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Sonar-Based Real-World Mapping  and  Navigation 

Abstract-A sonar-based  mapping  and navigation system developed 
for an autonomous mobile robot operating  in  unknown  and  unstructured 
environments is described. The system uses  sonar  range  data to build a 
multileveled  description of the robot’s surroundings.  Sonar  readings  are 
interpreted  using  probability profiles to determine  empty  and occupied 
areas.  Range  measurements from multiple points of view  are  integrated 
into a sensor-level sonar map, using a robust method that  combines  the 
sensor information in such a way as to cope with  uncertainties  and  errors 
in the data. The resulting two-dimensional maps  are  used for path 
planning  and navigation. From these sonar maps, multiple  representa- 
tions are developed for various kinds of problem-solving activities. 
Several dimensions of representation are defined: the  abstraction axis, the 
geographical axis, and the resolution axis. The sonar  mapping  procedures 
have  been  implemented as part of an autonomous mobile robot 
navigation system called Dolphin. The  major modules of this  system  are 
described and related to the  various  mapping  representations used. 
Results from actual  runs  are  presented,  and  further  research  is  men- 
tioned. The system is also situated  within  the  wider context of developing 
an advanced software architecture for autonomous mobile robots. 

1. INTRODUCTION 

T 0 WIDEN the range of application of robotic devices, 
both in industrial and research applications, it is necessary 

to develop systems with  high levels of  autonomy  and able to 
operate in unstructured environments with little a  priori 
information. To achieve this degree of independence, the 
robot system must have an understanding of its surroundings, 
by acquiring and manipulating a rich model  of its environment 
of operation. For that, it needs a variety of sensors to be able 
to interact with the real world and  mechanisms to extract 
meaningful information from the data being provided. Systems 
will little or no sensing capability are usually limited to fixed 
sequence operations in  highly structured working areas and 
cannot provide any substantial degree of  autonomy or adapt- 
ability. 

A central need, both for manipulators and for mobile 
robots, is the ability to acquire and handle information about 
the existence and localization of objects and empty spaces in 
the environment of operation of the device. This is crucial for 
fundamental operations that envolve spatial and geometric 
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reasoning. Typically, due  to limitations intrinsic to any  kind  of 
sensor, it is important to compose information coming from 
multiple readings, and build a coherent world-model that 
reflects the information acquired and the hypotheses proposed 
so far. This world model can then serve as a basis for essential 
operations such as path planning, obstacle avoidance, land- 
mark identification, position and  motion estimation, etc. 

Building up such a description involves the complex task of 
extracting range information from the real world. Several 
range measurement systems have been proposed in the 
literature [2 11. Of particular interest for mobile robot research 
[22], [24] are stereo vision systems [29], [31], [25], [39] and 
active rangefinding devices [ 141, [ 151, [ 191, since these do not 
require artificial environments or contrived lighting. 

In this paper, we explore the use af one specific active 
rangefinding device, an ultrasonic range transducer, to build a 
dense two-dimensional map of the robot’s surroundings. Each 
sonar distance reading provides information concerning 
empty and occupied volumes in a cone in front of the sensor. 
The reading is interpreted using probability profiles that are 
projected onto a rasterized map, where unknown, occupied, 
and empty areas are explicitly represented. 

Range measurements from multiple points  of  view (taken 
from multiple sensors on the robot and from different positions 
occupied  by the robot) are integrated into the sonar map, using 
a robust method  that combines the sensor information in such a 
way as to cope with uncertainties and errors in the data. 
Overlapping empty areas reinforce each other, the same 
happening  with occupied areas. Additionally, the empty 
spaces serve to narrow down the profiles of occupied spaces. 
The result is that the sonar map grows in coverage and its 
definition improves as more readings are added. The resulting 
sonar map shows regions probably occupied, probably empty, 
and  unknown areas. The method works effectively in cluttered 
environments, and the dense maps resulting can be used for 
motion planning, position estimation, landmark recognition, 
and navigation. 

These probabilistic sensor-level sonar maps serve as the 
basis for a multilevel description of the robot’s operating 
environment. These multiple descriptions are developed for 
various kinds of problem-solving activities. Several dimen- 
sions of representation are defined: the abstraction axis, the 
geographical axis, and the resolution axis. 

The sonar mapping method has been implemented as part of 
an autonomous mobile robot navigation system called Dol- 
phin. This system is intended to provide sonar-based mapping 
and navigation for an autonomous mobile robot operating in 
unknown  and unstructured environments. The system is 
completely autonomous in the sense that it has no a  priori 
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VIII. Supervisor 

0 Global Supervision  of  System  Behaviour 
0 User  Interface 

VII. Global Planning 

0 Task-Level  Planning to provide sequencesof sensory,  actuator  and  processing  (software) actions 
0 Simulation 
0 Error-Recovery and  Replannlng in case of failure or  unexpected  events 

VI. Control 

0 Scheduling of Activities 
0 Integration of Pian-Driven  with  Data-Driven Activities 

V. Navigation 

0 Navigation  Modules  provide  services such as  Path-Planning  and  Obstacle  Avoidance 

IV. Real-World Modelling 

Integration of  local  pieces of correlated information into a Global  Real-World  Model  that  describes  the  robot's 
environment of opcration 

0 Matching acquired  information  against stored maps 
0 Object Identification 
0 L.andmark  Recognition 

111. Sensor Integration 

0 Information  provided  by different Sensor  Modules is correlated and  abstracted 
Common  representations  and  compatible  frames of reference  are used 

II. Sensor Interpretation 

e Acquisition of  Sensor  Data  O/islon,  Sonar, Laser  Rangefinder. etc.) 
0 lnlcrprelation of  Sensor  Data 

I .  Robot  Control 

0 Set of Primitives  for  Robot Opflrotlon 
0 Acluator  Conlrol (e.0.. Locomotion) 
0 Se~rso~ Conlrol 
0 lnterrral  Sonsor  Monitoring 

Fig. 1. Conceptual processing  levels in mobile  robot software  architecture. 

model or knowledge of its surroundings and also carries no 
user-provided map. It incrementally builds sonar maps  that are 
used to plan safe paths and navigate the vehicle towards a 
given goal and may be coupled to other systems, such as 
vision, that would locate landmarks that would serve as long- 
range destinations. The system has been tested both indoors 
and outdoors using the Neptune  and Terregator mobile robots 
at CMU. 

In the sequence of this paper, we  will briefly identify some 
of the conceptual processing levels needed for mobile robot 
software and relate the present system to this framework, 
describe the sonar mapping method, discuss the multiple 
representations developed for mapping information, present 
the overall system architecture, and show some results from 
actual runs. We finish with an outline of further research. 

11. CONCEPTUAL PROCESSING LEVELS FOR AN AUTONOMOUS 
MOBILE ROBOT 

The sonar mapping  and navigation system described in this 
paper is part of a wider investigation into issues related to the 
development of a software architecture for an autonomous 
mobile robot. In this section, we briefly outline a conceptual 
framework within  which the sonar system is situated by 
characterizing the conceptual  processing  levels into which 
the various problem-solving activities of a mobile  robot 
software architecture can be classified. The levels include the 
robot control, sensor interpretation, sensor integration, real- 
world modeling, navigation, control, global planning, and 
supervisor levels (Fig. l), and are briefly described below. 

Robot Control: This level takes care of the physical control 
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of  the different sensors and actuators available to the robot. It 
provides a set of primitives for locomotion, actuator and 
sensor control, data acquisition, etc., that serve as the robot 
interface, freeing the higher levels of the system from low- 
level details. It includes activities such as vehicle-based 
motion estimation and monitoring of internal sensors. Internal 
sensors provide information on the status of the different 
physical subsystems of the robot, while external sensors are 
used to acquire data about the outside world. 

Sensor Interpretation: On this level the acquisition of 
sensor data and its interpretation by sensor modules is done. 
Each sensor module is specialized in one type of sensor or 
even in extracting a specific kind of information from the 
sensor data. The modules provide information to the higher 
levels using a common representation and compatible frames 
of reference. 

Sensor Integration: Due to the intrinsic limitations of any 
sensory device, it is essential to integrate information coming 
from qualitatively different sensors, such as stereo vision 
systems, sonar devices, laser range sensors, etc. Specific 
assertions provided by the sensor modules are correlated to 
each other on this level. For example, the geometric bounda- 
ries extracted from  an obstacle detected by sonar can be used 
to provide connectivity information concerning a set of 
scattered three-dimensional (3D) points generated by the 
stereo vision subsystem. On this level, information is aggre- 
gated  and assertions about specific portions of the environment 
can be made. 

Real- World Modeling: To achieve any substantial degree 
of autonomy, a robot system must  have an understanding of its 
surroundings, by acquiring and manipulating a rich model  of 
its environment of operation. This model is based on asser- 
tions composed from the various sensors, and reflects the data 
obtained and the hypotheses proposed so far. On this level, 
local pieces of information are used  in the incremental 
construction of a coherent global real-world model; this model 
can  then be used for several other activities, such as landmark 
recognition, matching of  newly acquired information against 
previously stored maps, and generation of expectations and 
goals. 

Navigation: For autonomous locomotion, a variety of 
problem-solving activities are necessary, such as short-term 
and long-term path planning, obstacle avoidance, detection of 
emergencies, etc. These different activities are performed by 
modules  that provide specific services. 

Control: This level is responsible for the scheduling of the 
different activities and for combining plan-driven and data- 
driven activities in  an integrated manner to achieve coherent 
behavior. In other words, this level tries to execute the task- 
level plan that  was handed to  it, while adapting to changing 
real-world conditions as detected by the sensors. 

Global Planning: To achieve a global goal proposed to the 
robot, this level provides task-level planning for autonomous 
generation of sequences of actuator, sensor, and processing 
actions. Other activities needed include simulation, error 
detection, diagnosis and recovery, and replanning in the case 
of unexpected situations or failures. 

Supervisor: Finally, on this level a supervisory module 

controls the various activities and provides an interface to a 
human overseer. 

By identifying these areas of activity, we are not implying 
that communication among processing modules is only possi- 
ble between adjacent levels. On the contrary, experience with 
real systems shows that  usually there are very complex 
interconnections and interdependencies between the various 
subsystems, with multiple flows of control and data. Addition- 
ally, a specific module (such as stereo vision or sonar 
mapping) may be a very complex system in itself, with 
sophisticated control, planning and problem-solving activities. 

Clearly, none of the presently existing mobile robot systems 
cover all of the levels described. This conceptual structure 
provides, however, a context within  which some of our 
research is situated [lo], [3  11 and has influenced in particular 
the  design  of the Dolphin sonar-based mapping and navigation 
system, as mentioned in Section V. 

111. SONAR-BASED MAPPING 

This section describes a sonar-based mapping method 
developed for mobile robot navigation [32], [ 121. We discuss 
the relative merits of sonar sensors, describe the interpretation 
of sonar data and the map-building process, and present some 
experimental results. 

A .  Range Sensors 

Several methods for obtaining range data have been 
reported in the literature. The survey provided by Jarvis [21] 
discusses, among others, contrived lighting techniques (in- 
cluding striped lighting and grid coding), depth from occlu- 
sion, texture gradient and focusing, some “shape from” 
methods, range from stereo or motion, and triangulation-based 
and time-of-flight rangefinders. Of these, contrived lighting 
techniques are not generally useful to systems operating in 
unstructured environments, while triangulation-based range- 
finders suffer from “gaps” in the data due to occlusions. 

Of particular interest for natural unstructured environments 
are stereo vision systems and active rangefinding devices. In 
the time-of-flight category, the main two representatives are 
ultrasonic and laser rangefinders. Sonar systems have lower 
resolution; on the other hand, they are orders of magnitude 
less expensive than laser-based sensors, Phase-shift-based 
laser rangefinders are subject to a 2n uncertainty. In the case 
of the ERIM sensor [19], this limits the useful range of the 
sensor to 64 ft, as compared to  35 ft for the Polaroid sonar 
sensor. Both sensors suffer from absorption and specular 
reflection problems, while measurement precision is obviously 
much higher with laser rangefinders. 

B. Stereo Vision and Sonar 

One of the traditional approaches in mobile robot research 
has  been the use of stereo vision systems to extract range 
information from pairs of images [29]. One of  the difficulties 
in applying these techniques in real-world navigation is the 
fact that the intrinsic computational expense of extracting 
three-dimensional (3D) information from stereo pairs of 
images limits the number of points that can be tracked [40]. 
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Real-time constraints preclude the obtention of dense 3D 
descriptions such as those presented in [ 161, [35], though 
recent work in the area shows very promising results [34]. 
Additionally, traditional stereo vision systems relied upon 
specific features such as high-contrast edges or points  that 
could  be easily tracked along several images [30]. 

As a result, practical real-world stereo vision navigation 
systems such as the ones described in [29], [40], [25] only 
build sparse depth maps of their surroundings, selecting points 
to be  matched  and tracked using an interest operator. Handling 
on the order of  30-50 points, the system described in [41] 
takes 30-60 s to generate a 3D map (on a VAX-11/780 
processor). 

These limitations led  us to explore the use of an alternative 
kind of sensor that could deliver range information directly. 
Direct sonar range measurements promised to provide basic 
navigation and denser maps  with considerably less computa- 
tion. Additionally, we also became interested in exploring the 
composition of information from qualitatively different sen- 
sors, such as a sonar array and a stereo pair of cameras into a 
more complex and rich description of the robot's environment. 

C.  Sonar Applications in  Robotics 
Sonar range sensing is a mature technology  but few 

applications until recently involved detailed map building. 
Traditionally, active and passive sonar systems have been  used 
for military intelligence applications in marine environments. 
Active sonar systems are used for communications, naviga- 
tion, detection, and tracking, while passive sonar systems are 
used in surveillance [3]. Some of this research is  obviously 
classified. More recently, with the rapid increase of commer- 
cial and civilian activity in the oceans, nonmilitary marine 
sonar systems have spread. Typical applications include 
navigation, charting, and fishing. Generally speaking, these 
systems are characterized by detailed knowledge  of the 
physical properties of the marine environment, by sophisti- 
cated sonar signal generation and processing devices [3], and 
by addressing the problem of localization and tracking of 
objects [17], as opposed to determining their shape. 

An important area of application is medical imaging [SI. 
Ultrasound systems used  in medicine are active and  build  maps 
for human perusal, but again depend  on accurate physical 
models of the tissues that the sound traverses [20], and work 
with  very small beam widths, about 1-3". Typical frequencies 
used span the range from 1 to 20  MHz, and distances on  the 
order of 10-50 cm  are measured. 

Other applications of sonar sensors include rangefinding 
devices for industrial control applications, as well as camera 
autofocus systems [38]. 

In the robotics area, ultrasonic range transducers have 
recently attracted increasing attention [ 11, [2]. This is due in 
part to their simplicity, low cost, and the fact that distance 
measurements are provided directly. Some research has 
focused specifically on the development of more elaborate 
beam-forming and detection devices (see, for example, [26]), 
or the utilization of phased array techniques [2], such as are 
used in  an advanced side-looking sonar system for submers- 
ibles. Other efforts investigate the application of  highly 

sophisticated signal processing techniques [3] to complex 
sonar signals. 

Specific applications of sonar sensors in robotics include 
simple distance measurements [ 151, localizing object surfaces 
[4], determining the position of a robot in a given environ- 
ment, and  some ad hoc navigation schemes [5]. 

Miller [27], [28] uses sonar sensors to determine the 
position  of a robot. It assumes that an accurate map of the 
environment is  known  and performs a search to determine 
where the robot would have to be to explain a given set of 
distance readings. The method does not take into account the 
errors that occur in actual sonar data. A similar approach is 
used  by Drumheller [9] who also pressuposes an accurate map 
of the environment, but is able to cope with  noisy data. 

An independent CMU sonar mapping  and navigation effort 
[6], [7]  used a narrower beam, formed by a parabolic 
reflector, to build a line-based description of the robot's 
surroundings. The sonar readings are interpreted by fitting line 
segments to the points detected and  matching these to an a 
priori map  of the environment of the robot. One  difficulty 
with this approach was  that the geometric interpretation is 
done very early and  is difficulted by noise  and  uncertainty  in 
the data. 

D. Sonar-Based Mapping for  Mobile Robots 
By contrast, our own work has centered on the development 

of a system for sonar-based mapping  and  navigation for an 
autonomous mobile robot operating in unknown  and unstruc- 
tured environments. The system has no a priori map  of its 
surroundings. Instead, it acquires data from the real  world 
through a set of sonar sensors and  uses the interpreted data to 
build a sonar map of the robot's operating environment. 

In applying sonar range sensors to mobile robot mapping 
and navigation, we expected to obtain dense maps of the 
robot's environment with regions classified as empty, occu- 
pied, and unknown, with sufficient precision and detail so as 
to be useful for autonomous navigation. This includes  path 
planning, obstacle avoidance, motion solving, and landmark 
recognition. Additionally, we planned to develop a hierarchy 
of representations, from data intensive maps where position 
details are stored, to symbolic representations suitable for 
high-level planning. 

1) Approach: Our method starts with range measurements 
obtained from sonar units whose  position  with  respect to the 
robot  is known. Each sonar range measurement is interpreted 
as providing information about probably  empty and some- 
where  occupied volumes in the space subtended by the sonar 
beam  (in our case, a 30" cone in front of the sensor). This 
occupancy information is  modelled by probability profiles that 
are projected onto a rasterized two-dimensional horizontal 
map, where empty, occupied, and  unknown areas are repre- 
sented. Sets of range measurements taken from multiple 
sensors on the robot and from different positions occupied by 
the  robot as it travels provide multiple views  that are 
systematically integrated into the sonar map.  In this way, the 
accuracy and extent of the sonar map are incrementally 
improved and the uncertainty in the positions of objects is 
reduced. Overlapping empty areas reinforce each other, the 
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Fig. 2. Neptune  mobile robot, with pair of cameras and sonar ring. 

same happening with occupied areas. Additionally, empty 
regions serve to sharpen the boundaries of the occupied 
regions, so that the map definition improves as more readings 
are added. The final map shows probably occupied, probably 
empty, and  unknown regions. This method deals effectively 
with  noisy data and with the limitations intrinsic to the sensor. 

For positional update as well as recognition of previously 
mapped areas, we developed a way  of matching two sonar 
maps by convolving them. The method gives the displacement 
and rotation that best brings one map into registration with the 
other, along with a measure of the goodness of the match. 

E. The Sonar System 

I )  The Sonar Sensor: The sonar devices being used are 
Polaroid laboratory grade ultrasonic range transducers [38]. 
These sensors have a useful measuring range of 0.9-35.0 ft. 
The main lobe of the sensitivity function is contained within a 
solid angle Q of 30" and falls off to - 38 dB. The beamwidth o 
at - 3 dB is approximately 15'. Experimental results showed 
that the range accuracy of the sensors is  on the order of f 0.1 
ft. We are using the control circuitry provided with the unit, 
which is designed to return the distance to the nearest sound 
reflector in its field of view. The sensor interface does not 
provide information on multiple echos nor on  the phase shift or 
the intensity of the detected echo. 

2) The Sonar Sensor Array: The sonar sensor array, built 
at Denning Mobile Robotics, Inc., consists of a ring  of 24 
Polaroid ultrasonic transducers, spaced 15" apart. A 280 
controlling microprocessor selects and fires the sensors, times 
the returns and provides the corresponding range value. Over 
a serial link, this information is sent to a VAX mainframe, 
where currently the interpretation of the sonar data and the 
higher level mapping and navigation functions are performed. 

3) The  Robots: We have conducted several experiments by 
mounting the sonar sensor array on two currently available 
robots. The Neptune mobile robot [36]  was developed at the 
Mobile Robot Laboratory of the Robotics Institute, Carnegie- 
Mellon University (CMU) (see Fig. 2). It has been  used 
successfully in several areas of research, including stereo 
vision navigation [25], [41] and  path planning [42]. Mounted 
on this vehicle, the sonar sensors are  at  an height of 31 in 
above the ground. 

The Terregator robot (Fig. 3)  is a larger vehicle developed 
by the Civil Engineering Robotics Construction Laboratory, 
CMU [23]. It has been used in several outdoor experiments, 
including road-following [43] and outdoor sonar navigation 
W I .  

A new mobile robot, Uranus, incorporating an innovative 
omnidirectional design [37], is currently nearing completion 
and will be used for several current and  new projects in the 
Mobile Robot Lab [31]. We plan to continue the sonar work 
using this vehicle. 

F. Sonar Mapping 
The sonar mapping process incorporates various stages. 

Initially, the sensor data are preprocessed, screened, and 
annotated with the corresponding sensor position. In se- 
quence, the readings are interpreted using the probability 
density functions. A set of readings taken from one position of 
the robot is  used to build a view, which stores the empty, 
occupied, and unknown areas as seen from that position. This 
view is then combined with the sonar map. 

I) Problems with the Sonar Data: A number of problems 
are inherent to the data obtained fiom the sonar device and 
intrinsic to the sensor itself. 

The timing circuitry limits the range precision. 
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Fig. 3.  Terregator outdoors robot. 

0 The detection sensitivity of the sensor varies with the 
angle  of the reflecting object to the main  beam axis. 
Sonar  beams  can suffer multiple reflections or specular 
reflections away from the sensor, giving false distance 
readings. 
Because  of the relatively wide  angle of the sonar  beam,  an 
isolated sonar  reading  imposes  only a loose constraint on 
the position of the detected object. 

These  problems  preclude a direct interpretation of the sonar 
readings  and led us to consider a probabilistic approach to the 
interpretation of range data. 

2) Preprocessing the Sonar Data: We  begin  by prepro- 
cessing the incoming data to remove easily detectable incor- 
rect readings. This includes rejecting data below the lower 
range  threshold Rmin (usually due to faulty sensors) or above 
the useful range R, of the device, as well as averaging multiple 
readings  taken from  the same  sensor at the same  robot 
position. The useful range is defined  as R, = min (RE, R,,,), 
with R, being the range distance from the sensor to the ground 
and R,,, the maximum  sensor range. 

3) Occupancy  Probabilities: Due to the wide  beamwidth, 
the data obtained from  the sonar  sensor  provide  only indirect 
information  about the location of the detected objects. We 
combine the constraints from individual readings to reduce this 
uncertainty. Our inferences are represented as probabilities in 
a discrete grid. 

two  volumes in 3D space: one that is probably empty and  one 
that is somewhere  occupied. We  model the sonar  beam by 
two probability density functions, fE and fo, defined  over 
these volumes.  Informally, these functions measure our 
confidence  concerning a point inside the cone of the beam 
being  empty,  and our uncertainty about the location of the 
surface patch that caused the echo, somewhere  on the range 
surface of the cone.  The probability density functions are 
defined  based  on the geometry of the beam  and the spatial 
sensitivity pattern of the sonar sensor. They are parameterized 
by the range  reading  and the beamwidth. 

Consider a point P = (x, y ,  z )  belonging to the volume 
swept  by the sonar  beam.  Define the following: 

R range  measurement  returned by the sonar sensor, 
E maximum  sonar  measurement error, 
w sensor  beamwidth, 
D solid angle  subtending the main  lobe of the sensitivity 

S = (xs, ys ,  zs), position of the sonar sensor, 
6 distance from P to S ,  
8 angle  between the main axis of the beam  and P as seen 

function, 

from S. 

We  now define two  volumes  of  space in the sonar  beam. 
Probably empty region: This includes poi,nts inside the 

sonar  beam (6 < R - E and 8 I W2) that have a probability - 
A range  reading is interpreted as making  an assertion about pE = fE(6, 0) of  being  empty. 
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Fig. 4. Probability profiles  corresponding to  Probably  Empty and Somewhere Occupied regions  in  sonar  beam.  Profiles  correspond 
to  horizontal cross section of beam. 

Somewhere  occupied  region: This includes points  on the 
sonar beam front (6 E [R - e ,  R + E ]  and 0 I W2), that 
have a probability po = fo(6, e) of being occupied. 

The empty probability density function for a point P inside 
the sonar beam is given by 

P&, Y ,  z )  = P [point (x, Y ,  z )  is empty1 

=Br(6) (3.1) 

where 

Er(6) = 1 - ((6 -Rmin)l(R - E --Rdli,)>2, 

for 6 E [Rmin,   R--E],  (3.2) 

E#) = 0, otherwise 

and 

Ea(e) = 1 - ( 2 e / ~ ) ~  for e E [ - 012, W2]. (3.3) 

The occupied probability density function for a point P on the 
beam front is given by 

po(x, y ,  z) = p  [position (x, y, z) is occupied] 

= O r ( 6 )  * o a ( e )  (3 -4) 

where 

0 , ( 6 ) = 1 - ( ( 6 - R ) / ~ ) ~ ,  for 6 E [ R - E ,  Rc-E], (3.5) 

Or(6) = 0, otherwise, 

and 

O,(e) = 1 - ( 2 e / ~ ) ~ ,  for e E [ - W2, ~ 2 1 .  (3.6) 

Note that, strictly speaking, P E  and po  are not true probability 
density functions. 

Fig. 4 shows the empty  and occupied probability distribu- 
tions for a sonar beam that returned a range reading R .  The 
profiles shown correspond to a horizontal cross section of the 
sonar beam (z = zs). For map building, these probability 
density functions are evaluated for each reading and projected 
on a horizontal two-dimensional grid. 

4) Representing  occupancy  maps: Sonar maps are two- 
dimensional arrays of cells corresponding to a horizontal grid 
imposed on the area to be mapped.' The grid has M X N cells, 
each of size A X A. Each cell in the final sonar map contains 
its occupancy status (unknown, empty, or occupied) with an 
associated certainty factor, using the following convention: 

unknown 0 
empty t - 1, 0) 
occupied (0, I]. 

A cell is considered unknown if no information concerning 
it is available. Cells can be empty with a certainty factor 
emp (xi, y j )  (ranging from 0 to - 1) and occupied with a 
certainty factor occ (xiy y j )  (ranging from 0 to 1). The final 
map is computed from two separate arrays derived from the 
empty  and occupied probability distributions introduced 
above. In the arrays themselves the empty and occupied 
probabilities are maintained as values ranging from zero to 
one. 

5) Composing information from several  readings: The 
sonar map is built by computing the empty and occupied sonar 
beam probability distributions for each range readings, pro- 
jecting these probabilities onto the discrete cells of a view, and 
combining the  view  with the sonar map, which already stores 
the information derived from other readings. The position  and 
orientation of the sonar sensors is used to register the  view 
with the map. 

Each sonar reading provides partial evidence about a map 
cell  being occupied or empty. Different readings asserting that 
a cell is empty will confirm each other,  as will readings 
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implying that the cell is occupied.  On the other hand,  evidence 
that the cell is  empty will weaken the certainty of it being 
occupied  and vice versa. 

The  operations  performed on the empty  and  occupied 
probabilities are not  symmetrical. The probability distribution 
for empty areas represents a space  whose totality is probably 
empty,  while the occupied probability distribution for a single 
reading represents a lack of knowledge  concerning the location 
of the reflecting object, somewhere  on the front of the beam. 
Empty  regions are simply  combined  using a probabilistic 
addition formula.  The occupied probabilities for a single 
reading, on the other hand, are initially weakened  by 
conflicting data and  then  normalized to make their sum unity. 
Only after this narrowing  process are the occupied probabili- 
ties from  each  reading  combined,  using  again  a probabilistic 
addition formula. 

One  range  measurement contains only  a  small  amount  of 
information. By combining the evidence  from  many  readings 
as the robot  moves in its environment, the area known to be 
empty is expanded.  Possibly  occupied  regions also increase, 
while the fuzziness of these regions decreases. The overall 
effect as more  readings are added is a  gradually increasing 
coverage  along  with an increasing precision in object loca- 
tions. Correct information is incrementally  enhanced  and 
wrong data are progressively  canceled out. Typically, after a 
few  hundred  readings  (and less than  a  second  of  computer 
time) the method is able to “condense out” a comprehensive 
map  covering a thousand square feet with  up to 0.1-ft position 
accuracy in the position of detected objects. Note that such a 
result does  not violate information theoretic or  degree of 
freedom constraints, since the detected boundaries  of objects 
are  linear, not quadratic in the dimensions of the map.  A 
thousand  square feet map  may  contain  only  a  hundred linear 
feet of boundary. 

Formally, the evidence  combination  process  proceeds  along 
the following steps. 

I )  Initialization: The sonar  map is set to unknown. 
2) Superposition of empty areas: The probabilities 

corresponding to empty areas are combined  using the proba- 
bility addition formula pE (cell) : = pE (cell) + pE (reading) 
- p~ (cell) x p~ (reading). 

3) Superposition of occupied  areas: The probabilities 
corresponding to occupied areas are initially weakened  by the 
evidence of the empty certainty factors, using PO (reading) : = 
po  (reading). (1 - p~ (cell)). We  then  normalize the occupied 
probabilities over the beam front. Finally, the occupied 
probabilities are combined  using po (cell) : = po (cell) + po 
(reading) - PO (cell) X po (reading). 

4) Thresholding: The final occupation  value attributed to 
a cell in the sonar  map is given by comparing the relative 
strengths of the empty  and  occupied values. 

G. Results 

Fig. 5 shows a typical sonar  map  obtained  using the method 
outlined, with the conflicting information still superposed. The 
corresponding  occupied  and  empty certainty factor distribu- 
tions are shown in Figs. 6 and 7. These are the maps  obtained 
before the thresholding step.  The final maps  obtained after 
thresholding are shown  in Figs. 8-10. These  maps  correspond 

to the Mobile  Robot Lab at CMU. In Figs. 5 and 8 the outline 
of the room  and the major objects is shown, as well  as the 
positions of the robot  from  where the readings  were taken. The 
3D plots correspond to a  view from the lower left corner of the 
room. 

The resulting sonar  maps are very useful for navigation  and 
landmark recognition. They are much  denser  than the ones 
generated by our  stereo vision programs  and  computationally 
about  an order of magnitude faster to produce. We have 
demonstrated  an  autonomous  navigation  system [12], dis- 
cussed in Section V, that uses  an  A*-based  path  planner to 
obtain routes in these maps. The system  was tested in cluttered 
indoor  environments  using  Neptune,  and  outdoors in open 
spaces, operating  among trees, using the Terregator. 

H. Matching 
One useful capability in  robot  navigation is the ability to 

match sets of  observations against each other. Possible 
applications include  landmark recognition and  updating the 
robot’s estimate of its position and ori,entation. 

Towards this end, Moravec  developed a method  that  can 
match  two  maps  and report the displacement  and rotation that 
best takes one into the other [32]. The  sonar  maps  described  in 
the previous section are used. 

A measure  of the goodness of the match  between  two  maps 
at a trial displacement  and rotation is found by computing the 
sum of products of corresponding cells in the two  maps. An 
occupied cell falling on an occupied cell contributes a positive 
increment to the sum,  as does  an  empty cell failing on  an 
empty cell (the product  of  two negatives). An  empty cell 
falling on  an  occupied  one  reduces the sum, and  any 
comparison  involving  an  unknown  value  causes neither an 
increase nor a decrease. This  naive  approach is very slow. 
Applied to maps  with  a linear dimension of n,  each trial 
position requires O(n2) multiplications. Each  search  dimen- 
sion (two  axes of displacement  and one of rotation) requires 
O(n) trial positions. The total cost of the approach thus grows 
as O(n*). With a typical n of 50, this approach  can  burn  up a 
good fraction of an hour  of  VAX time. 

Considerable  savings  come  from the observation that most 
of the information in the maps is in the occupied cells alone. 
Typically, only O(n> cells in the map,  corresponding to wall 
and object boundaries, are labeled occupied.  A revised 
matching  procedure  compares  maps A and B through trial 
transformation T (represented by a 2 X 2 rotation matrix  and a 
two-element  displacement vector) by enumerating the occu- 
pied cells of A and  transforming the coordinates of each  such 
cell in A through T to find a corresponding cell in B. The [A,  
B ]  pairs obtained this way are multiplied and  summed, as in 
the original procedure. The occupied cells in B are enumerated 
and multiplied with  corresponding cells in A ,  found by 
transforming the B coordinates  through T-‘ (the inverse 
function of T),’  and these products are also added to the sum. 
The result is normalized  by dividing by the total number of 
terms. This  procedure is implemented efficiently by prepro- 
cessing each  sonar  map to give  both a raster representation and 
a linear list of the coordinates of occupied cells. The cost 
grows as O(n4) ,  and the typical VAX  running  time is down to 
a  few  minutes. 

A further speedup is achieved by generating a hierarchy  of 
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Fig. 5. Two-dimensional sonar map. Each symbol represents square cell 0.5 ft on side. Empty areas with high certainty factors are 
represented by white space; lower certainty factors by + symbols of increasing thickness. Occupied areas are represented by x 
symbols, and unknown areas by . . This map still shows conflicting information superposed. Robot positions where scans were 
taken are shown by circles and outline of room and of major objects by solid lines. Experiment was done in Mobile Robot Lab. 

Fig. 6. Occupied areas in sonar map. This 3D view shows certainty factors occ ( X ,  Y). 

Fig. 7. Empty areas in sonar map. This 3D view shows certainty factors emp (X,  Y). 
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Fig. 8. Two-dimensional sonar map after thresholding. 

Fig. 9. Occupied areas in sonar map after thresholding. 

Fig. 10. Empty areas in sonar map after thresholding. 
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reduced resolution versions of each map. A coarser map is 
produced from a finer one by converting two by two subarrays 
of cells in the original into single cells of the reduction. Our 
existing programs assign the maximum value found in the 
subarray as the value of the result cell, thus preserving 
occupied cells. If the original array has dimension n, the first 
reduction is  of size n/2, the second of n/4 and so on. A list of 
occupied cell locations is produced for each reduction level so 
that the matching method  of the previous paragraph can be 
applied. The maximum number of reduction levels is logz n. A 
match found at  one level can be refined at the next finer level 
by trying only about three values of each of the two 
translational and one rotational parameters, in  the vicinity of 
the values found at the coarser level, for a total of 27 trials. 
With a moderate a  priori constraint on the transformation this 
amount of search is adequate even at the first (coarsest) level. 
Since the cost of a trial evaluation is proportional to the 
dimension of the map, the coarse matches are inexpensive in 
any case. Applied to its fullest, this method brings the 
matching cost down to slightly larger than U(n) ,  and practical 
VAX matching times to under a second. 

We found one further preprocessing step is required to make 
the matching process work in practice. Raw  maps at typical 
resolutions (6-in cells) produced from moderate numbers on 
sonar measurements (about 100) have narrow bands of cells 
labeled ‘‘occupied. ” In separately generated maps of the same 
area the reIative positions of these narrow bands shift by as 
much as several pixels, making  good registration of the 
occupied areas of the two maps impossible. This can be 
explained by saying that the high spatial frequency component 
of the position  of the bands is noise  and  only the lower 
frequencies carry information. The problem can be fixed by 
filtering (blurring) the occupied cells to remove the high- 
frequency noise. Experiments suggest that a map  made from 
100 readings should be blurred with a spread of about 2 ft, 
while for a map made from 200 readings a 1-ft smear is 
adequate. Blurring increases the number of cells labeled 
“occupied.” So as not to increase the computational cost from 
this effect, only the final raster version of the map is blurred. 
The occupied cell list used in the matching process is still 
made from the unfiltered raster. With the full process outlined 
here, maps  with about 3000 6-in cells made from 200 well- 
spaced readings of a cluttered 20 by 3 0 4  room can be 
matched  with an accuracy of about 6 in displacement and 3” 
rotation in one second of  VAX time. 

IV. MULTIPLE AXIS OF REPRESENTATION OF SONAR MAPPING 
INFORMATION 

In the previous section we have shown how the range data 
acquired from the real world through a sonar sensor array are 
interpreted and  used  to  build a sonar map. These probabilistic 
local maps, described earlier,  are the starting point for 
building a multileveled and multifaceted description of the 
robot’s operating environment. In this section, we briefly 
describe these multiple axes of representation of mapping 
information and mention how  they are used in different kinds 
of navigational activities [ 111. We define the following axes of 
representation (Fig. 11). 

I )  The Abstraction  Axis: Along this axis we move from a 
sensor-based low-level data-intensive representation to in- 
creasingly Higher levels of interpretation and abstraction. 
Three levels are defined as the sensor level, the geometric 
level, and the symbolic level. 

2) The Geographical Axis: Along this axis we define 
views, local maps, and global maps, depending on the extent 
and characteristics of the area covered. 

3) The Resolution Axis: Sonar maps are generated at 
different values of grid resolution for different applications. 
Some computations can be performed satisfactorily at low 
levels of detail, while others have to  be done at high or even 
multiple degrees of resolution. 

A .  The Abstraction  Axis 
The first kind  of sonar map built from the sonar range data 

uses the probabilistic representation described earlier. A two- 
dimensional grid covering a limited area of interest is used. 
This map is derived directly from the interpretation of the 
sensor readings and is, in a sense, the description closest to the 
real world. It serves as the basis from which other kinds of 
representations are derived. Along the abstraction axis, this 
data-intensive representation is also called the sensor level 
map. 

The second level is called the geometric level. It is built by 
scanning the sensor level map and identifying groups of cells 
with  high occupied confidence factors. These are merged into 
uniquely labeled objects with explicitly represented polygonal 
boundaries (see Fig.  14). If needed, the same can be done with 
empty areas. 

The third is the symbolic levei, where maps of larger areas 
(typically global maps) are described using a framelike 
representation. This description bears only a topological 
equivalence to the real world. Nodes  may represent “interest- 
ing” areas, where more detailed mapping information is 
necessary or available, or may correspond to simpler or 
“uninteresting” areas (navigationally speaking), such as 
corridors. 

Different kinds of problem-solving activities are better 
performed on different levels of abstraction. For example, 
global path planning (such as how to get from one building 
wing to another) would  be done on the symbolic level, while 
navigation through a specific office or lab uses the sensor-level 
map, where all the detailed information about objects and free 
space, as well as the associated certainty factors, is stored. 

B. The  Geographical Axis 
To be able to focus on specific geographical areas and to 

handle portions of as well as complete maps, we define a 
hierarchy of maps with increasing degrees of coverage. 
Progressing along the geographical axis, we start with a view, 
which is a map generated from scans taken from the current 
position and  which describes the area visible to the robot from 
that position. As the vehicle moves, several views are acquired 
and combined into a local map. The latter corresponds to 
physically delimited spaces such as labs or offices, which 
define a connected region of visibility. Global Maps are sets of 
several local maps and cover wider spaces such as a whole 
wing of a building, with labs, offices, open areas, corridors, 
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Fig. 11 .  Multiple axis of representation of sonar  maps. 

etc. The global map stores information about the whole known 
environment of operation of the robot. 

C. The Resolution Axis 
Finally, along the resolution axis, we again start with the 

sensor-level local map  and generate a progression of maps 
with increasingly less detail. This allows certain kinds  of 
processing to be performed at lower levels of resolution with 
correspondingly less computational expense. Alternatively, it 
enables operations at coarser levels to guide the problem- 
solving activities at finer levels of resolution. 

The most detailed sonar maps that can be obtained from the 
method outlined in Section 111-F (considering the intrinsic 
limitations of the sensors) have a cell size of 0.1 x 0.1 ft. For 
navigation purposes, we have typically been  using a 0.5-grid 
for indoors and a 1.0-ft grid for outdoors. Nevertheless, 
several operations on the maps are expensive and are done 
more quickly at even lower levels of resolution. For these 
cases we reduce higher resolution maps by an averaging 
process that produces a coarser description, as discussed in 
Section 111-H. 

V. SYSTEM ARCHITECTURE 
To provide a context for the  multiple  descriptions  introduced 

above,  we  present in this Section  the  overall  architecture  of  the 
Dolphin  sonar-based  mapping  and  navigation  system.  The 
functions of the major modules and their interaction with the 
various sonar map representations are discussed, and the 
results of an actual run are shown. 

The Dolphin system is intended to provide sonar-based 
mapping  and navigation for an autonomous mobile robot 
operating in  unknown and unstructured environments. Con- 
ceptually, two modes of operation are possible:  in the cruising 
mode, the system acquires data, builds maps, plans paths, and 
navigates towards a given goal. In the exploration mode, it can 
wander around and collect enough information so as  to be able 
to build a good description of its environment. The system is 
intended for indoor as well as outdoor use; it may be coupled 
to other systems, such as vision [23], to locate landmarks that 
would serve as long-range destinations. 
A. Sonar-Based Mapping and Navigation System 
Architecture 

The overall architecture of the sonar mapping and naviga- 
tion system is shown in Fig.  12.  The function of the major 

modules  and their interaction with the different sonar map 
representations are described below [ 1 13 : 

sonar control 

scanner 

mapper 

cartographer 

matcher 

interfaces to and runs the sonar sensor 
array, providing range readings; 

preprocesses and filters the sonar data 
and annotates it with the position and 
orientation of the corresponding sensor, 
based on the robot’s motion estimate; 

using the information provided by the 
scanner, generates a view obtained from 
the current position of the robot (this 
view is then integrated into a local map); 
aggregates sets of local maps into global 
maps and provides map handling  and 
bookkeeping functions; 
matches a newly acquired sonar map 
against already stored local maps for 
operations such as landmark identifica- 
tion or update of the robot’s position 
estimate; 

object extraction provides geometric information about  ob- 
stacles (objects are extracted by merging 
regions of occupied cells and determining 
the corresponding polygonal boundaries); 
a region-coloring approach is  used for 
unique labeling; 

graph building generates a frame-based symbolic de- 
scription of the environment; 

path planning can occur on three different levels: sym- 
bolic path planning is done over wider 
areas (global maps)  and at a higher level 
of abstraction (symbolic maps); geomet- 
ric path planning can be used as an 
intermediary stage, when the uncertainty 
in local maps  is low, and  has the advan- 
tage of being faster than finding routes in 
the sensor map; finally, sensor map path 
planning generates detailed safe paths 
(the latter performs an A* search [ 181 
over the map cells, with the cost function 
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Fig. 12. Architecture of Dolphin sonar  mapping and navigation system. 

taking into account the occupied  and 
empty certainty factors, as well as the 
unknown areas and the distance to the 
goal; the path found by this module is 
provided to the navigator); 
takes care of the overall navigation issues 
for the vehicle (includes examining al- 
ready planned paths to determine whether 
they are still usable, invoking the path- 
planner to provide new paths, setting 
intermediary goals, overseeing the actual 
locomotion, etc.); 
controls the physical locomotion of the 
robot along the planned path (the latter is 
smoothed and approximated by se- 
quences of line segments, using a line- 
fitting approach; this module also returns 
an estimate of the new position and 
orientation of the robot); 
during actual locomotion, this module 
continuously checks the incoming sonar 
readings and signals a stop if the robot is 
coming too close to a  (possibly  moving) 
obstacle not detected previously. It serves 
as a “sonar bumper”; 
oversees the operation of the various 

modules and takes care of the overall 
control of the system. It also provides a 
user interface. 

We are currently working on a computational definition of 
the symbolic level and the corresponding mechanisms to 
extract this description from the sonar maps. All other 
subsystems mentioned have been implemented. 

Comparing this architecture with the conceptual framework 
outlined in Section 11, we can identify an immediate corre- 
spondence between the subsystems of the Dolphin system and 
some of the processing levels described previously: the sonar 
control and conductor modules belong to level I; scanning and 
mapping provide functions on level 11; the object extraction, 
graph building, cartographer, and matcher operate on level 
IV; path planning, navigation, and the guardian are situated in 
level V; and the supervisor is on level VIII. 

B. Tests of the System 

The Dolphin system described in this section was tested in 
several indoor runs in cluttered environments using the 
Neptune mobile robot. Additionally, it was also tested in 
outdoor environments, operating among trees, using the 
Terregator robot, as part of the CMU ALV project. The 
system operated successfully in  both kinds of environments, 
navigating the robot towards a  given destination. 

In Fig. 13, an example run is given. The sequence of maps 
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Example run. This run was performed  indoors, in  Mobile  Robot Lab. Distances are in ft. Grid  size is 0.5 ft. Planned  path  is 
as dotted line, and  route  actually followed by robot  as  solid line segments. Starting point is solid + and goal, solid X . 

Fig. 13. 
shown 
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shows how the sonar map becomes gradually more detailed 
and how the path is improved as more information is 
gathered. This example corresponds to an indoor An carried 
out in the Mobile Robot Lab. A distance of approximately 25 
ft was covered; the grid size is 0.5 ft. Objects present in the lab 
included chairs, tables, boxes, workstations, filing cabinets, 
etc. 

In Fig. 14, an outdoor run, together with an example of the 
object extraction module, is shown. The geometric map is 
build by scanning the sonar map and using a region-coloring 
technique to extract the obstacles. The objects are uniquely 
labeled and the polygonal boundaries are determined. The map 
shown corresponds to an outdoor run in Schenley Park, among 
trees. A distance of approximately 50 ft was traversed. The 
grid size was 1 .O ft, which proved adequate for navigation but 
did  not allow a more precise description of the actual 
boundaries of the detected objects. 

VI. FURTHER RESEARCH 
We are currently extending the research described in this 

paper by pursuing several topics. These include 

introducing the robot position uncertainty into the view 

registration and map making process; 
performing motion solving by matching a  set of readings 
taken from a  new robot position against the sonar map 
constructed so far; 
investigating issues in sensor integration in the specific 
context of combining sonar maps  with 2D stereo data 

exploring better sonar beam models by  using Gaussian 
distributions in the empty and occupied probability 
density functions, and by taking into account the depen- 
dency of the beamwidth on the range measured; 
implementation of a distributed version of the Dolphin 
system as an actual test of the distributed control system 
described in [ 131. 

We also mention that plans currently exist to extend the 
sonar-mapping method to  do three-dimensional modeling. For 
that, a sonar sensor array that covers part of the surface of a 
sphere will be constructed [33] .  

[391; 

VII. CONCLUSION 

Research in mobile autonomous vehicles provides a very 
rich environment for the development and tests of advanced 
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Fig.  14.  Objects extracted from sonar map. Objects are uniquely  labeled  and their polygonal  boundaries are shown. This map shows 
outdoor run, and objects are trees. Distances are in ft. Grid  size is 1.0 ft. 

concepts in a variety of areas such as robotics, artificial 
intelligence, sensor understanding and integration, real-world 
modeling, planning, and high-level control. Much work in 
mobile robots has either concentrated on very specific sub- 
areas, such a path planning, or has been conceptual work that 
never made it to a real application. This is partially due to the 
complexity  of  the overall task, the unavailability of adequate 
testbeds and the difficulty of doing actual experiments in 
something close to real time. This paper has presented a sonar- 
based  mapping and navigation system that is able to operate in 
unknown  and unstructured environments. It provides a suffi- 
ciently rich description of the robot’s environment to call for 
more complex tasks; additionally, this is done in a sufficiently 
real-time situation so as  to allow actual experiments to be done 
within a reasonable time frame. 

Frequently, the real-world information available through 
sensors is quite inadequate. Stereo systems used in  mobile 
robot research build a very sparse description of the robot’s 
surroundings. Some of the range-based systems build denser 
descriptions but do not cope well  with measurement errors. 
The representation chosen for sonar maps provides a way  of 
explicitly describing unknown, empty, and occupied areas and 
of reasoning about them. This, coupled with a robust method 
for combining multiple sensor readings, allows us to cope with 
uncertainties and errors in the data and provides dense sonar 
maps, useful for navigation. 

ACKNOWLEDGMENT 

Hans P. Moravec contributed several key insights into the 
work described in this paper. I would like to thank  him for his 
interest and support. I would also like to thank Gregg W. 
Podnar for providing assistance with the Neptune robot, and 

REFERENCES 

U. Ahrens,  “Moglichkeiten und Prohleme der Anwendung  von  Luft- 
Ultraschallsensoren in der Montage-und  Handhabungstechnik,” Robo- 
tersysteme, vol. 1,  1, 1985. 
-, “Moglichkeiten  und  Grenzen des Einsatzes vou  Luft-Ultra- 
schallsensoren in der Montage-und  Handhabungstechnik,” Roboter- 
systeme, vol. 1, 4, 1985. 
A.  B. Baggeroer, Sonar  Signal  Processing, in Applications of 
Digital  Signal  Processing, Signal Processing Series. Englewood 
Cliff, NJ: Prentice-Hall, 1978. 
M. K.  Brown,  “Locating  object surfaces with an ultrasonic  range 
sensor,” in Proc.  1985 IEEE Znt. Conf. Robotics and Automation, 
St. Louis, MO, Mar. 1985. 
A. Chattergy, “Some heuristics for the navigation  of  a robot,” 
Robotics Res. Lab., Dep.  Elec. Eng., Univ. of Hawaii, Honolulu, 
1984. 
J. L. Crowley, “Position estimation for an intelligent  mobile robot,” in 
1983 Annu. Research Rev., Robotics Inst., Carnegie-Mellon Univ., 
Pittsburgh, PA, 1984. 
-, “Dynamic  world  modelling for an intelligent  mobile  robot  using 
a rotating  ultra-sonic  ranging device,” in Proc. 1985 IEEE Int. Conf. 
Robotics and Automation, St. Louis, MO,  Mar. 1985. 
G. B.  Devey  and P. N. T. Wells, “Ultrasound in medical diagnosis,” 
Sci. Amer., vol. 238, May 1978. 
M. Drurnheller, “Mobile robot localization  using sonar,” Artificial 
Intelligence Lab., Mass. Inst. Technol., AI-M-826, Jan. 1985. 
A.  Elfes  and S. N. Talukdar, “A distributed control system for the 
CMU rover,” in Proc.  8th Int. Joint Conf. Artificial Intelligence, 
Karlsruhe, Germany,  Aug.  1983. 
A. Elfes, “Multiple levels  of representation and  problem-solving  using 
maps from sonar data,” in Proc. DOEICESAR Workshop on 
Planning and  Sensing for Autonomous Navigation, Oak  Ridge  Nat. 
Lab., Univ. California, Los Angeles,  Aug.  18-19,  1985. 
-, “A sonar-based  mapping  and  navigation system,” in 1986ZEEE 
Znt. Conf. Robotics and Automation, San Francisco, CA,  Apr. 7- 
10, 1986. 
-, “A distributed control architecture for an autonomous  mobile 
robot,” Int. J. Artificial Intelligence in Eng., vol. 1, Oct. 1986. 
0. D. Faugeras, “Object representation, identification,  and  positioning 
from range data,” presented at the 1st Int. Symp.  Robotics Research, . .  
Cambridge, MA, 1984. 

[15] G .  Giralt, R. Chatila, and M. Vaisset, “An integrated  navigation  and 
Richard Redpath for assistance in outdoor &ns. motion control system for autonomous  multisensory  mobile robots,” 



ELFES: SONAR-BASED REAL-WORLD MAPPING AND NAVIGATION 

presented at the  1st Int. Symp. Robotics Research,  Cambridge, MA, 
1984. 
W. E. L. Grimson, From  Images to Surfaces: A Computational 
Study of the  Human  Early  Visual Systems. Cambridge, MA:  MIT 
Press, 1981. 
J.  Hallam,  “Resolving  observer motion by object tracking,” in Proc. 
8th Znt. Joint Conf. Artificial Intelligence, Karlsruhe,  Germany, 

P.  E. Hart,  N. J.  Nilsson, and B. Raphael, “A formal basis  for the 
heuristic  determination  of minimum  cost paths,” ZEEE Trans. Syst., 
Sci., Cybern., vol. SSC-4,  1968. 
M. Herbert and T. Kanade, “Outdoor scene analysis using’  range 
data,” in Proc. 1986 ZEEE  Znt.  Con$ Robotics and Automation, 
San Francisco,  CA,  Apr. 7-10, 1986. 
M.  Hussey, Diagnostic Ultrasound: An Introduction to the Znterac- 
tions between Ultrasound and  Biological  Tissues, London: 
Blackie,  1975. 
R. A. Jarvis,  “A  perspective  on  range finding  techniques for computer 
vision,” ZEEE Trans. Pattern Anal. Machine  Zntell., vol. PAMI-5, 
Mar.  1983. 
M. Julliere and L. Marce,  “Contribution  a l’autonomie des robots 
mobiles,”  Lab.  d’dpplications  des  Techniques Electroniques  Avan- 
ekes, Inst. Nat. des  Sciences Appliquks, Rennes,  France,  1982. 
T. Kanade  and C.  E.  Thorpe,  “CMU  strategic computing  vision 
project report: 1984  to 1985,” Robotics Inst., Carnegie-Mellon  Univ., 
Pittsburgh,  PA, CMU-RI-TR-86-2, Nov.  1985. 
M.  Lionel,  “Contribution  a l’autonomie des robots mobiles,”  Ph.D. 
dissertation, L’Institut  National des Sciences  AppliquCes de Rennes  et 
L’Universitk de Rennes I, Rennes,  France, July 1984. 
L. H. Matthies and C. E. Thorpe,  “Experience with  visual  robot 
navigation,” in Proc. ZEEE Oceans 84, Washington, DC, Aug. 1984. 
G .  L. Miller,  R. A.  Boie,  and M. J .  Sibilia, “Active  damping  of 
ultrasonic transducers  for  robotic  applications,” in Proc. Znt. Conf. 
Robotics, Atlanta, GA, Mar.  1984. 
D. Miller,  “Two dimensional  mobile  robot  positioning  using  onboard 
sonar,” in Pecora ZXRemote Sensing Symp.  Proc., Sioux Falls,  SD, 
Oct. 1984. 
-, “A  spatial  representation system for mobile robots,” in Proc. 
I985 ZEEE  Znt. Conf. Robotics and Automation, St. Louis,  MO, 
Mar. 1985. 
H. P.  Moravec,  “Obstacle avoidance  and  navigation  in  the real world 
by a  seeing robot rover,”  Ph.D.  dissertation, Stanford Univ.,  Sept. 
1980 (also available as Stanford AIM-340,  Cs-80-813  and  CMU-RI- 
TR-01-82, 1982; and  published as Robot Rover Visual Navigation. 
Ann Arbor, MI:  UMI  Research Press,  1981. 
- , “The  Stanford  cart and  the CMU rover,” Proc. ZEEE, vol.  71, 
July  1983. 
H. P.  Moravec et al., “Towards autonomous vehicles,” in 1985 
Robotics Research Review, Robotics Inst., Carnegie-Mellon UNv., 
Pittsburgh,  PA, 1985. 
H. P.  Moravec and A.  Elfes,  “High resolution  maps from wide  angle 
sonar,”  presented at  the Int. Conf. Robotics  and Automation,  IEEE, 
Mar.  1985. 
H. P. Moravec,  “Three-dimensional imaging  with cheap  sonar,” in 
Autonomous Mobile Robots: Annual Report 1985, Mobile  Robot 
Lab.,  Pittsburgh,  PA,  Tech.  Rep.  CMU-RI-TR-864,  Feb.  1986. 

Aug. 1983,  pp. 792-798. 

265 

H. K. Nishihara  and T.  Poggio,  “Stereo vision for  robotics,” 
presented at the  1st Int. Symp.  Robotics Research,  Cambridge, MA, 
1984. 
Y. Ohta and T. Kanade, “Stereo by intra- and inter-scanline  search 
using  dynamic programming,” ZEEE Trans. Pattern Anal. Machine 
Zntell., vol. PAMI-7, Mar. 1985. 
G. W. Podnar, M. K. Blackwell,  and  K. Dowling,  “A functional 
vehicle for autonomous  mobile robot  research,” CMU Robotics Inst., 
Apr.  1984. 
G.  Podnar,  “The  Uranus mobile robot,” Autonomous  Mobile Robots: 
Ann.  Rep. 1985, Mobile  Robot Lab.,  Pittsburgh,  PA,  Tech.  Rep. 
CMU-RI-TR-864, Feb.  1986. 
Ultrasonic  Range  Finders. Polaroid  Corporation, 1982. 
B. Serey  and  L. Mattheis,  “Obstacle avoidance  using  1-D stereo 
vision,”  to  be  published. 
C. E.  Thorpe,  “The CMU rover and  the FIDO vision  and  navigation 
system,”  presented  at  the Symp.  Autonomous  Underwater Robots, 
Univ. New Hampshire,  Marine Systems Engineering  Lab., May 1983. 
C. E. Thorpe,  “FIDO: Vision  and  navigation for  a robot rover,” 
Ph.D.  dissertation, Dep.  of Comput.,  Sci., Chrnegie-Mellon Univ., 
Pittsburgh,  PA,  Dec.  1984. 
C. E. Thorpe,  “Path  relaxation: Path  planning for  a mobile robot,” 
CMU Robotics Inst., CMU-RI-TR-84-5, Apr. 1984; also in Proc. 
ZEEE Oceans 84, Washington,  DC, Aug.  1984,  and Proc. AAAZ-84, 
Austin, TX, Aug.  1984. 
R. S. Wallace, K. Matsuzaki, Y. Goto, J. Webb, J.  Crisman, and T. 
Kanade, “Progress in robot road following,” in Proc. 1986ZEEE  Znt. 
Conf. Robotics and Automation, San Francisco,  CA,  Apr.  1986. 


