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o widen the range of application 
and deployment of robots, both in T research and in industrial con- 

texts, we need to develop more powerful 
and flexible robotic systems exhibiting 
higher degrees of autonomy and able to 
sense, plan, and operate in unstructured 
environments. For that, the robot must be 
able to interact coherently with its world, 
both by being able to recover robust and 
useful spatial descriptions of its surround- 
ings using sensory information and by 
efficiently utilizing these descriptions in 
appropriate short-term and long-term plan- 
ning and decision-making activities. 

This article reviews a new approach to 
robot perception and world modeling that 
uses a probabilistic tesselated representa- 
tion of spatial information called the occu- 
pancy grid.’ The occupancy grid is a multi- 
dimensional random field that maintains 
stochastic estimates of the occupancy state 
of the cells in a spatial lattice. To construct 
a sensor-derived map of the robot’s world, 
the cell state estimates are obtained by 
interpreting the incoming range readings 
using probabilistic sensor models. Baye- 
sian estimation procedures allow the incre- 
mental updating of the occupancy grid 
using readings taken from several sensors 
over multiple points of view. 

The occupancy grid framework repre- 
sents a fundamental departure from tradi- 

The occupancy grid 
framework provides a 

robust and unified 
approach to a variety of 

problems in spatial 
robot perception and 

navigation. 

tional approaches to robot perception and 
spatial reasoning. By utilizing probabilis- 
tic sensor models and representation 
schemes, this approach supports the devel- 
opment of agile and robust sensor interpre- 
tation mechanisms, incremental discovery 
procedures, explicit handling of uncer- 
tainty, multisensor composition of infor- 
mation, and spatial reasoning tasks within 
an integrated framework. 

The following sections give an over- 
view of the occupancy grid framework and 
illustrate its application to a number of 

problems in the mobile robot domain, in- 
cluding range-based mapping, multiple- 
sensor integration, path planning and navi- 
gation, handling of sensor position uncer- 
tainty due to robot motion, and related 
tasks. I contrast the occupancy grid frame- 
work to geometric approaches to sensor 
interpretation and suggest that a number of 
robotic tasks can be performed directly on 
the occupancy grid representation. I con- 
clude with an overview of further research. 

Spatial sensing and 
modeling for robot 
perception 

One of the long-term goals of the re- 
search discussed in this article has been the 
development of robust mapping and navi- 
gation systems for mobile robots operating 
in and exploring unstructured and un- 
known environments. 

Such scenarios occur in a variety of 
contexts. Robot rovers being developed 
for planetary and space exploration, or 
autonomous submersibles devoted to sub- 
marine prospecting and surveying, have to 
deal with unexpected circumstances and 
require the ability to handle complex and 
rough environments with little or no prior 
knowledge of the terrain. While planetary 
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rovers may take advantage of terrain maps 
obtained from orbiting surveyors for 
global planning strategies, these will be of 
limited resolution and not useful for de- 
tailed path planning and navigation. 

On the other hand, mobile robots devel- 
oped for factory automation purposes or 
for operation in hazardous mining environ- 
ments or nuclear facilities generally can be 
expected to operate in more constrained 
situations and to have access to precom- 
piled maps derived from plant blueprints. 
However, such maps may become out- 
dated. Additionally, over the long dis- 
tances traversed by autonomous vehicles, 
inertial or dead-reckoning navigation 
schemes may accumulate substantial posi- 
tional errors. This makes it difficult for the 
robot to position itself in precompiled 
world models, to register sensor informa- 
tion to an absolute frame of reference, or to 
construct global maps that are precise in 
Cartesian coordinates. 

These considerations lead to some fun- 
damental requirements for mobile robots. 
Autonomous vehicles must rely heavily on 
information recovered from sensor data 
and must be able to operate without pre- 
compiled maps. Sensor views obtained 
from multiple sensors and different loca- 
tions have to be integrated into a unified 
and consistent world model, and sensor 
uncertainty and errors have to be handled. 
Precompiled maps, when available, should 
be used to complement sensor-derived 
maps. Finally, the positional drift of the 
sensors due to the robot motion has to be 
taken into account in the mapping and 
navigation procedures. 

Traditional approaches to sensor inter- 
pretation for robot perception have largely 
relied on the recovery and manipulation of 
geometric world models.' Low-level sens- 
ing processes extract geometric features 
such as line segments or surface patches 
from the sensor data, while high-level 
sensing processes use symbolic models, 
geometric templates, and prior heuristic 
assumptions about the robot's environ- 
ment to constrain the sensor interpretation 
process. The resulting geometric world 
models serve as the underlying representa- 
tion for other robotic tasks, such as ob- 
stacle avoidance, path planning and navi- 
gation, or planning of grasping and assem- 
bly operations. 

These approaches, which as an ensemble 
characterize what we refer to as the geo- 
metric paradigm in robot perception, have 
several shortcomings.' Generally speak- 
ing, the geometric paradigm leads to sparse 
and brittle world models; it requires early 

decisions in the interpretation of the sensor 
data for the instantiation of specific model 
primitives; it does not provide adequate 
mechanisms for handling sensor uncer- 
tainty and errors; and it relies heavily on 
the adequacy of the precompiled world 
models and the heuristic assumptions used, 
introducing strong domain-specific de- 
pendencies. Better descriptions of the 
robot's environment are derived primarily 
from the application of finer tuned prior 
models and additional constraints to the 
available sensor data, rather than from 
strategies based on additional sensing. 

Because of these shortcomings, the 
geometric paradigm implicitly creates a 
wide gap between two informational lay- 
ers: the layer that corresponds to the impre- 
cise and limited information actually pro- 
vided by the sensor data, and the layer of 
abstract geometric and symbolic world 
models operated on by the sensing and 
world modeling processes. Consequently, 
geometric approaches to robot perception 
may be useful in highly structured do- 
mains, but have limited applicability in 
more complex scenarios, such as those 
posed by mobile robots. 

Occupancy grids 
The occupancy grid framework ad- 

dresses the requirements and concerns 
outlined above through the development 
of spatial robot perception and reasoning 
mechanisms that employ probabilistic 
sensor interpretation models and random 
field representation schemes. In so doing, 
it supports robust mapping and navigation 
strategies and allows a variety of robotic 
tasks to be addressed through operations 
performed directly on the occupancy grid 
representation. 

This section provides a brief overview 
of the occupancy grid formulation, while 
the following sections illustrate the appli- 
cation of occupancy grids to the mobile 
robot mapping and navigation domain. The 
actual derivation of the probabilistic esti- 
mation models used is beyond the scope of 
this article and can be found elsewhere,'.2 
as can more detailed discussions of the 
experimental work.'-4 

Occupancy grid representation. The 
occupancy grid representation employs a 
multidimensional (typically 2D or 3D) 
tesselation of space into cells, where each 
cell stores a probabilistic estimate of its 
state. Formally, an occupancyfield O(x) is 
a discrete-state stochastic process defined 

over a set of continuous spatial coordinates 
X= (x,, x2, ..., x,~), while the occupancy grid 
is a lattice process, defined over a discrete 
spatial lattice. The state variables(C) asso- 
ciated with a cell C of the occupancy grid 
is defined as a discrete random variable 
with two states, occupied and empty, de- 
noted OCC and EMP. Consequently, the 
occupancy grid corresponds to a discrete- 
state binary random field.' Since the cell 
states are exclusive and exhaustive, P [ s ( C )  
= OCC] + P[s(C)  = EMP] = 1. More gen- 
eral models are possible by using a random 
vector and encoding multiple properties in 
the cell state. I refer to these representa- 
tions as inference grids.' This article dis- 
cusses the estimation of a single property, 
the occupancy state of each cell. 

Estimating the occupancy grid. Since 
a robot can only obtain information about 
its environment indirectly, through its 
sensors, the recovery of a spatial world 
model from sensor data is best modeled as 
an estimation theory problem.The specific 
steps involved in estimating the occupancy 
grid from sensor readings are sketched out 
in Figure 1. 

To interpret the range data obtained 
from a given sensing device, we use a sto- 
chastic sensor model defined by a proba- 
bility density function of the form p ( r  I z), 
which relates the reading I' to the true 
parameter space range value z. This den- 
sity function is subsequently used in a 
Bayesian estimation procedure to deter- 
mine the occupancy grid cell state proba- 
bilities. Finally, we can obtain a determin- 
istic world model, using optimal estima- 
tors such as the maximum a posteriori 
(MAP) decision rule to assign discrete 
states to the cells, labeling them occupied, 
empty, or unknown. We emphasize, how- 
ever, that many robotic tasks can operate 
directly on the occupancy grid representa- 
tion. 

In the discussion below, the occupancy 
grid is modeled as a Markov random field 
(MRF)5 of order 0, so the individual cell 
states can be estimated as independent 
random variables. We can employ compu- 
tationally more expensive estimation pro- 
cedures for higher order MRFs. 

To allow the incremental composition 
of sensory information, we use the sequen- 
tial updating formulation of Bayes' theo- 
rem todetermine the cell occupancy proba- 
bilities.' Given a current estimate of the 
state of a cell C,, P[s(C, )  = OCC I { r t , ] ,  
basedonobservations ( r t f =  { r l ,  ..., r f )  and 
given a new observation r,+',  the improved 
estimate is given by 
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Occupancy Grid Geometric model World state Range surface 

Figure 1. Estimating the occupancy grid from sensor data. 
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Figure 2. Occupancy probability profile for an ideal sensor. 

P[S(Ci) = occ 1 {r}t+11 = ( 1 )  

In this recursive formulation, the previ- 
ous estimate of the cell state, P[s(C,) = 
OCC I { r ] ) ,  serves as the prior and is 
obtained directly from the occupancy grid. 
The new cell state estimate P[s(C,) = OCC 
I ( r ) ,+ , I  is subsequently stored again in the 
map. For the initial prior cell state proba- 
bility estimates, we use maximum entropy 
priors.6 Obtaining the p [ r  I s(C,)] distribu- 
tions from the sensor modelp(r I z) is done 
using Kolmogoroff‘s theorem.’ We can 

derive closed form solutions of these equa- 
tions for certain sensor models and com- 
pute numerical solutions in other cases. 

To illustrate the approach, Figure 2 
shows the occupancy profile derived for 
the case of a one-dimensional ideal range 
sensor, characterized by p ( r  I z) = 6(r-z) .  
Given a range reading r ,  the corresponding 
cell has occupancy probability 1. The pre- 
ceding cells are empty and have occupancy 
probability 0. The succeeding cells have 
not been observed and are therefore un- 
known, so the occupancy probability is 
0.5. 

A sequence of occupancy profiles ob- 
tained from a one-dimensional Gaussian 
range sensor appears in Figure 3. The sen- 
sor model 

is shown superimposed (dashed line). Sev- 
eral successive updates of the occupancy 
probabilities are plotted, with the sensor 
positioned at x=O.O and r=2.0. The grid 
was initialized to P[s(x)  = OCC](x) = 0.5. 
The sequence of occupancy profiles shows 
that the occupancy grid converges towards 
the behavior of the ideal sensor. 

Finally, a two-dimensional occupancy 
grid generated from a single sonar range 
reading is shown in Figure 4. The sonar 
sensor is modeled with Gaussian uncer- 
tainty in both range and angle. The sensor 
probability density function is given by 

The occupancy profile shown corre- 
sponds to a range measurement taken by a 
sonar sensor positiofied at the upper left 
and pointing to the lower right. The hori- 
zontal surface corresponds to the unknown 
level. 

Sensor integration. To increase the 
capabilities and performance of robotic 
systems in general requires a variety of 
sensing devices to support the various 
tasks to be performed. Since different 
sensor types have different operational 
characteristics and failure modes, they can 
in principle complement each other. This 
is particularly important for mobile robots, 
where multiple sensor systems can be used 
to generate improved world models and 
provide higher levels of safety and fault 
tolerance. 

Within the occupancy grid framework, 
sensor integration can be performed using 
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a formula similar to Equation 1 to combine 
the estimates provided by different sen- 
sors.1.2 For two sensors SI and S,, this 
fequires using the corresponding sensor 
modelsp,(r I z )  andp,(r I z). As a result, the 
same occupancy grid can be updated by 
multiple sensors operating independently. 

A different estimation problem occurs 
when separate occupancy grids are main- 
tained for each sensor system and the inte- 
gration of these sensor maps is performed 
at a later stage by composing the corre- 
sponding cell probabilities. This scenario 
requires the combination of probabilistic 
evidence from multiple sources, which can 
be addressed using an estimation method 
known as the independent opinion pool! 
This method involves summing the evi- 
dence for each cell state and performing 
the appropriate normalization. 

Incorporation of user-provided maps. 
Throughout this article we are mainly 
concerned with scenarios where the robot 
operates in unknown environments, so no 
prior maps can be used. As already men- 
tioned, however, in some situations such 
knowledge is available and can be repre- 
sented using geometric and symbolic 
models.* 

The occupancy grid framework incor- 
porates information from such high-level 
precompiled maps using the same method- 
ology outlined in the previous sections. To 
provide a common representation, the 
geometric models are scan-converted into 
an occupancy grid, with occupied and 
empty areas assigned appropriate proba- 
bilities. These precompiled maps can sub- 
sequently be used as priors or can simply 
be treated as another source of information 
to be integrated with sensor-derived maps. 

Decision making. For certain applica- 
tions, it may be necessary to assign spe- 
cific states to the cells of the occupancy 
grid. An optimal estimate of the state of a 
cell is given by the maximum a posteriori 
(MAP) decision rule’: a cell C is occupied 
if P[s(C) = OCC] > P[s(C) = EMP], empty 
if P[s(C)  = OCC] c P[s(C) = EMP], and 
unknown if P[s(C) = OCC] = P[s(C) = 
EMP]. 

We could use other decision criteria, 
such as minimum-cost estimates. Depend- 
ing on the specific context, it may also be 
useful to define an unknown band, as 
opposed to a single thresholding value. 
However, many robotic tasks can be per- 
formed directly on the occupancy grid, 
precluding the need to make discrete 
choices concerning the state of individual 
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Figure 3. Occupancy probability profiles for a Gaussian sensor. 

Figure 4. Occupancy grid for a two-dimensional Gaussian sensor. 
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Figure 5. A comparison of emphases in the geometric paradigm versus the occu- 
pancy grid framework. 
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Figure 6. A framework for occupancy-grid-based robot mapping. 

cells. In path planning, for example, we 
can compute the cost of a path in terms of 
a risk factor directly related to the corre- 
sponding cell ~robabi1ities.I.~ 

Characteristics of the occupancy grid 
approach. From the foregoing discussion, 
several aspects of the occupancy grid 
framework become evident. 1 have stressed 
the use of probabilistic sensor models to 
perform sensor interpretation and handle 
sensor uncertainty, and the use of probabil- 
istic estimation procedures to update the 
occupancy grid. Consequently, no precom- 
piled geometric models and no runtime 
segmentation decisions are necessary. 
Additionally, the use of a decision-theo- 
retic framework makes possible state- 
ments about the optimality of the esti- 
mates. 

Further note that the occupancy grid 
itself provides a stochastic spatial world 
model. The random field explicitly en- 
codes both the spatial information and the 
associated uncertainty, and does not re- 
quire discrete choices. It is possible to 
derive deterministic voxel models or 
higher-level geometric representations 
from the occupancy grid; however, the 
suitability of a representation is directly 
related to how well it describes its subject 
and how easily relevant information can be 
extracted from it. From this point of view, 
I argue that a number of robotic tasks can 
be efficiently addressed within the occu- 
pancy grid framework.' 

This approach also has some specific 
implications. Due to the intrinsic limita- 
tions of sensor systems, spatial sensor 
interpretation is fundamentally an under- 
constrained problem. Within the occu- 
pancy grid framework, we achieve disam- 
biguation of the sensor data and recovery 
of better world models primarily through 
strategies that emphasize additional sens- 
ing, rather than through the use of finer 
tuned heuristics or additional assumptions 
about the robot's environment. Instead of 
relying on a small set of observations to 
generate a world model, we compose in- 
formation from multiple sensor readings 
taken from different viewpoints to esti- 
mate and improve the sensor-derived oc- 
cupancy grids. This leads naturally to an 
emphasis on a high sensing-to-computa- 
tion ratio and on the development of im- 
proved sensor models and active sensing 
strategies. 

Figure 5 provides a contrast between 
some of the emphases in the occupancy 
grid approach and in the geometric para- 
digm, outlined earlier. 
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Usin occupancy grids for 
mobi H e robot mapping 

Reviewing some applications to the 
mobile robot domain will illustrate the 
occupancy grid framework. This section 
discusses the use of occupancy grids in 
sensor-based robot mapping. The next 
section provides an overview of their use 
in robot navigation. 

One possible flow of processing for the 
use of occupancy grids in mobile robot 
mapping appears in Figure 6. The vehicle 
explores and maps its environment, ac- 
quiring information about the world. Data 
acquired from a single sensor reading is 
called asensor view. Various sensor views 
taken from a single robot position can be 
composed into a local sensor map. Mul- 
tiple sensor maps can be maintained sepa- 
rately for different sensor types, such as 
sonar or laser. To obtain an integrated 
description of the robot's surroundings, 
sensor fusion of the separate local sensor 
maps is performed to yield a robot view, 
which encapsulates the total sensor infor- 
mation recovered from a single sensing 
position. As the vehicle travels through its 
terrain of operation, robot views taken 
from multiple data-gathering locations are 
composed into a global map of the envi- 
ronment. This requires the registration of 
the robot views to a common frame of 
reference, an issue addressed in the next 
section. 

For experimental validation, the frame- 
work outlined above was implemented and 
tested on several mobile robots in both 
indoorand outdoorscenarios. We will look 
at some results derived from experiments 
in sonar-based mapping and in sensor inte- 
gration of sonar and single-scanline stereo. 

Sonar-based mapping. Early work 
with sonar-based mapping7.' initially mo- 
tivated the development of occupancy 
grids and led to the implementation of a 
mobile robot range-based mapping and 
navigation system called Dolphin. A vari- 
ety of experiments were used to test this 
system.'.' For indoor runs, a mobile robot 
called Neptune was used (see Figure 7 ) ;  
outdoor runs were performed with a larger 
robot vehicle called the Terregator. More 
recently, a new version of the Dolphin sys- 
tem was installed on the Locomotion 
Emulator, a mobile platform designed for 
navigation in mining environments (see 
Figure 8). 

Figure 9 displays a typical 2D sonar 
occupancy grid, while Figure I O  provides 

Figure 7. The Neptune mobile robot, built by Gregg Podnar at the Carnegie 
Mellon University Mobile Robot Lab, shown with a circular sonar sensor array 
and a pair of stereo cameras. Vehicle locomotion and sensor interfaces are con- 
trolled by on-board processors, while the Dolphin mapping and navigation sys- 
tem runs on an off-board mainframe. This robot was used for indoor range 
mapping and sensor integration experiments. 

Figure 8. The Locomotion Emulator mobile robot, built at the CMU Field Robot- 
ics Center. Designed for navigation experiments in mining environments, this 
vehicle is capable of implementing several locomotion strategies. It  is shown here 
with a sonar sensor array. 

a 3D plot of the corresponding occupancy 
probabilities. Examples of other maps are 
given in Figure 1 1, which shows a sonar 

map obtained during navigation down a 
corridor, and Figure 12, which corresponds 
to a run  in a wooded outdoor park. 
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Figure 9. A two-dimensional sonar occupancy grid. Cells with high occupancy 
probability are  represented in red, while cells with low occupancy probability 
a re  shown in blue. The robot positions from where scans were taken are  shown 
by green circles, while the outline of the room and of major objects is given by 
white lines. This map shows the Mobile Robot Lab. 

Figure 10. Occupancy grid probabili- 
ties for the sonar map. This 3D view 
shows the occupancy probabilities 
P[s(C,, yj ) = OCC](x, aj ) of the map in 
Figure 9. 
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Figure 11. Sonar mapping and naviga- 
tion along a corridor. Walls and open 
doors can be distinguished, and the 
resolution is sufficient to allow wall 
niches to be noticeable in the map. The 
range readings taken from each robot 
stop a re  drawn superimposed on the 
occupancy grid. 

Sensor integration of sonar and scan- 
line stereo. The occupancy grid frame- 
work provides a straightforward approach 
to sensor integration. Range measurements 
from each sensor are converted directly to 
the occupancy grid representation, where 
data taken from multiple views and from 
different sensors can be combined natu- 
rally. Sensors are treated modularly, and 
separate sensor maps can be maintained 

concomitantly with integrated maps, al- 
lowing independent or joint sensor opera- 
tion. In collaboration with Larry Matthies, 
I have performed experiments in the fusion 
of data from two sensor systems: a sonar 
sensor array and a single-scanline stereo 
module that generates horizontal depth 
profiles4 For sensor integration runs, the 
Neptune mobile robot was configured with 
a sonar sensor ring and a pair of stereo 

cameras (see Figure 7). The independent 
opinion pool method, mentioned earlier, 
was used to combine the occupancy grids 
derived separately for the two sensor sys- 
tems. 

Figure 13 shows a typical set of maps. In 
general terms, we can see that the inte- 
grated maps take advantage of the comple- 
mentarity of the sensors. The stereo system 
depends on matching high-contrast image 
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Figure 12. An outdoor run. This map shows a sonar-based outdoor run in a wooded park area. The obstacles encountered 
are trees. 

features, so unmarked surfaces or low- 
contrast edges are not detected well. Stereo 
angular resolution is comparatively high, 
while the range uncertainty increases with 
distance. Sonar, on the other hand, detects 
surfaces well. But it has poor angular reso- 
lution due to the large beam width, while 
the range uncertainty itself is compara- 
tively low. Some of these characteristics 
become noticeable in Figure 13, where 
sonar misses open paths due to its beam 
width, while stereo misses object edges 
due to low contrast against the background. 
A corrective behavior can be seen in the 
integrated map. 

Using occupancy grids 
for mobile robot 
navigation 

We now turn to some examples of the 
use of occupancy grids in mobile robot 
navigation. We briefly address issues in 
path planning, estimating and updating the 
robot position, and incorporating the posi- 
tional uncertainty of the robot into the 
mapping process (as shown in Figure 14). 

Path planning. In the Dolphin system, 
path planning and obstacle avoidance are 
performed using potential functions and an 
A* search algorithm. The latter operates 
directly on the occupancy grid, optimizing 
a path cost function that takes into account 
both the distance to the goal and the occu- 
pancy probabilities of the cells trav- 

e r ~ e d . ' . ~  Results of the operation of the 
path planner can be seen in Figures 1 1  and 
12. 

Handling robot position uncertainty. 
To allow the merging into a coherent model 
of the world of multiple views acquired by 
the robot from different sensing positions, 
we need accurate motion information to 
allow precise registration of the views for 
subsequent composition. For mobile ro- 
bots that move around in unstructured 
environments, recovering precise position 
information poses major problems. Over 
longer distances, dead reckoning estimates 
are not sufficiently reliable. Consequently, 
motion-solving methods that use landmark 
tracking or map matching approaches are 
usually applied to reduce the registration 
imprecision due to motion. Additionally, 
the positional error is compounded over 
sequences of movements as the robot trav- 
erses the environment. This leads to the 
need for explicitly handling positional 
uncertainty and taking it  into account when 
composing multiview sensor information. 

To represent and update the robot posi- 
tion as the vehicle explores the terrain, we 
use the approximate transformation (AT) 
framework developed by Smith, Self, and 
Cheeseman." A robot motion M, defined 
with respect to some coordinate frame, is 
represented as M = <A, C, >, where d is 
the estimated (nominal) position and C, is 
the associated covariance matrix that cap- 
tures the positional uncertainty. The para- 
meters of the robot motion are determined 
from dead reckoning and inertial naviga- 
tion estimates, which can be composed 

Figure 13. Sensor integration of sonar 
and scanline stereo. Occupancy grids 
generated separately for sonar (a) and 
scanline stereo (b), as well as the inte- 
grated map (c) obtained through sen- 
sor fusion, are shown. Occupied re- 
gions are marked by shaded squares, 
empty areas by dots fading to white 
space, and unknown spaces by + 
marks. 
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the composition of maps by the symbol 6, 
the world-based mapping procedure can be 
expressed as 

I I 

Incorporating position uncertainty -: ...................................................................................................................................... 

.................................................. t ...................................................................................... “P > .................................................. . :  I 

Path-planner 

Position estimation 
(Dead-redc + Inertial nav) I Locomotion 

Robot view 

Global map 

I I 
1 

Navigation -1 Estimating robot position 

Figure 14. A framework for occupancy-grid-based robot navigation. New robot 
views are used to update the global map, which in turn is used by the path plan- 
ner. After locomotion, the new robot position estimate is refined using a motion- 
solving procedure that finds an optimal registration between the robot view and 
the current global map. Finally, the remaining positional uncertainty is incorpo- 
rated into the map updating process as a blurring operation. 

using the AT merging operation, while the 
updating of the robot position uncertainty 
over several moves is done using the AT 
composition operation.“ 

Motion solving. For more precise posi- 
tion estimation, we employ a multiresolu- 
tion correlation-based motion-solving pro- 
~ e d u r e . ~  Increasingly lower resolution 
versions of the occupancy grids are gener- 
ated, and the search for an optimal registra- 
tion between the current robot view and the 
global map is done first at a low level of 
resolution. The result is subsequently 
propagated up to guide the search process 
at the next higher level of resolution. 

Incorporating positional uncertainty 
into the mapping process, After estimat- 
ing the registration between the new robot 
view and the current global map, we can 
incorporate the associated uncertainty into 
the map updating process as a blurring or 
convolution operation performed on the 
occupancy grid. We distinguish between 
world-based mapping and robot-based 
mapping.’,? In world-based mapping, the 
motion of the robot is related to an absolute 
or world coordinate frame, and the current 
robot view is blurred by the robot’s global 
positional uncertainty prior to composi- 
tion with the global map. If we repr_esent 
the blurring operation by the symbol €3 and 

global map t global map @ (robot 
view 8 global position uncertainty) 

Since the global robot position uncer- 
tainty increases with every move, this 
updating procedure has the effect that the 
new views become progressively more 
blurred, adding less and less useful infor- 
mation to the global map. Observations 
seen at the beginning of the exploration are 
“sharp,” while recent observations are 
“fuzzy.” From the point of view of the 
inertial observer, the robot eventually 
“dissolves” in a cloud of probabilistic 
smoke. 

For robot-based mapping, we estimate 
the registration uncertainty of the global 
map due to the recent movement of the 
robot, and the global map is blurred by this 
uncertainty prior to composition with the 
current robot view. This mapping proce- 
dure can be expressed as 

global map t (global-map % local 
position uncertainty) 63 robot view 

A consequence of this method is that 
observations performed in the remote past 
become increasingly uncertain, while re- 
cent observations have suffered little blur- 
ring. From the point of view of the robot, 
the immediate surroundings (which are of 
direct relevance to its current navigational 
tasks) are “sharp.” The robot is leaving, so 
to speak, an expanding probabilistic trail 
of weakening observations (see Figure 15). 

Note, however, that the local spatial 
relationships observed within a robot view 
still hold. To avoid losing this information, 
we use a two-level spatial representation, 
incorporating occupancy grids and ap- 
proximate transformations. On one level, 
the individual views are stored attached to 
the nodes of an AT graph (a srochastic 
maplo) that describes the movements of the 
robot. On the second level, a global map is 
maintained that represents the robot’s cur- 
rent overall knowledge of the world (see 
Figure 16). This two-level structure pro- 
vides an adequate and efficient representa- 
tion for various navigation tasks. 

Operations on 
occupancy grids 

We have looked at the application of the 
occupancy grid framework to the mobile 
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Figure 15. Incorporating motion uncertainty into the mapping process. For robot-centered mapping, the global map is 
blurred by the back-propagated robot position uncertainty (shown using the corresponding covariance ellipses) prior to 
composition with the robot view. 
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Figure 16. Maintaining a two-level spatial representation. The individual robot 
views are stored attached to the nodes of an AT graph describing the robot mo- 
tion and are maintained in conjunction with the global map . 

Table I. Operations on occupancy grids for various robotic tasks and similar 
operations performed in the image processing domain. 

Occupancy Grids Images 

Labeling cells as occupied, empty, or unknown 
Handling position uncertainty 
Removing spurious spatial readings 
Map matching/motion solving 

Obstacle growing for path planning 
Path planning 
Extracting occupied, empty, and unknown areas 

Determining object boundaries 
Incorporating precompiled maps 
Prediction of sensor observations from maps 
Object motion detection over map sequences 

Thresholding 
Blurring/convolution 
Low-pass filtering 
Multiresolution 

correlation 
Region growing 
Edge tracking 
Segmentation/region 

coloring/labeling 
Edge detection 
Scan conversion 
Correlation 
Space-time filtering 

robot mapping and navigation domain. 
This framework also allows us to address a 
number of other robot perception and spa- 
tial reasoning problems in a unified way. It 
is important to observe that many opera- 
tions performed on occupancy grids for 
various robotic tasks are similar to compu- 
tations performed in the image processing 
domain. This is a useful insight, since it 
allows us to take advantage of results from 
this context. Table 1 provides a qualitative 
overview and comparison of some of these 
operations. 

Extending the 
occupancy grid 
framework 

Additional issues explored within the 
occupancy grid framework include the 
recovery of geometric descriptions from 
occupancy grids,' the incorporation of 
precompiled maps,' and the use of log- 
arithmic maps where the resolution drops 
with the distance to the robot.' Other pos- 
sible applications include the prediction of 
sensor readings from occupancy grids and 
the detection of moving objects over se- 
quences of maps. Current work is investi- 
gating other domains, such as the use of oc- 
cupancy grids for laser scanner mapping, 
precise positioning, and navigation in 
mining applications using the Locomotion 
Emulator; the development of mapping 
and planning strategies that take advantage 
of high-level precompiled maps when 
available; the exploration of strategies for 
landmark recognition and tracking; and 
the recovery of 3D occupancy grids from 
laser rangefinders or stereo depth profiles. 

W e have reviewed the occu- 
pancy grid framework and 
looked at results from its ap- 

plication to mobile robot mapping and 
navigation in unknown and unstructured 
environments. The occupancy grid frame- 
work represents a fundamental departure 
from traditional approaches to robot per- 
ception and spatial reasoning. It supports 
agile and robust sensor interpretation 
methods, incremental discovery proce- 
dures, composition of information from 
multiple sensors and over multiple posi- 
tiom of the robot, and explicit handling of 
uncertainty. Furthermore, the occupancy 
grid representation can be used directly in 
various robotic planning and problem- 
solving activities, thereby precluding the 
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need for the recovery of deterministic geo- 
metric models. The results suggest that the 
occupancy grid framework provides an ap- 
proach to robot perception and spatial 
reasoning that has the characteristics of 
robustness and generality necessary for 
real-world robotic applications. - 
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