
the system, which is a constant. 

• tIN , : The set of all targets in the system at time t, where, 
{ }tItI iniiN ,, ,...,1,0= , and tIn ,  is the number of targets 

in the system at time step t that varies at every time step 
and hence dynamic. 

• :,tmg A binary variable that takes the value 1 if a target 
im is observed by any one of the sn sensors at t. 
Objective: To develop an algorithm such that the 

following cost function ∑∑
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other words, the number of detections of the targets present in 
the system at every time step is maximized over T time steps. 

Approach:  
1) At each cell, Pi , in the lattice the following are computed.  

1a). Piλ̂ : The expected rate of target entry into the FOV 
of a sensor centered at Pi . If there are Q  target sources each 



emanating targets at rate λ then ∑
=
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θ j  denotes the expected fraction of the total number of 

targets that would enter the FOV of the sensor at Pi  from the 
jth of the Q target sources. In figure 1 Q=8. We also denote by 

π
θ

λλ j
jPi =,  the rate at which the sensor at Pi  sees targets 

from source j.  In other words, among the targets taking off at 
any angle within [ ]π,0 , from source j only those that takeoff 
within the angular span [ ]jjj θδδ +,  would enter the FOV of 

the sensor, where jδ  is the smallest angle formed by the 
segment connecting a vertex of the FOV square and source j 
and jj θδ +  is the largest angle. 

1b) PieT̂ : The expected escape time for a target through 
the field of vision of the sensor centered at Pi. The escape time 
is essentially the time for which a target would be in the FOV 
before it escapes from a sensor. 

1c) PiPiPi eTd ˆˆˆ λ= : The number of targets expected to be 
detected by a sensor at Pi  for any time step. 

1d) jPi,η : The normalization constant at cell Pi  due to 
target source j. This constant renders the summation of the 
probability distribution function (pdf) of the escape time of a 
target through the FOV of a sensor at Pi  due to source j to go 
to unity. In other words if jPite ,  is the random variable that 
measures the escape time of a target for a sensor at cell Pi  
due to source j and ( )jPitef ,  be its pdf then jPi,η sees to that 

( )∫ =
b

a

t

t
jPitef 1, , where the lower and upped bounds of the 

integral are the minimum and maximum possible escape 
times. It is to be noted that in general ( )jPitef ,  is not the 

same in [ ]ba tt , and needs to be broken into sub functions for 
respective time intervals for which it has the same closed form 
representation.  
2) For every sensor sj  in the system located at a particular 
cell location Pj  the path it takes for the next T time steps is 
computed such that the number of target detections is 
maximized based on steps 3 and 4. 

3) For sj  currently at Pj  compute for all cells, Pk , that 
are at level n, },...,2,1,0{ Tn = from Pj , the expected number 

of detections, tk
dn ,ˆ , where the first index, k, in the superscript 

refers to the cell Pk and the second index t denotes the time 
step for which it was computed. The computation is based on 
what sj currently observes at Pj and the target arrival 
statistics, elements of which are computed in step 1. This 
computation is carried out at the current cell Pj  and those 

cells one time-step away for the next T time steps.  For cells at 
depth two this computation is carried T-1 times, 
corresponding to time steps starting from 2 and ending at T 
with T inclusive. For a cell at depth T the computation is done 
once for time step T alone. This results in a tree where each 
cell at time step t is connected to its eight nearest cells as well 
as itself at 1+t . Thus every node in the tree except the leaf 
node is connected to nine nodes and the depth of the tree is T. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4) On this nine connected space-time tree perform a depth-
limited search to maximize the detections with tk

dn ,ˆ  as the 
objective value of a link that connects a current cell node 
Pj at t-1 to another node Pk  for the next time step t. 
5) The paths of the sensors are ordered based on the number of 
detections. The sensor path that has the highest number of 
detections has the highest priority. Ties are broken randomly. 
6) For overlapping FOV between sensors at certain locations 
in the paths the number of detections is reduced at the 
corresponding cell for the corresponding time-step for the 
sensor with lower priority. The reduction is computed as 

tk
d

tk
d

tk
d nfnn ,,, ˆˆˆ −= . The fraction f is proportional to the 

area of overlaps given by the area of overlapping FOV divided 
by the area of the FOV.  
7) The optimal path for the sensor with the lower priority is 
recomputed based on the updated tk

dn ,ˆ  values through depth 
limited search. For a sensor with priority p, we check for 
overlaps with all those sensor trajectories with priorities 1, 2, 
…, p-1. 
8) The steps two to seven are repeated until the end of 
simulation. 

Figure 1: The surveillance zone is represented by the outer rectangle. The 
sensors by shaded circles, the crosses outside are the target sources and 
the small squares within the FOV of top and left sensor are the discretized 
cells.  The dashed lines along the length and breadth indicate that the cells 
proceed to fill the entire surveillance zone. 



Step 1 of the algorithm is performed only once at the start 
of the simulation across all the cells and is essentially an 
offline step unless the target statistics changes dynamically.  
 
B Computing tk

dn ,ˆ  

Computation of tk
dn ,ˆ  varies if it is being carried out for the 

same cell location for a future time or for a different cell 
location. For the case of computing at the same cell the 
procedure is as follows: 

Given that the sensor at cell Pi  currently or at t=0 
observes Pin  number of targets then the number of targets it 
is likely to see T time-steps into the future is given by: 

( )∑ ∑
= =

−<−+−=
Q

j

T

t
jPijPiPiPi

Ti
d tTtePTknn

1 1
,,

, ˆˆˆ λλ

 (1) 
Here jPijPiPi te ,, ,,ˆ λλ  have the same connotations as 
discussed in step 1 and Q is the number of target sources as 
before. The first term on the right hand side or RHS of 
equation (1) is the deterministic part that is computed purely 
based on what the sensor senses now. It merely states that out 
of Pin  particle seen currently k of them would disappear by T 
time steps. The second term onwards on the RHS denote the 
statistical counterpart. It says that TPiλ̂  are likely to enter the 
FOV in T time steps and of which the number in the third term 
are likely to leave the FOV by T. The third term containing the 
summation is explained as follows. ( )tTteP jPi −<,  denotes 
the probability that a target from source j that entered the FOV 
at t would have escaped the FOV by T . Hence 

( )tTteP jPijPi −<,,λ̂  is the estimate of the number of 

particles that entered at t and escaped by T , since jiP ,λ̂ is the 

estimate of number of particles entering for every t from j into 
the FOV of the sensor at Pi . The summation over t signifies 
that estimate of the number of particles that would have left by 
T needs to be done in correspondence with the time at which 
they entered between now and T. The summation over Q 
signifies that the pdf of jPite ,  is not the same for every source 

j at that cell location. The ( )tTteP jPi −<,  is given below by 
its pdf with notations from step 1. 
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The number of candidates likely to be seen for a different 
cell Pk at T given that Pin  number of targets then the number 
of targets are currently seen at Pi  is given by: 

( )








−<−+−= ∑ ∑

= =

Q

j

T

t
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d tTtePTknn

1 1
,,

, ˆˆˆ λλκ

( ) Pkd̂1 κ−+      (2).   
Equation (2) has similar connotations as (1) except for the 
appearance of κ that represents the fraction of area common 
to FOV erected at Pi  and Pk and Pkd̂  is as discussed in step 
1. For that fraction of the FOV at Pk  that is not visible from 
Pi , Pkd̂ , which is the expected number of detections at cell 
Pk at any instant is made use of. And since ( )κ−1  is the 

fraction of FOV at Pk  that is not visible Pkd̂  is multiplied by 
that fraction. This makes use of the assumption that the 
distribution of targets is uniform across an area. In our plots of 

Pkd̂  done for the surveillance zone variations between cells 
are steep only towards the edges of the zone. A more rigorous 
computation involves evaluating the pdf for the overlapped 
and non-overlapped areas separately. This is being avoided 
since (2) is computed during the online phase of the algorithm. 
This assumption is also invoked in step 6 while reducing the 
number of detections due to overlapping FOV.  
 
C The Coordination Phase: 
 

The coordination phase prevents paths of sensors to come 
close to one another to avoid overlapping FOV. This is done 
by imposing penalties and reducing values of tk

dn ,ˆ  and 
recomputing paths for sensors with lower priorities as 
described in steps 5, 6 and 7. The path of the sensor with 
highest detections is fixed. The path with the second highest 
recomputed if there are overlapping areas of observation with 
the first. The recomputed path constitutes a motion strategy 
that is optimal in terms of detections under the constraint that 
the path of highest sensor is fixed. Similarly the path of the 
sensor with the least priority sensor when recomputed is 
optimal under the constraint that the paths of the sensors with 
higher priority are fixed. Hence at the coordination phase the 
optimality of the algorithm is not complete. A fully complete 
algorithm would involve a search in the joint space of all 
sensors that is combinatorially hard..  

 
IV SIMULATION RESULTS 

 
This section reports results obtained through simulations 

on our environment developed using Borland’s JBuilder IDE. 
The value of the number of time steps, T, used for these 
simulations is 3, carried out on a P4 workstation with clock 
speed of 1.8 GHz. Figure 3 shows a snapshot of the 
environment with 10 sensors. The current position of the 
sensor is shown through the bigger shaded circle, while the 
targets through smaller ones. The traces of sensor movements 
are also shown. Target traces are not shown to avoid 
cluttering. 



Table 1 compares the performance of the system in the 
presence and absence of coordination. The experiments done 
with sensor coordination are labeled as 1a, 2a, …, while those 
without coordination are labeled as 1b, 2b,… . Each 
experiment lasted for 150 time steps in total. The first column 
of the table denotes the index of the experiment; the second 
denotes the number of sensors in the system, the third the 
average detections or the number of targets detected by at-
least one sensor per sample. The fourth signifies the average 
fraction of targets detected per sample, which is the number of 
targets detected per sample by one or more sensors divided by 
the number of targets in the surveillance zone per sample. 
Columns 5, 6 and 7 represent the number of targets detected 
exactly by one, two and three sensors per sample. The last 
column denotes the target velocity.  Detections by more than 
three sensors are not tabulated for they generally assume 
insignificant values. Of particular interest in comparing the 
two schemes are the average fraction of target detections as 
well as the number of targets detected by exactly one, two and 
three sensors. It is expected that the average fraction of 
detections as well as the number of targets detected by exactly 
one sensor to be more for the method with coordination 
incorporated. Simultaneously the number of targets detected 
by two or more sensors is anticipated to be higher for the 
method that does not use the coordination phase. As the 
overlapping areas of FOV are higher in the absence of 
coordination the number of targets detected by two or more 
sensors is also higher. This in turn allows more targets to go 
undetected and the average fraction of detections to be lesser. 
The abbreviations used in the column headings are explained 
in the table caption.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EN NS AD ZD AF D1S D2S D3S TV 
1a 
1b 

10 
10 

32 
27.1 

22 
24.9 

0.6 
0.52 

29 
19.5 

2 
6.8 

 0 
0.8 

10 
10 

2a 
2b 

6 
6 

22.2 
21.5 

25.7 
26.8 

0.46 
0.44 

22 
18.4 

0.2 
3.2 

 0 
 0 

10 
10 

3a 
3b 

10 
10 

20.4 
17.3 

21.1 
24.1 

0.49 
0.41 

20 
13.8 

0.3 
3.5 

 0 
 0 

15 
15 

4a 
4b 

6 
6 

27.2 
26.9 

20.2 
20.4 

0.57 
0.56 

26.5 
25.7 

0.7 
1.3 

0 
0 

10 
10 

5a 
5b 

10 
10 

20 
18.7 

22.5 
23.8 

0.47 
0.44 

19.6 
16.4 

0.4 
1.5 

0 
0.9 

15 
15 

 
 
 
 
 
 
 
 
As seen from table 1 the performance of the coordinated 

scheme with decoupled optimization is better for all 
experiments with differing NS and TV values than the method 
sans coordination. For example the number of targets detected 
by exactly one sensor per sample, the D1S column, is 
significantly higher in a number of experiments for the 
coordinated vis-à-vis the uncoordinated scheme. It is higher 
by 10, 4 and 6 detections per sample in experiments 1, 2 and 
3. Also the number of targets detected by two sensors is 
significantly lesser across all experiments for the coordinated 
method. In experiments 1 and 5 the number of targets detected 
by three sensors is almost one per sample for the method 
lacking coordination. Correspondingly average fraction of 
targets detected per sample for the coordinated method is 
higher in all the experiments. The results of the table tally with 
the expectations and the underlying reasons for these 
expectations mentioned earlier. 

In table 2 we compare the current strategy with four of 
our previous methods of target detection and pursuit [14]. The 
first column signifies the experiments. Indexes 1a, 2a, etcetera 
correspond to the current method. Those with indices ‘b’, ‘c’, 
‘d’ and ‘e’ correspond to coordinated-distracted, coordinated -
dedicated, local-distracted and local-dedicated methods of 
resource allocation of sensors to targets for target detection 
[14]. Table 2 shows that across all experiments the current 
scheme surpasses all others in terms of average fraction of 
targets detected as well as other criteria such as D1S, D2S, 
AD and AF. It is to be noted that a difference of 0.06 in 
average fraction per sample between two methods corresponds 
to a difference of 4 or 5 target detections per sample (there are 
70 to 80 targets in the zone per time-step on an average), 
which in turn corresponds to a difference of 600 detections in 
150 time-steps of simulation. The value of λ was 0.3 and Q=8 
in these simulations. 

 
V DISCUSSIONS and COMMENTS 

 
Sub-Optimality: The algorithm is made suboptimal 

merely to reduce the search space involved in making it 

Table 1: Comparison between motion strategies with and without sensor 
coordination.  Experiments with labels ending in ‘a’ or the first line in every 
row have coordination incorporated while those ending in ‘b’ or the second 
line in each row are uncoordinated. Abreviations are as follows: EN = 
experiment number, NS = number of sensors, AD = Average Detections per 
sample, ZD = Zero Detections per sample, AF = Average Fraction per 
sample, D1S = Detections by exactly 1 sensor, D2S = Detections by exactly 
2 sensors, D3S = Detections by exactly 3 sensors, TV = Targets’ Velocity 

Figure 3: A simulation system with ten sensors and several targets. The 
robots are shown through larger circles and targets through smaller ones. 
The traces of sensors are also shown. 



globally optimal.  A straightforward implementation would 
involve a direct search in the space of all sensors by extending 
this approach. The method of assigning priorities to constrain 
the search has its counterpart in decoupled priority based 
approaches to multi robot path planning [17,18]. 

Generality and Assumptions Involved: The current 
approach retains its utility of optimality for any given arrival 
profile or arrival statistics and in that sense generalized in 
principle. The details vary with respect to how equations (1) 
and (2) are computed for different target statistics but the 
overall approach remains the same.  It is not binding the 
algorithm that the velocities of the targets be constant and 
uniform. The algorithm shall continue to be optimal in a 
statistical sense as long as the velocity profile and direction 
profile is known or can be modeled. Varying the velocity of 
the targets leads to distributions of various parameters at each 
grid point rather than unique values that in turn makes the 
optimality of algorithm less deterministic and more statistical.  

 
EN NS AD ZD AF D1S D2S D3S TV 

   1a 
1b 
1c 
1d 
1e 

6 
6 
6 
6 
6 

22.3 
20.3 
18.3 
21 
18.3 

25.7 
27.7 
30.5 
27 
30.5 

0.46 
0.42 
0.37 
0.43 
0.37 

22 
17.9 
13.1 
18.7 
13.1 

0.2 
2.3 
4.4 
2.3 
4.6 

0 
0.1 
0.8 
0 
0.5 

10 
10 
10 
10 
10 

2a 
2b 
2c 
2d 
2e 

10 
10 
10 
10 
10 

21.5 
19.0 
19.7 
19.2 
20.0 

20.2 
26.1 
25.8 
25.4 
25.8 

0.46 
0.40 
0.42 
0.41 
0.42 

21.0 
17.5 
18.0 
17.0 
18.8 

0.5 
1.6 
1.6 
2.2 
1.2 

 0.0 
 0.0 
0.02 
0.02 
0.0 

15 
15 
15 
15 
15 

3a 
3b 
3c 
3d 
3e 

6 
6 
6 
6 
6 

27.2 
21.2 
21.5 
21.9 
21.5 

20.2 
26.1 
25.8 
25.4 
25.7 

0.57 
0.44 
0.45 
0.46 
0.45 

26.5 
20.2 
19.8 
20.9 
19.8 

0.7 
1.0 
1.7 
1.0 
1.7 

0 
0 
0 
0 
0 

10 
10 
10 
10 
10 

4a 
4b 
4c 
4d 
4e 

10 
10 
10 
10 
10 

40.4 
30.0 
30.9 
31.6 
31.6 

66.0 
68.9 
74.4 
73.7 
73.8 

0.40 
0.32 
0.31 
0.31 
0.30 

39.8 
26.3 
29.0 
27.4 
29.8 

0.7 
3.5 
1.9 
3.5 
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29.3 
17.7 
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21.0 
22.4 
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3.4 
3.7 
3.2 
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0.2 
0.04 
0.04 
0.0 

15 
15 
15 
15 
15 

 
 
 
 
  

V CONCLUSIONS 
 
A method for motion strategy computation of a sensor that 
maximizes the number of target detections for the next T-time 
steps is presented. The method makes use of a-priori known 
statistics of target arrivals along with detections reported for 
the current sample to estimate the number of detections on a 
lattice of cells. To reduce overlaps a coordination mechanism 
is specified that performs a constrained search, where the 

constraints are in the form of priorities assigned to sensors. 
The absence of an exhaustive search in the joint space due to 
the constraints renders the algorithm sub-optimal from a multi 
sensor perspective although optimal with respect to a single 
sensor in presence of those constraints. The tabulations 
presented in the results section vindicate the performance of 
the current approach in comparison to previous approaches for 
target detection and pursuit. The performance enhancement 
due to the coordination phase that reduces overlaps in FOV 
between sensors is also tabulated in section IV.  
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Table 2: Comparison of current method (label a) with four previous 
methods called coordinated-distracted (b), coordinated-dedicated (c), 
local-distracted (d) and local-dedicated (e). The abreviations are same 
as in table 1. 
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