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Abstract

In this age of information, new models of information exchange methodologies based

on overlay networks are gaining popular attention. Overlaynetworks provide a logical

interconnection topology over an existing physical network. Overlay networks offer bene-

fits such as ease of implementation, flexibility, adaptability, and incremental deployability.

Due to the wide range of applications and advantages, formalstudy of overlay networks is

required to understand the various research challenges in this context.

In this thesis, we study two classes of overlay networks namely peer-to-peer networks

and wireless ad hoc networks. Our focus will be along two central issues in overlay net-

works: how to arrive at efficient topologies and how to provide efficient routing strategies.

Peer-to-peer networks have gained a lot of research attention in recent years for various

reasons. Despite many advances however, fundamental questions such as how to design

deterministic constructions, and how to organize peers of non-uniform bandwidth have

remained open. In this thesis, we answer these questions by providing a deterministic

overlay topology,Pagoda, that can be used for efficient routing, data management and

multicasting. Given the difficulty of arriving at good deterministic topologies in a purely

decentralized manner, we also propose a unified methodologyto create a large class of
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overlay topologies via an approach called thesupervised overlay networks. We show that

this approach also has other advantages such as support for rapid peer join/leave and rapid

repair.

For the case of wireless ad hoc networks, we start by providing a model for wireless

communication that is much more realistic than the models that are being used in the theo-

retical community. Using this model, we show how to arrive a sparse spanner construction

based on dominating sets. We then use the spanner construction to provide efficient algo-

rithms for broadcasting and information gathering in wireless ad hoc networks. All our

algorithms are simple, self-stabilizing and require only aconstant amount of storage at any

node. Thus, our algorithms are also applicable in a wide variety of scenarios such as simple

sensor devices.

Advisor: Professor Christian Scheideler

Readers: Professor Rao Kosaraju and Professor Andreas Terzis
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Chapter 1

Introduction

As the age of information has dawned upon us, it has become imperative that efficient informa-

tion exchange methodologies be studied. While traditionalnetwork models certainly broadened the

knowledge and understanding of information exchange, new and emerging paradigms require a dif-

ferent approach. Overlay networks, which are logical networks over an existing network, are becom-

ing more common. Overlay networks supporting a range of functionality such as grid computing,

file sharing, sensor networks, and wireless ad hoc networks are being studied heavily. Evidenced by

the success of early applications using overlay networks such as Gnutella [50], and distributed.net

[33] the research community has been quick to react and develop a vast array of applications, tools,

and techniques to study problems in the area of overlay networks. Figure 1.1 shows an overlay

network of six nodes with the bold edges representing the connections in thelogical network.

Before we proceed further, it is important to understand thebasic ideas behind various comput-

ing models so that one can appreciate the contribution of overlay networks. Below we first provide

a concise review of known models of computing and why new models are gaining attention.

1



underlying
network

Figure 1.1: A logical (overlay) network.

1.1 Models of Computing

1.1.1 Desktop computing

During the early days of personal computers (PCs), the desktop was seen as the central com-

puting tool. All the applications required by the user are provided in the desktop and when new

applications are needed they have to be installed on his/hercomputer. Clearly, this model of com-

puting becomes expensive and infeasible as the number of applications needed by the user grows.

More importantly, this model does not allow any resource sharing between the users. These disad-

vantages meant that new models had to be designed.
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1.1.2 Client-server computing

Client-server computing is a distributed model where two entities, the client and the server,

communicate with each other according to some established protocol to perform certain tasks. Ex-

amples include (browser, web-server) where using the HTTP protocol the browser sends requests

to a web-server and later displays the results, the X Window System (commonly known as X11)

where typically a user’s local display acts a server, and thelike. Figure 1.2(a) shows an example of

a client-server computing system.

While this model has better resource utilization compared to desktop computing, the clients

are not left with too much of freedom. In most cases, these systems do not allow any interactions

between the clients. Moreover, in this model the server might be overburdened as it has to serve

multiple clients. Though there exist solutions to deal withsuch problems, these require providing

special purpose costly hardware. Other problems such as a single point-of-failure at the server also

exist. What is needed is a model which allows resource sharing and also cost sharing.

1.1.3 Peer-to-peer computing

The recent trend has been towards a model of computing which allows efficient sharing of

resources. Also, there is a need to move away from client-server based computing and allow the

clients to make some application-level decisions which they are best capable of. This is where the

peer-to-peer model of computing enters the picture. To attempt a definition of peer-to-peer, Oram

et. al [114] defines peer-to-peer broadly as follows:

A peer-too-peer system is a self-organizing system of equal, autonomous entities (peers)
which aims for the shared usage of distributed resources in anetworked environment
avoiding central services.
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Figure 1.2: Figure (a) shows a client-server model of computing where the server handles all the
requests of the clients. Figure (b) shows a supervised peer-to-peer system where the server has
certain limited functionality and clients (peers) are allowed to communicate with each other. The
bold lines indicate the client-client communication links. Figure (c) shows a pure peer-to-peer
system where there is no central server. The figure is based onFigure 2.1 from [140].

As is common in literature, we do not distinguish between theterms peer-to-peer computing

and peer-to-peer systems/networks and use them interchangeably. One can classify these further

as supervisedpeer-to-peer systems andpure peer-to-peer systems. In supervised systems, there

is a limited degree of centralization that drives the operation of the system whereas pure peer-to-

peer systems are entirely decentralized. Figure 1.2(a–b) show an example of a supervised and pure

peer-to-peer system. File sharing application such as Napster, grid computing projects such as

distributed.net [33] are examples of supervised peer-to-peer systems, as both these systems involve

certain degree of centralization. Later generations of peer-to-peer systems such as Chord [142] are

examples of pure peer-to-peer systems. These provide an efficient sharing of resources and cost

among the various participants. We shall have more to say on why these systems are popular and

the reasons that make them exciting in Section 1.2 by studying a superclass of peer-to-peer systems

namely overlay networks.

This thesis deals with not just peer-to-peer networks but overlay networks in general. When

we speak about overlay networks in this thesis, some of the remarks are equally applicable to peer-

to-peer networks and in some cases we specifically make the class distinction clear. In the next
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section, we provide more reasons why overlay networks are appealing.

1.2 Why Logical Networks?

In this section, we state the reasons that make overlay networks suitable for many application

scenarios. Some of the benefits of using logical networks arethat they provide flexibility, ease of

implementation, easy customizability and adaptability, and incremental deployability. These advan-

tages make logical networks a good choice for a lot of applications. To provide further justification,

we look at examples such as provisioning special features, Virtual Private Networks (VPN’s), and

grid computing, that benefit from the above features. In the following discussion we view the Inter-

net as the underlying network unless explicitly mentioned.

1.2.1 Provisioning Special Features

For many applications, designing logical networks has several advantages compared to rely-

ing on the underlying network. A logical network provides a certain degree of flexibility and ease

of implementation that is not achievable relying on the underlying network. Consider providing

Quality-of-Service (QoS) guarantees to Internet traffic which may be demanded by certain appli-

cations such as multimedia, or real time industrial applications. In the current Internet, there is

no standard way to pass QoS information across routers. Also, intrinsically any solution to guar-

anteeing service quality would be a case of weak-link phenomenon where the quality guaranteed

will be as weak as the guarantee of the worst link in a path. Moreover, various applications have

different QoS requirements which make it difficult to capture in any single solution. Thus, there

are serious obstacles to providing end-to-end QoS guarantees. Whether to let the underlying net-

work, the Internet, to allow applications to demand QoS guarantees or to have the end-hosts deal
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with QoS guarantees is a hotly debated topic in Internet research forums such as the IETF (Internet

Engineering Task Force). In this scenario, logical networks offer a solution as proposed in [96]. For

example, sites requiring certain guarantees can form a logical network to sustain those guarantees

without requiring any changes in the underlying network which might be prohibitively difficult for

technical or economic reasons.

IPv6 is a classic example of the difficulties involved in changing the underlying network op-

eration. IPv6 (IP Version 6) is the new generation Internet protocol that is designed to address

the limitations such as a small address space, lack of uniform QoS capabilities, and to increase

efficiency and flexibility in the current version of the protocol IPv4. The deployment of IPv6 has

encountered huge delays as it involves development and deployment of new software on devices

that are connected to the network, and upgrading millions ofrouters on the Internet to use IPv6

instead of IPv4.

When using logical networks such special protocols, or protocols implementing special fea-

tures that depend on application specific knowledge, can be implemented without in any way bur-

dening the underlying network. This approach also gives an additional ease of maintenance as

updates or fixes to the protocols can be carried over with lesseffort.

1.2.2 Virtual Private Networks (VPNs)

Logical networks can also be used to augment the functionality provided by the underlying

network to support additional features such as authentication, anonymity, and security. Consider

the scenario where a company has offices at several geographically dispersed locations and wants

to offer interconnectivity between these various locations. While using a public network such as the

Internet would solve the problem it might introduce security risks which are potentially damaging to

the company. Another solution is to use separate leased lines to interconnect the various locations.
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But this becomes costly as the lines are billed not only basedon usage but also based on fixed

monthly fees. Even otherwise, having leased lines to interconnect does not solve the problem in

its entirety. Consider the scenario where a traveling employee wishes to access the office private

network while having access to only a public network. It is not easy unless the employee is based

at one of the company locations.

The common solution these days to these problems is to provide a VPN. A VPN is a private

network created on top of a public network such as the Internet with features such as security,

service guarantees, reliability, and privacy [134]. The name “virtual” comes due to the fact that

the private network is simulated on top of a public network, such as the Internet, using temporary,

logical connections that have no physical presence. Unlikeleased lines, the cost is based on usage

time rather than fixed costs.

1.2.3 Grid Computing

Logical networks also allow efficient sharing of resources such as storage, and processing

power that may otherwise sit idle on individual hosts. Consider for example, the grid comput-

ing system distributed.net [33] which was introduced around 1998. Individual users can download

software from distributed.net which runs on the individualhosts when the hosts are idle. Upon pro-

cessing the the current work unit, the software reports the results back to a server at distributed.net

and downloads a new work unit. Alike distributed.net there are now several distributed comput-

ing projects for applications from areas such as genetics (see http://boinc.bakerlab.org/rosetta/),

climate prediction modeling (see http://climateapps2.oucs.ox.ac.uk/cpdnboinc/), medicinal applica-

tions (see http://www.d2ol.com/), and for detecting signals of intelligent life outside the Earth (see

http://setiathome.com).

The success of projects such as distributed.net can be gauged by looking at some of their re-
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cent breakthroughs. In 2002, after working for 50 months, a 300,000 user base had tested about

15 × 1018 keys to solve the RC5-64 bit secret key challenge. The RC5-64challenge is one of a

series of contests held to understand the difficulty of finding a symmetric encryption key by ex-

haustive search. The computational power utilized for the RC5-64 project alone was estimated to

be the equivalent of nearly half a million Pentium PCs. Whilestill not being entirely decentralized,

these projects show a way of amassing the computational power equivalent to that of modern day

supercomputers at a fraction of the cost. Recent results [123] show how to achieve a greater degree

of decentralization.

1.2.4 Internet Transparency and Symmetry

Overlay networks also are said to have the potential to “return the Internet to its founding

principles” according to [114] by restoring its transparency and symmetric operation. This statement

needs some justification.

In the early years of the Internet, hosts acted as peers sharing equal responsibilities. But with

the rapid growth of the Internet around 19941 [29] it has met with new challenges and also under-

went a shift in the way the hosts behave.

The rise in the number of hosts on the Internet gave rise to challenges such as scaling up

the address space, scaling up the Domain Name System (DNS), scaling of capacity, and scaling

of protocols and algorithms. It is widely estimated that the32-bit address space currently used

in the Internet would run of addresses in a few years time [113]. To alleviate the address space

exhaustion still using the IPv4 protocols, solutions such as Network Address Translator (NAT)

devices, Dynamic Host Configuration Protocol (DHCP) are being used. NAT devices sit between

a private network and a network connected directly to the public Internet. NATs enable a set of

1The number of Internet hosts in 1994 is estimated to be 2 million which reached 72 million by 2000 and is estimated
to be 394 million in 2005.
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hosts in a private network to share a small set of globally unique addresses. Hosts using DHCP

are assigned a unique address when they are connected to the Internet and the address is reclaimed

when the hosts is no longer connected to the Internet.

These technologies resulted in the Internet losing its original transparency. When NAT is

deployed hosts are no longer uniquely addressable in the Internet which is an important design

attribute of the original Internet. Moreover, NAT deployment introduces two addresses for a host

- a local address that it knows and a global address that it is known by in the Internet. Similarly

when using DHCP, applications cannot rely on IP addresses touniquely distinguish hosts as the IP

address may be in use by different hosts at various points of time. But new applications based on the

peer-to-peer paradigm challenge this lack of transparency. In fact, many applications have found

ways to work around the problems introduced by NATs, DHCP andfirewalls. As the popularity

of the new paradigm grows2 it is imperative that these technologies be updated. Some scenarios

studying the problems posed by the current lack of end-to-end transparency are presented in RFC

27753.

With the expanding civilian usage of the Internet, many hosts on the Internet have largely

become consumers of information with only a few hosts serving the information. This asymmetry

has in fact meant that Internet Service Providers’ (ISPs) have built their systems and practices around

the idea that most of the end users spend most of their time downloading data from a few central

servers. In fact, ISPs using cable technologies and ADSL (Asymmetric Digital Subscriber Line)

provide lower upstream bandwidth than download bandwidth and this is fine as long as the users

do not upload too much data. With the emergence of peer-to-peer networks it is hoped that this

asymmetry in the current Internet, where a majority of the hosts are only consumers of information,

2It was reported in a study http://www.sandvine.com/solutions/ p2ppolicy mngmt.asp, that up to 50% of the Internet
traffic is due to file sharing applications.

3See http://www.rfc-archive.org/getrfc.php?rfc=2775
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can be reduced. As applications such as file-sharing, and publish-subscribe boards become popular,

hosts can also become content-providers rather than being passive consumers of information.

Indeed the emergence of peer-to-peer applications that blur the distinction between providers

and consumers of information has already started to show certain side effects. For example, in the

days of the Napster, an ISP company in San Diego notified its users to stop running the Napster

application as Napster is consuming too much of bandwidth4.

1.3 Overlay Networks - A Brief History

Due to their growing importance as outlined above, the studyof overlay networks is being

treated as an independent area of research since the last decade. In this thesis, we focus on two

classes of overlay networks namely, peer-to-peer overlaysand overlays for wireless ad hoc net-

works. We now provide a brief introduction to these two classes of overlay networks.

1.3.1 Peer-to-Peer Networks

Peer-to-peer overlay networks have attracted a lot of research attention in the past few years

due to the enormous advantages offered by them. Peer-to-peer (P2P) networks allow improve the

efficacy of resources such as computation and storage by seamless sharing of resources. Also, the

fact that peer-to-peer systems do not need a central server means that individuals can search for

information or cooperate without fees or an investment in additional high-performance hardware.

Peer-to-peer Systems in the Internet

While the term “peer-to-peer” has recent denomination, ever since the emergence of the In-

ternet many applications that are implicitly guided by the principles of peer-to-peer networks are

4See http://wired.com/news/technology/0,1282,35523,00.html for this news article.
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known. One example is the File Transfer Protocol (FTP) whichcan be used to transfer files between

hosts in the Internet. Each host can act as a peer that hosts certain files and other peers can establish

a connection to initiate file transfer. Each host can act as either a server of information or a client of

information depending on the context.

Other examples include the Usenet, and the Internet BGP routing scheme. Usenet can be

thought of as a publish-subscribe service where users can post and read messages under different

topics. Usenet originally relied on UUCP (Unix-to-Unix-Copy Protocol) which provides mecha-

nism for a Unix machine to establish a connection to another Unix machine, exchange files, and

terminate the connection. Currently, Usenet uses the Network News Transfer Protocol (NNTP) for

exchanging the messages. Usenet has no centralized authority that creates or deletes the topics.

The Border Gateway Protocol (BGP) is the routing protocol used to exchange routing informa-

tion across the Internet. In BGP, the routers have a peer relationship between themselves and send

periodic route updates amongst themselves.

Recent P2P Networks

Following the evolution of the peer-to-peer networks, the authors in [145] have categorized

them into 3 generations. The first generation of peer-to-peer systems are pioneered by the file

sharing application Napster. Napster had a centralized directory of files and their owners but once

a owner of a file is found the download can happen without the involvement of the server. This

of course has several disadvantages as the central server becomes a bottleneck for a system point

of view. Also, Napster itself ran into legal battles over copyright issues and was shutdown after a

protracted court battle. Gnutella [50] is also categorizedas first generation P2P system and has a

similar functionality as that of Napster but without any centralized directory. The authors of [145]

cite the ease of deployment as the reason for this categorization and these early networks do not
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have provably low lookup time which is important for file sharing applications.

Gnutella places files,or objects, at random locations and hence has to use naive flooding based

methods to locate objects. In the second-generation P2P systems, this was addressed by placing

objects at specified locations so that locating objects can be done faster. Systems that are placed

in this category include, e.g., Tapestry [155], Pastry [129] (both use a scheme similar to that of

Plaxton-Rajaraman-Richa [121]), Chord [142] based on consistent hashing [69] and, CAN [125]

based on hierarchical decomposition. Most of the systems inthe second generation category are

based on structured overlays where the nodes in the network are mapped into a virtual address

space and each node is given a label from this address space. The label of a node also dictates its

neighbors in the logical network by using mathematical formulations. The labels are given in a

manner that the logical network has certain structured topology such as the hypercube, de Bruijn,

butterfly 5. This allows one to show that lookup time, query path length,peer join/leave time are

logarithmic (or poly-logarithmic) in the current size of the network.

These second generation systems can be used as a “Distributed Hash Table” (DHT) which takes

the following form. A set of data items from an ordered space are to be mapped to a set of storage

units so that the fraction of the data items at any unit is close to the best possible, i.e., all units

store an equal proportion of the total data, while supporting operations such aslookup andput.

Structured P2P overlays acting as DHT’s are also proposed asa solution for a future generation

Internet DNS [123].

Concepts for third generation systems addressing the weakness of the second generation sys-

tems include fault-tolerance, security, anonymity, robustness, providing incentives for cooperation,

and the like. Some proposals that are provably fault-tolerant under various attack models are

[42, 6, 132].

5A formal definition of these network topologies is provided in Chapter 2.
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For a more detailed introduction to the above systems and a comparison, we refer the reader to

[101, 145]. P2P networks can also be used as routing overlaysto enhance certain network function-

ality such as security and authentication by provisioning avirtual private network. The local-control

nature of the P2P systems means that single point of failures, generally associated with traditional

client-server systems, can also be mitigated.

Peer-to-peer networks have also found applications in diverse areas such as grid computing,

online gaming, databases, web-caching, information retrieval, web crawling, and in many such

related and emerging areas. The rapid growth of interest in peer-to-peer networks can be judged by

the fact that every year there are several conferences catering specifically to topics in peer-to-peer

networks.

1.3.2 Wireless Ad Hoc Networks

A wireless ad hoc network comprises of a set of nodes that can communicate over a wireless

medium. Initial applications of wireless networks are found in the military domain. A classic ex-

ample is that of war fighters equipped with wireless devices giving them access to information such

as the terrain, location, and strategic documents. However, the recent advent of numerous elec-

tronic devices that are capable of communicating over a wireless medium has meant that networks

composed of wireless devices are becoming more common also in the civilian and the commercial

domain. Examples include campus wide wireless LAN’s, home networking, and wireless hot-spots.

Recently, some cities such as Philadelphia have also initiated efforts to provide a city wide wireless

network that every citizen can use to access the Internet6. Wireless networks consisting of devices

that cooperate with each other, without the presence of any base station, to forward packets to each

other are becoming feasible and widespread. For instance, sensor networks comprising millions of

6See http://www.phila.gov/wireless
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tiny low-cost, low-power, wireless sensor devices are being used in a wide variety of applications

such as disaster recovery, warehouse management, and remote surveillance. In the case of sensor

networks, when used for gathering information, there is normally a single observer where all the

messages are delivered to, but this observer does not normally provide the functionality of a base

station.

One of the important problems for wireless ad hoc networks isto organize the wireless devices,

nodes, into a logical network that acts as a backbone for communication. The quality of the over-

lay network, the backbone structure, can be judged based on several criteria such as connectivity,

energy-efficiency, and adaptability to mobile hosts.

Proposals or approaches to arrive at overlay networks in wireless ad hoc networks can be

classified into 3 generations as follows. The first generation approaches use one or more base

stations (or access points) and the wireless nodes always try to maintain contact with at least one

base station. The cell-based approaches, and wireless hot-spots fit this approach. The presence

of centralized infrastructure in the form of base stations certainly simplifies the problem and the

overlay topology obtained is a star topology with the accesspoint at the center of the star as normally

each node is connected to a single access point.

The second generation systems are characterized by having amulti-hop approach. In this

approach, not all nodes may be communicating directly usinga centralized base station. Nodes can

communicate by using other nodes in the ad hoc network as relays to reach the base station. More

precisely, wireless stations that can reach a base station directly communicate directly with the base

station. Other wireless nodes communicate with a base station using multiple hops to forward their

traffic. Proposals for arriving at overlay network or communication protocols in wireless ad hoc

networks in this scenario include those put forward by the IETF Manet working group, and the
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Archipelago project [1, 7].

The third generation approaches aim at constructing overlay networks for wireless ad hoc net-

works in the absence of any centralized infrastructure. In this scenario, the ad hoc network can

be seen as a peer-to-peer network formed by a set of wireless stations, which organize themselves

into a temporary network. The lack of any centralized infrastructure and mobility of nodes pose

heavy challenges for designing overlay networks for wireless ad hoc networks. Some of the recent

proposals include e.g., [36, 84, 5, 47]. There are two approaches to arriving at overlay networks for

wireless ad hoc networks, namely,topological overlaysandgeometric overlays. In the following,

we briefly describe each of these approaches.

In topological overlays, the overlay network is constructed by choosing cluster heads and gate-

way edges that interconnect some of the cluster heads. Each node is either a cluster head or a

member of some clusters. Gateway edges allow communicationbetween clusters. Geometric over-

lay networks use the relative position of the nodes in the network in arriving at the construction.

Several constructions based on geometric position of the nodes such as the Gabriel graph [46], the

Yao graph [152], Voronoi diagrams are studied for their easeof implementation. The geometric po-

sition of the nodes dictates the structure and hence the quality of the resulting overlay network. For

example, when using the Gabriel graph or the Yao graph, it is possible to create situations where

the degree of some node in the overlay network isΘ(n). Variants of these graphs, such as the

symmetric Yao graph, the Relative Neighborhood Graph (RNG)[47] are also studied. Some of the

above constructions arrive at a planar overlay topology, which is known to be useful in the context

of unicasting algorithms such as face routing [86] and its many variants [85, 47, 17, 18, 19].

Higher order communication primitives such as broadcasting, gossiping, unicasting are then

supported on top of the overlay network. For example, there is a class of routing protocols called
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thegeometric routingprotocols [86] which use a planar overlay network to performroute discovery.

1.4 Research Challenges

Till now we have aimed to provide an introduction to the area of overlay networks. We now

aim to understand some of the research challenges that arisein the area of overlay networks.

This thesis deals mainly with two classes of overlay networks: peer-to-peer overlays and over-

lays for wireless ad hoc networks. When we look at these two types of networks, to design overlay

networks one encounters the following challenges. In this section, by the termoverlay network, we

mean peer-to-peer overlay networks or overlays for wireless ad hoc networks.

Recall the early P2P system Napster which introduced the concept of peer-to-peer file sharing.

Napster had a central server that is used to store a directoryof files and where they are available

so that once a user having a particular file is located, the content can be served independent of the

central server. But storing the directory at a central server meant that all lookup operations had to

go through the central server creating a potential bottleneck and also making it a central point of

failure. While Gnutella [50] did away with central indexing, it uses flooding based techniques to

query for content. As the number of participants in Gnutellaincreases, the load on each peer grows

proportionately as a result. Such a solution is not easily scalable. Thus, designing overlay networks

having desirable properties deserves serious thought.

The topology of the overlay network specifies how the participating entities (peers) can com-

municate with each other in the overlay network. As overlay networks are being deployed or pro-

posed for a variety of applications, one primary requirement of the overlay network is that the

topology should allow for efficient operation. Consider client-server topologies that are known

since a long time where there is a central server entity that acts on the requests of the clients. This
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can be seen as forming a star topology with the server at the center. This approach hardly meets

the efficiency criteria as such a topology does not allow for interaction between the various clients

without involving the server thereby overburdening the server.

One can certainly interconnect all the peers resulting in a clique topology. This solution cer-

tainly improves the efficiency as all the peers are interconnected and can exchange information

quickly. But this approach does not scale well even for a network of relatively moderate size. Over-

lay networks, however, should be able to operate at a much higher scale. For example, Gnutella [50]

on a typical day has reported 2 million users. Operating at such an enormous scale requires that the

topology of the network has to be designed carefully to achieve scalability.

Also, the topology should be robust enough so that it can function under difficult or adverse

circumstances. While the client-server topology can be made robust by providing special purpose

hardware, the topology itself would still be inefficient formany applications.

Thus, devising strategies to satisfy the afore-mentioned criteria is an extremely challenging

problem. While efficiency, scalability and robustness are sought after, overlay networks have other

equally important challenges. Another important difference in these classes of overlay networks is

that the peers are dynamic in nature and hence overlay networks should allow for the participants

to join or leave the network and at a rapid rate. To quote statistical observations for Kazaa [72], it

is reported in [54] that 50% of the users in Kazaa have a session time of the order of minutes. This

requires that the network should be able to efficiently process a join or leave operation, without any

centralized control.

Moreover, overlay networks typically are composed of entities that differ significantly in their

characteristics, i.e., the participants may introduce heterogeneity in the network. For example, nodes

in a peer-to-peer network differ significantly in the amountof available bandwidth or the bandwidth
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they can contribute to the P2P network. This requires that the P2P network be flexible enough so

as to accommodate nodes of varying bandwidth. Also, future generation P2P systems should allow

the users to control or limit the amount of bandwidth they contribute to a particular application as

each user may be running several P2P applications together.This means that suitable topologies for

overlay networks that operate efficiently in an heterogeneous environment have to be designed.

Further, when considering overlay networks for wireless nodes, for example, resources such as

power is highly expensive. In some cases such as wireless sensor networks, it may in fact be difficult

if not impossible to recharge the sensors once they are deployed. Hence the overlay network should

ideally support mechanisms to minimize the usage of such expensive resources so as to increase the

lifetime and availability of the individual devices.

Thus, there are a lot of challenges that one has to take into account when designing overlay

networks. The initial works such as Napster, and distributed.net have showed the remarkable power

of peer-to-peer systems. Based on these successes, the academic community has reacted quickly to

bring this line of work into the research mainstream so as to set them on a formal footing where

they can be studied rigorously. Over the last decade, research in overlay networks has produced a

vast amount of literature leading to various insights, techniques, and solutions.

In this thesis, we undertake a formal study of overlay networks to address the above challenges

with focus on peer-to-peer networks and wireless ad hoc networks. We address how to design

efficient topologies for overlay networks and how to provideefficient routing strategies for various

routing problems that arise in the context of overlay networks. For example, we show how to design

a peer-to-peer network that can operate efficiently in an heterogeneous environment which solves

an open problem in that area. Similarly, we show how to provide sparse backbone structures for

wireless ad hoc networks that can then be used to perform broadcasting and information gathering

18



efficiently. (For a summary of contributions made in this thesis and their technical significance we

refer the reader to Chapter 3).

1.5 Relation to other areas

In this section we discuss briefly other recent and emerging research areas in Computer Science

that have some relation to overlay networks. We look at examples such as (traditional) distributed

systems, and content distribution networks.

1.5.1 Distributed Systems

Distributed systems with no global memory involve a set of computing entities interconnected

via a certain topology and computation is done by the entities exchanging information through

messages. As communication is treated as an expensive resource, one of the goals in distributed

computing is to use as little communication as possible. There appears to be a lot of commonal-

ity in the solution techniques employed in distributed systems and overlay networks. In fact, the

idea of self-stabilization [32] has its roots in distributed systems. Also, the theoretical limitations

of computation in distributed systems carry over to overlaynetworks also. But certain important

differences exist.

In traditional distributed systems, while the entities aretreated as being autonomous, in most

cases they are homogeneous in nature. We have seen that on theother hand overlay networks tend

to be rather heterogeneous. Also, distributed systems mostly are not dynamic in nature and in many

cases do not have to deal with issues such as power consumption. These, and other differences,

make it important to treat the study of overlay networks as separate from that of distributed systems.

Models with shared memory, for example the parallel computing models, were also studied
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during the previous decades. In this model, there is a set of processors that have a globally ac-

cessible shared memory. Based on the model of memory access,several variations exist such as

the Concurrent Read Exclusive Write (CREW) and the weaker Concurrent Read Concurrent Write

(CRCW), and the Exclusive Read Exclusive Write (EREW) model. These are generally referred

to as the Parallel Random Access Machines (PRAMs). But due tothe lack of realization of such

models, these gradually disappeared from research currency.

1.5.2 Content Distribution Network (CDN)

Content distribution networks have become popular with thegrowth of the WWW and offer

several advantages. Imagine a web server that has to serve multiple requests to the same popular

object, such as a web page containing a news flash of wide public interest. It is very likely that the

server is overburdened quickly to keep up with the pace of therequests. Also, letting only one server

handle all the requests becomes inefficient and expensive interms of network usage as the server

may have to serve requests from clients spread across various ISPs. In this case it might be efficient

if the object is cached at various places in the network, for example at ISP boundaries, so that future

requests can be handled from the cache without even involving the server. Such caches are also

referred to assurrogate servers. Presently, many popular web sites make use of such surrogate

servers provided by popular CDNs such as Akamai and Digital Island. Having surrogate servers

itself does not solve the problem unless there is a way to makeuse of them. For this purpose, CDNs

also provideredirectorsthat forward client requests to a surrogate server based on several criteria

such as geographic proximity, server throughput, latency time, and client location7. The entire

scheme can be picturized as shown in Figure 1.3.

The relation they have with overlay networks is that like peers in an overlay network, the redi-

7Notice that this is not the same as geographic proximity.
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Figure 1.3: A CDN in operation. The figure is based on [120, Figure 9.27].

rectors make an application-level routing decision. Also,several problems such as which surrogate

server to redirect, how to choose surrogate servers, have their equivalents in overlay networks so

that solutions and techniques developed for one may prove tobe useful in the other.

1.6 Organization of the thesis

The rest of the thesis is organized as follows. In Chapter 2, we introduce most of the terminol-

ogy and notation that is common throughout the thesis. This serves as a background on the various

technical terms used in the rest of the thesis. In Chapter 3, we provide a technical summary and

significance of the results contained in this thesis.

In Part I, we look at vertex coloring algorithms. In Chapter 4, we present and analyze our

distributed vertex coloring algorithm for oriented graphs.
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Chapters 5–6 form Part II of the thesis dealing with peer-to-peer overlay networks. In Chapter

5 we describe our deterministic construction of overlay P2Pnetworks and analyze concurrent multi-

casting in the overlay network. In Chapter 6 we argue the casefor supervised P2P overlay networks

and provide a unified framework to create such a system. We also show how to provide robustness

guarantees under a very powerful adversarial model.

Part III of the thesis focuses on overlay networks for wireless ad hoc networks. In Chapter 7

we describe our new model for wireless communication and proceed to show how to construct a

constant density spanner. In Chapter 8 we show how to design efficient algorithms for broadcasting

and information gathering in wireless networks.

The thesis ends with some concluding remarks and potential for further work in Chapter 9.
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Chapter 2

Terminology and Notation

In this chapter we introduce the notation that is common across the rest of the thesis. We

start by stating well known inequalities from algebra and also probability. We then provide a basic

introduction to graph theory and will then introduce some popular families of networks and their

structural properties. Finally, a short introduction to routing theory and terminology is presented.

2.1 Basic Notation

We denote byIN the set of natural numbers{1, 2, 3, . . .} and byIN0 the set of natural numbers

including0, i.e. the set{0, 1, 2, . . .}. By IR we denote the set of real numbers and byIR
+ we denote

the set of non-negative real numbers. For anyx ∈ IN0, we denote by[x] the set of natural numbers

{0, 1, . . . x − 1}. If x ∈ IR
+, then [x] would be the set{1, 2, . . . , ⌈x⌉}. By “log” we mean the

logarithm to base 2 unless specified otherwise. For stringsx ∈ {0, 1}∗ we denote byx/2 as the

string obtained by shiftingx to the right by one position.

We use standard notation concerning the asymptotic behavior of functions. Consider any two

functionsf, g with domain from the set of natural numbersIN. We writef(n) = O(g(n)) if there
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exist positive constantsc, n0 such that∀n ≥ n0, 0 ≤ f(n) ≤ c · g(n). We writef(n) = Ω(g(n))

if there exist positive constantsc, n0 such that∀n ≥ n0, f(n) ≥ c · g(n) ≥ 0. If f(n) = O(g(n))

andf(n) = Ω(g(n)) then we writef(n) = Θ(g(n)). We sometimes use the small-o,o(.), and the

small-omega,ω(.), notation defined as follows. We writef(n) = o(g(n)) if lim n→∞
f(n)
g(n) = 0 and

write f(n) = ω(g(n)) if lim n→∞
f(n)
g(n) = ∞, if the above limits exist.

We often use the following inequalities.

Proposition 2.1.1

• For all x ∈ IR, 1 + x ≤ ex, with equality occurring atx = 0.

• For all n, k ∈ IN andk ≤ n,
(n
k

)

≤
(

en
k

)k
.

2.2 Basic Probability

We start by defining probability and then introduce some well-known inequalities that we often

use.

Let Ω be an arbitrary set, called the sample space. We start by defining aσ–field, also some-

times called aσ–algebra.

Definition 2.2.1 (σ–field) A collectionF of subsets ofΩ is called aσ–field if it satisfies:

1. Ω ∈ F

2. A ∈ F impliesAc ∈ F , and

3. For any countable sequenceA1, A2, . . ., if A1, A2, . . . ∈ F thenA1 ∪ A2 ∪ . . . ∈ F .

Definition 2.2.2 A set functionPr on aσ–fieldF of subsets ofΩ such thatPr : F → [0, 1] is called

a probability measure if it satisfies:
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1. 0 ≤ Pr(A) ≤ 1, ∀A ∈ F .

2. Pr(Ω) = 1, and

3. If A1, A2, . . . is a disjoint sequence of sets inF then

Pr

( ∞
⋃

i=1

Ai

)

=

∞
∑

i=1

Pr(Ai)

The triad(Ω,F ,Pr) is often called a probability space. For equivalent and alternate defini-

tions, examples, and a more complete introduction, we referthe reader to standard textbooks on

probability [15]. In the following, if no probability spaceis mentioned then any space(Ω,F ,Pr)

can be taken.

We often use the following inequality called “Boole’s inequality” which is part of a general

Boole-Bonferroni inequalities [109] and this is also sometimes referred to as the “union bound” as

it provides a bound on the probability of a union of events. This inequality is also referred to as the

(finite) sub-additivity property of the probability measure.

Proposition 2.2.3 (Boole’s inequality)For any arbitrary eventsA1, A2, . . . An,

Pr

(

n
⋃

i=1

Ai

)

≤
n
∑

i=1

Pr(Ai)

The notion of independence is an important concept in the study of probability.

Definition 2.2.4 (Independence)A collection of events{Ai : i ∈ I} is said to beindependentif

for all S ⊆ I, Pr(∩i∈SAi) = Πi∈S Pr(Ai).

We now define random variable, which is anymeasurablefunction fromΩ to IR. LetR denote

the standard Borelσ–field associated withIR, which is theσ–field generated by left-open intervals
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of IR [15].

Definition 2.2.5 (Random Variable) Given a probability space(Ω,F ,Pr), a mappingX : Ω →

IR is called a random variable if it satisfies the condition thatX−1(R) ∈ F for everyR ∈ R.

We represent as{X ≤ x} as the set{ω ∈ Ω|X(ω) ≤ x} for x ∈ IR and also writePr(X ≤ x)

as the probability of the above event. Similar definition canbe made for representing the set{ω ∈

Ω|X(ω = x} as{X = x}.

The notion of independence also extends to random variables. Two random variablesX andY

are said to beindependentif the events{X ≤ x} and{Y ≤ y} are independent forx, y ∈ R. The

definition extends to multiple random variables just as in Definition 2.2.4.

Associated with any random variable is a distribution function defined as follows.

Definition 2.2.6 (Distribution function) The distribution functionF : IR → [0, 1] for a random

variableX is defined asFX(x) = Pr(X ≤ x).

A random variableX is said to be adiscreterandom variable if the range ofX is a finite

or countably infinite subset ofIR. For discrete random variables, the following definition can be

provided for thedensityof a random variable.

Definition 2.2.7 (Density) Given a random variableX, the density functionfX : IR → [0, 1] of X

is defined asfX(x) = Pr(X = x).

The above definition can be extended to all types of random variables also with proper care.

In the rest of this section, we focus on discrete random variables only and hence the definitions are

made for the case of discrete random variables. With proper care, the definitions however can be

extended [15].

An important quantity of interest of a random variable is itsexpectation.
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Definition 2.2.8 (Expectation) Given a probability space(Ω,F ,Pr) and a random variableX,

the expectation ofX, denotedE[X], is defined as

E[X] =
∑

x∈IR

xPr[X = x]

with the convention that0 · ∞ = ∞ · 0 = 0.

We now state tail inequalities of random variables. These are called tail inequalities since they

provide a bound on the probability that a random variable deviates from its expectation.

Proposition 2.2.9 (Markov Inequality) Given a non-negative-valued random variableX and any

t ∈ IR
+ \ {0},

Pr(X ≥ tE[X]) ≤ 1/t

Random variableX is said to have Bernoulli distribution with parameterp, wherep ∈ [0, 1], if

X has the following density function.

fX(x) =































1 − p if x = 0

p if x = 1

0 otherwise.

Using Proposition 2.2.9, the following famous inequality can be shown. For a proof, we refer

the reader to standard text books such as [109].

Proposition 2.2.10 (Chernoff Bounds)Let X1,X2, . . . ,Xn ben independent Bernoulli random

variables withPr(Xi = 1) = p for all 1 ≤ i ≤ n, and let

X :=

n
∑

i=1

Xi
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andµ := E[X] = np. Then for anyδ > 0,

Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ

and given0 < δ ≤ 1,

Pr(X ≤ (1 − δ)µ) ≤
(

e−δ

(1 − δ)(1−δ)

)µ

There exist several simplifications of the above proposition and the following form is often

useful as it allows to bound the deviationδ required so that the tail probability is polynomially

small, i.e., of the order1/nc for a constantc > 0.

Proposition 2.2.11 Under the definitions of Proposition 2.2.10,

Pr(X ≥ (1 + δ)µ) ≤















e−µδ2/3 if δ < 1

e−µδ log δ otherwise

and similarly,

Pr(X ≤ (1 − δ)µ) ≤ e−µδ2/2

More generally, the upper tail inequalities forX hold if we do not knowµ but have an upper

bound ofµ so thatµ ≤ µ+ and the lower tail inequalities hold if we have a lower bound on µ so that

µ ≥ µ−. For these and other forms, we refer the reader to [108]. Suchtail inequalities are known

for sums of independent random variables that are distributed geometrically, hyper-geometrically,

and other distributions. We refer the reader to [108] for these inequalities.

By the phrase “with high probability” (or w.h.p. for short) we mean a probability of at least

1 − (1/nk) for some constantk > 0, wheren is the number of elementary events (usually the

number of messages) in a random experiment.
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2.3 Basic Graph Theory

A graph G = (V,E) consists of a set ofnodes(or vertices) V and a set ofedges(or arcs)

E ⊆ V × V . The nodes represent the processing units and the edges represent the communication

links between the units. Often, we will setn := |V | (the size ofV ) and m := |E|. The size

of G is defined as the number of nodes it contains. For allv,w ∈ V , (v,w) denotes adirected

edge fromv to w, and{v,w} denotes anundirectededge fromv to w. G is calledundirectedif

E ⊆ {{v,w} | v,w ∈ V } anddirectedif E ⊆ {(v,w) | v,w ∈ V }. Unless explicitly mentioned,

in the following we assume thatG is undirected.

A sequence of contiguous edges inG is called apath. The lengthof the path is defined as the

number of edges it contains. A graphG is said to beconnectedif there exists a path between every

pair of verticesu, v ∈ V . A sequence of contiguous edges(u1, u2), (u2, u3), . . . , (un−1, un) forms

acycleif un = u1. G is called atree if it is connected and contains no cycle. A graphT = (V ′, E′)

is called aspanning treeof G if V ′ = V , E′ ⊆ E, andT is a tree.G is calledbipartite if its node

set can be partitioned into two node setsV1 andV2 such thatE ⊆ {{v,w} | v ∈ V1, w ∈ V2}.

For any pair of nodesv,w ∈ V , let d(v,w) denote thedistancebetweenv andw in G, that

is, the length of a shortest path fromv to w. The diameterD of G is defined asmax{d(v,w) |

v,w ∈ V }. If the graphG is not connected, then we say that the diameter of the graph isinfinite.

If {v,w} ∈ E thenv is called aneighborof w. For any subsetU ⊆ V , theneighborhoodof U is

defined as

Γ(U) = {v ∈ V \ U | ∃u ∈ U, {u, v} ∈ E} .

The number of neighbors ofv is called thedegreeof v and denoted bydv. The degree ofG is

defined as∆ = max{dv | v ∈ V }.

A family of graphsG = {Gn | n ∈ IN} has degreed(n) if for all n ∈ IN the degree ofGn is
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d(n). If it is clear to which family a is considered to belong, we say that this graph has constant (or

bounded) degree if its family has constant (or bounded) degree.

A network is specified by a graphG = (V,E) with edge capacities given by a functionc :

E → IR
+. Given a graphG with capacitiesc, let the capacity of a nodev ∈ V be defined as

c(v) =
∑

w∈V

c(v,w)

and the capacity of any node setU ⊆ V be defined asc(U) =
∑

u∈U c(u). Given a subsetU ⊆ V ,

(U, Ū ) denotes the set of all edges{u, v} ∈ E (or (u, v) ∈ E if G is directed) withu ∈ U and

v ∈ Ū . Soc(U, Ū ) is the sum of the capacities of all edges in(U, Ū ). Theedge expansionα of a

networkG with capacitiesc is defined as

α = min
U⊆V

c(U, Ū )

min{c(U), c(Ū )} .

In the above definition,U or Ū cannot be taken to beΦ or V . For every networkG = (V,E)

with non-negative edge capacities, the edge expansion can be at most 1. Thenode expansionof a

networkG is defined as the ratio minS⊂V, |S|≤|V |/2 Γ(S)/|S|. In the definition of node expansion,

the setS cannot be taken to be empty. The node expansion can also be at most 1.

2.4 Basic Network Topologies

Unless explicitly mentioned, we will treat all edges in the following to be of capacity 1. The

most basic network topologies used in practice are trees, cycles, and meshes. Many other popu-

lar networks can be seen as either combinations or extensions of these. We start by recalling the

definition of a tree.
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Definition 2.4.1 (Tree) A graphG = (V,E) is called atreeif it is connected and contains no cycle.

Definition 2.4.2 (Mesh) Let m,d ∈ IN. The(m,d)-meshM(m,d) is a graph with node setV =

[m]d and edge set

E =

{

{(ad−1, . . . , a0), (bd−1, . . . , b0)}|ai, bi ∈ [m],

d−1
∑

i=0

|ai − bi| = 1

}

.

The(m,d)-torusT (m,d) is a graph that consists of an(m,d)-mesh and additionally wrap-around

edges from(ad−1 . . . ai+1(m − 1) ai−1 . . . a0) to (ad−1 . . . ai+1 0 ai−1 . . . a0) for all i ∈ [d] and

all aj ∈ [m] with j 6= i.

M(m, 1) is also called aline or path, T (m, 1) acycle, andM(2, d) = T (2, d) ad-dimensional

hypercube. Figure 2.1 presents a tree and Figure 2.2 presents a line, a torus, and a hypercube.

Figure 2.1: The structure of a tree.

00 10 20 30

01 11 21 31

02 12 22 32

03 13 23 33 000 001

011010

101

110 111

100m−110 2

Figure 2.2: The structure ofM(m, 1), T (4, 2), andM(2, 3).

The hypercube is a very important class of networks, and manymodifications, the so-called

hypercubic networks, have been suggested for it. Prominent among these are the butterfly, and de

Bruijn graph. We start with the butterfly.
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Definition 2.4.3 (Butterfly) Let d ∈ IN. Thed-dimensional butterflyBF (d) is a graph with node

setV = [d + 1] × [2]d and edge setE = E1 ∪ E2 with

E1 = {{(i, α), (i + 1, α)} | i ∈ [d], α ∈ [2]d}

and

E2 = {{(i, α), (i + 1, β)} | i ∈ [d], α, β ∈ [2]d, α andβ differ

precisely at theith position} .

The node set{(i, α) | α ∈ [2]d} representslevel i of the butterfly.

Figure 2.3 shows the 3-dimensional butterflyBF (3). TheBF (d) has(d + 1)2d nodes,2d · 2d

edges and degree 4. Contracting the node sets{(i, α) | i ∈ [d]} into a single node results in the

hypercube. Thus, the butterfly graph can be seen as a rolled-out version of a hypercube.

000 001 010 011 101 110 111100

0

1

2

3

Figure 2.3: The structure of BF(3).

Definition 2.4.4 (de Bruijn) Theb-ary de Bruijn graph of dimensiond DB(b, d) is an undirected

graphG = (V,E) with node setV = {v ∈ [b]d} and edge setE that contains all edges{v,w} with

the property thatw ∈ {(x, vd−1, . . . , v1) : x ∈ [b]}, wherev = (vd−1, . . . , v0).

Two examples of a de Bruijn graph can be found in Figure 2.4.
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Figure 2.4: The structure ofDB(2, 2) andDB(2, 3).

For the classes of graphs we presented above the expansion isquite complicated to compute.

Therefore, we just state that thed-dimensional hypercube, butterfly, and de Bruijn graph withuni-

form edge capacities all have an expansion ofΘ(1/d).

2.5 Basic Routing Theory

In this section we provide definitions for the various routing problems that arise in communi-

cation networks and also some parameters to measure the effectiveness of routing strategies. In a

graphG = (V,E) let the nodes be numbered distinctly from[n].

Given a networkG, some of the well known routing paradigms that are studied usually are:

• Gathering: In this mode, also called information-gathering, all the packets have the same

destination inG. The destination is sometimes referred to as thesink.

• Unicasting: In this mode, each packet has a single destination inG.

• Permutation Routing: In this model, letπ : [n] → [n] be any permutation. The problem is

then to send one packet from node numberedi to node numberedπ(i) for eachi ∈ [n].

• Multicasting: In multicasting each packet has a setT ⊆ V of destinations and the packet has

to be delivered to all the nodes inT .

• Broadcasting: Here, each packet has to be delivered to all the nodes inG.
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Two important parameters that are widely used to measure thequality of a routing strategy are

congestionanddilation. To define these terms we need some more notation.

Given a networkG = (V,E) with an assignment of non-negative capacity to edges,c : E →

IR
+, a multi-commodity flowinstance onG is a set of ordered pairs(s1, t1), (s2, t2), · · · , (sk, tk).

Each pair(si, ti) denotes a commodity with sourcesi and targetti. The task is to maximize the

amount of flow traveling from the sources to the corresponding targets subject to the capacity con-

straints. The problem is studied in two variations, called themaximum throughput multi-commodity

flow problemand themaximum concurrent flow problem. In the former, one is interested in finding

a feasible solutionS that maximizes the total flow over all commodities. In the latter each(si, ti)

has an associated demanddi and the objective is to maximize the fraction of the demand that can be

shipped simultaneously for all commodities. Given a feasible solutionS to a maximum concurrent

flow problem, theconcurrent flow valueis the minimum over all commodities of the fraction of the

demand met byS.

Thecongestionof S, denotedC(S), is defined as the reciprocal of the concurrent flow value of

the solutionS. Intuitively, the congestion specifies by what factor the edge capacities would have

to be increased in order to satisfy the demands of all the commodities when using the solutionS.

Thedilation of S, denotedD(S), is the length of the longest flow path inS. For a good solution,

the congestion and the dilation should be small.
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Chapter 3

Our Contributions

In this chapter, we provide a technical overview of the results contained in this thesis. We first

show the common thread that brings together the questions answered in this thesis before showcas-

ing the contributions of the thesis and their technical significance.

3.1 Key Questions

Several projects involving overlay networks for file sharing, data management, grid computing,

etc. have been initiated in the recent past both inside and outside of the research community. We

argue that, as a common theme in the study of overlay networks, the following three questions are

of central interest.

1. Connectivity: How to ensure that the overlay network has a single connectedcomponent?

2. Maintenance: How to maintain the overlay network as nodes join and leave the network?

3. Routing: How to solve routing problems in the overlay network efficiently?
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Why are the above mentioned questions important and non-trivial? As can be observed, for the

overlay network to be useful for routing, it is crucial that the overlay network has at least one path

for each pair of nodes in the network. This means that the overlay network should have a single

connected component. In the case of randomized constructions, one also states this requirement as

the overlay network being connected with high probability or having a giant connected component.

A giant connected component means that there exist a connected component whose size is of the

ordern(1 − o(1)) when there aren nodes in the network.

One of the features of overlay networks that sets them apart from traditional networks is that

overlay networks are not static and change over time. For example, in a peer-to-peer network

with peers connected via the Internet, nodes may join/leavethe network at a rapid rate. Similarly,

having mobile nodes as in the case of a wireless ad hoc networkresults in changes to the underlying

topology over time. In such cases, it is important that the overlay network adapts to changes in an

efficient manner and also preserve connectivity in the existing network. By efficiency, we mean that

the network be able to perform few local-control operationsand minimal amount of work to return

to a valid state as the network changes over time.

Routing in overlay networks requires careful selection of paths so that the routing problem can

be solved efficiently. Depending on the nature of the routingproblem and the nature of the network

additional challenges arise. Some of the parameters we willbe interested in are, the congestion

caused by the routing strategy, the time taken for packets toreach their destination, and the buffer

overhead needed at the nodes in the network.

In this thesis, we study the above issues in detail with specific focus on two classes of overlay

networks. In Part I of the thesis we look at vertex coloring algorithms when the overlay network

is modeled as a graph. Vertex coloring algorithms find applications in other problems such as
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scheduling and routing. In Part II of the thesis, we look at peer-to-peer overlay networks for load

balancing, concurrent multicasting and robustness issuesin peer-to-peer networks. Our construction

has been designed to handle heterogeneous peers in an efficient way and an additional focus will be

on deterministic constructions so that one can provide guarantees on the properties of the network

such as the diameter and the degree and also have the advantage of self-stabilization. In Part III of

the thesis, we consider overlay networks for wireless ad hocnetworks. In wireless ad hoc networks,

the lack of centralized infrastructure and mobility pose heavy challenges on the design of efficient

overlay networks. Also, routing in wireless networks is prone to interference problems and hence

the overlay network has to handle such problems to be able to perform efficient routing.

3.2 Vertex Coloring

In the first part of the thesis, we focus on vertex coloring algorithms. Vertex coloring is a

fundamental problem in graph theory and has applications tomany problems such as scheduling

and clustering. Since vertex coloring is used as a sub-routine in many higher-order communication

and computation tasks in algorithms for overlay networks, faster, efficient and local-control vertex

coloring algorithms are of interest. For example, considera wireless ad hoc network where the

topology may undergo changes over time. In this case, when using coloring for scheduling tasks,

one has to recompute the coloring so as to arrive at a new schedule reflecting the changes in the

topology. We treat the vertex coloring problem in the distributed setting where we are given a

certain graph and has to arrive at a coloring in a local-control manner.

Given a graphG with maximum degree∆ it is easy to see thatG can be vertex colored us-

ing ∆ + 1 colors. Distributed vertex coloring algorithms that colora graphG of n vertices with

maximum degree∆ in a logarithmic number of communication rounds are known since more than

37



a decade [102]. We first show that this is the best possible, i.e.,anydistributed coloring algorithm

in which every node has the same initial state and initially only knows its own neighbors requires

Ω(log n) rounds, with high probability, to arrive at a proper coloring. We show the following the-

orem. By a Las Vegas algorithm, it is meant that the algorithmalways produces a correct output

while the time required for the algorithm is a random variable.

Theorem 3.2.1 For every Las Vegas algorithmA there is an infinite family of non-oriented graphs

G s.t. A has a bit complexity of at leastΩ(log n) on G, with high probability, to compute a proper

vertex coloring.

But, what if the edges in the graph are oriented, i.e., the end-points of an edge agree on its

orientation while bits can still flow in both directions? We show that in this new model, 3-coloring

an oriented cycle graph ofn nodes can be done by exchangingO(
√

log n) bits. We also show that

this result is best possible by proving a lower bound ofΩ(
√

log n) on the number of bits exchanged

by any distributed algorithm to arrive a proper coloring of an oriented cycle, for any finite number

of colors. We then extend our analysis to(∆ + 1)–color graphs of degree∆ provided thatG

has no oriented cycle of length less than
√

log n and ∆ is bounded by a constant. Using more

techniques, we then provide a distributed algorithm for obtaining an(1 + ǫ)∆–coloring of a graph

of n nodes with degree∆ using onlyÕ(
√

log n) bit exchanges, with high probability, provided that

the graph does not have any oriented cycle of length less than
√

log n. By g(n) = Õ(f(n)) we

meang(n) = O(f(n)polylog(f(n))). We show the following theorem:

Theorem 3.2.2 Given a
√

log n–acyclic oriented graphG = (V,E) of maximum degree∆, for

any constantǫ > 0, a (1 + ǫ)∆–vertex coloring ofG can be obtained by exchange ofO(log ∆) +

Õ(
√

log n) bits, with high probability.
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To the best of our knowledge, this is the first sub-logarithmic algorithms for vertex coloring.

By sub-logarithmic we mean that algorithms that require only sub-logarithmic number of bits to be

exchanged during the algorithm. The result is possible onlybecause we consider the case where the

edges are oriented.

3.3 Peer-to-peer networks

The second part of the thesis deals with P2P overlay networks.

3.3.1 Deterministic Construction for Heterogeneous Peers

While topologies for peer-to-peer overlay have been studied heavily in the theoretical commu-

nity, see [142, 125, 6] for example, two fundamental questions remained. One question is whether

it is possible to arrive at deterministic constructions that match the performance of the randomized

constructions. Deterministic constructions are sought after as it is easy to provide guarantees about

their properties and can be made to self-stabilize [32], which is an important property for overlay

networks. The second question asks whether nodes of non-uniform bandwidth can be integrated

into the network efficiently so as to take advantage of them. Existing constructions treat the situa-

tion where all the nodes have the same bandwidth and hence in their basic form fail to utilize the

presence of nodes with significantly high bandwidth. In reality, however, peers have connections to

the Internet using different mechanisms that differ in the amount of bandwidth available to the peer.

Moreover, even if all peers have sufficient bandwidth, as mentioned in Chapter 1, future generation

P2P systems have to allow for peers to contribute bandwidth based on their needs and be able to

operate efficiently under this form of heterogeneity. Hence, topologies that take into account the

fact that the peers may differ in their bandwidth by orders ofmagnitude are of interest.
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In Chapter 5, we propose a deterministic topology that address both of the above questions in

a satisfactory manner. Our construction calledPagodahas the following properties.

Pagoda network for nodes of uniform bandwidth

For the uniform case, i.e., where all the nodes have the same bandwidth, the Pagoda network

of n nodes can:

• Maintenance: perform an isolated peer insertion or removal withO(log n) time and work.

• Routing: route arbitrary permutation of sizen in O(log n) steps, with high probability, and

• Data Management: distribute data among nodes in the network so that no node receives

more than an expectedO(1/n) fraction of the data, provided there are at leastn data items.

Pagoda network for nodes of non-uniform bandwidth

For the case of the non-uniform peers, the Pagoda network onn nodes can:

• Maintenance: perform an isolated peer insertion or removal withO(log2 n) time and work,

and

• Multicasting: route arbitrary concurrent multicast requests with a congestion that is only by

anO(∆ + log n) factor larger than the congestion created in an optimal network of degree∆

for the particular problem.

We also provide strategies for admission control and also show that the existential routing strat-

egy for the case of concurrent multicasting can be turned into local-control strategies for building

and maintaining multicast trees.
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All the above properties make our solution highly attractive. Our construction shows that

efficient peer-to-peer networks that operate under heterogeneous environments can be designed.

An additional advantage of our construction is that it is deterministic in nature and matches the

properties of most known randomized constructions for join/leave operations. Thus, we solve two

open problems in this area.

3.3.2 Supervised Peer-to-peer Systems

Another direction that was pursued in P2P networks is the study of supervised P2P networks.

For purposes of brevity, here we let the supervisor be a special node in the network which is respon-

sible for guiding the peers during a join or leave operation where as the rest of the operations in

the peer-to-peer network do not involve the supervisor. We argue in Chapter 6 that supervised peer-

to-peer systems offer the benefits of both traditional server-based systems and those of peer-to-peer

systems without inheriting their disadvantages.

Supervised overlay networks with specific topologies such as a tree, and the de Bruijn graph

have been studied recently by Riley and Scheideler [128, 127]. We present a unified methodology

that allows one to build a large class of supervised P2P networks by combining techniques such

as the hierarchical decomposition technique [125], the continuous-discrete approach [110] and the

recursive labeling technique. We also show how to extend thebasic scheme so as to allow for

concurrent operations, and also rapid repair.

We show that such supervised overlay networks have applications to many areas such as grid

computing and multi-player online gaming. We also show how to provide robustness guarantees

under a strong adaptive adversarial model [132].
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3.4 Wireless Ad Hoc Networks

In the third part of the thesis, we consider overlay networksfor wireless ad hoc networks.

Overlay networks for wireless ad hoc networks have been studied mostly in the packet radio model

or the even simpler unit disk model. These models have significant drawbacks and fail to model

the realities of wireless networks in many situations. Hence we propose a new model for wireless

networks that tackles the limitations of the existing models. In our model, the non-uniformity in the

environment is addressed by having a cost function model thetransmission and interference ranges.

Additionally, we are the first to introduce a model for physical carrier sensing in wireless networks.

Without physical carrier sensing, it was shown in [66] that in ann–node network,Ω(n) time steps

are required even to transmit one message successfully under the assumption that nodes do not have

any knowledge of the network.

Using our model of wireless ad hoc networks, in Chapter 7, we propose local-control algo-

rithms that build a constant density spanner of the originalnetwork. A constant density spanner for

a graphG can be defined as follows. Given an undirected graphG = (V,E), a subsetU ⊆ V

is called adominating setif all nodesv ∈ V are either inU or have an edge to a node inU . A

dominating setU is calledconnectedif U forms a connected component inG. The densityof a

dominating set is the maximum over all nodesv ∈ U of the number of neighbors thatv has inU .

In our context,constant density spanneris a connected dominating setU of constant density with

the property that for any two nodesv,w ∈ V there are two nodesv′, w′ ∈ U with {v, v′} ∈ E,

{w,w′} ∈ E, and a pathp from v′ to w′ along nodes inU so that the length ofp is at most a constant

factor larger than the distance betweenv andw in G.

Our algorithms are self-stabilizing and require only constant storage at any node and do not

require that nodes have globally unique labels. Thus our algorithms are applicable to a wide range
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of situations such as simple wireless sensor networks. While distributed algorithms to construct

topological spanners are known, (see e.g., [36, 84]), it is non-trivial to arrive at such a construction

using our model of wireless communication.

Let us denote byG = (V,E) the graph representing the topology of the wireless ad hoc

network whereV denotes the set of wireless stations andE ⊆ V × V denotes the set of edges with

edge(u, v) ∈ E if and only if u andv can communicate directly with each other. Notice that this

definition does not specify the condition when nodesu andv can communicate directly as that can

be influenced by the model for wireless communication. We arrive at the following.

Theorem 3.4.1 For any initial situation, given the graphG, the dominating set protocol generates

a constant density dominating set ofG in O(log4 n) communication rounds, with high probability.

Using the above dominating set and additional techniques, we show how to arrive at a constant

density spanner. We show the following theorem in Chapter 7.

Theorem 3.4.2 For any initial situation, given the graphG, the spanner protocol generates a con-

stant density spanner ofG in O(D log2 n + log4 n) communication rounds, with high probability,

whereD is the maximum number of nodes that are within the transmission range of a node.

Subsequently in Chapter 8, we show how to support higher order communication primitives

such as broadcasting, and information gathering in a time- and work efficient manner.

While broadcasting itself appears to be an easy problem, andis heavily studied analytically

and empirically, realizing it in an efficient and reliable way is very difficult. Often, the over-

simplification introduced in the model render many algorithms inefficient in some situations. We

construct such situations explicitly in Chapter 8. Our algorithms build on top of the constant density

spanner and are also self-stabilizing. For broadcastingm ≥ 1 messages from a source nodes, we

show the following theorems concerning the time and work requirement.
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Theorem 3.4.3 Given the constant density spanner ofG, the broadcast algorithm needsO(T (s,m)

+ log n) rounds, with high probability, whereT (s,m) is the optimal amount of time required to

deliverm broadcast message to all nodes.

Theorem 3.4.4 Given a constant density spanner ofG, the broadcast algorithm needsO(W (s,m))

work whereW (s,m) is the optimal work required to sendm broadcast messages to all nodes in the

system.

We then consider the situation wherem packets distributed arbitrarily in the network are to be

delivered to a special sink node,s. We provide a two stage protocol for this problem that achieves

the following time and work bounds. Let∆m be the maximum density of nodes having at least one

packet to send tos. We show the following results in Chapter 8.

Theorem 3.4.5 Given a constant density spanner ofG, the information gathering protocol needs

O(T ′(s,m) + ∆m log2 n) time steps w.h.p. whereT ′(s,m) is the optimal time required for all the

packets to be delivered to the sink nodes.

Theorem 3.4.6 Given a constant density spanner ofG, the gathering protocol needsO(W ′(s,m))

work whereW ′(s,m) is the optimal work required to send all them packets to the sink nodes.
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Chapter 4

Vertex Coloring

We consider the well-known vertex coloring problem: given agraphG, find a coloring of its

vertices so that no two neighbors inG have the same color. It is trivial to see that every graph of

maximum degree∆ can be colored with∆+1 colors, and distributed algorithms that find a(∆+1)-

coloring in a logarithmic number of communication rounds, with high probability, are known since

more than a decade. This is in general the best possible if only a constant number of bits can be sent

along every edge in each round. In fact, we show that for then-node cycle thebit complexityof the

coloring problem isΩ(log n). More precisely, if only one bit can be sent along each edge ina round,

theneverydistributed coloring algorithm (i.e., algorithms in whichevery node has the same initial

state and initially only knows its own edges) needs at leastΩ(log n) rounds, with high probability,

to color then–node cycle, foranyfinite number of colors. But what if the edges have orientations,

i.e., the endpoints of an edge agree on its orientation (while bits may still flow in both directions)?

Edge orientations naturally occur in dynamic networks where new nodes establish connections to

old nodes. Does this allow one to provide faster coloring algorithms?

Interestingly, for then–node cycle in which all edges have the same orientation, we show
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that a simple randomized algorithm can achieve a 3-coloringwith only O(
√

log n) rounds of bit

transmissions, with high probability (w.h.p.). This result is tight because we also show that the bit

complexity of coloring ann–node oriented cycle isΩ(
√

log n), with high probability, no matter how

many colors are allowed. The 3-coloring algorithm can be easily extended to provide a(∆ + 1)-

coloring for all graphs of maximum degree∆ in O(
√

log n) rounds of bit transmissions, w.h.p., if

∆ is a constant, the edges are oriented, and the graph does not contain an oriented cycle of length

less than
√

log n. Using more complex algorithms, we show how to obtain anO(∆)-coloring for

arbitrary oriented graphs of maximum degree∆ using essentiallyO(log ∆ +
√

log n) rounds of bit

transmissions, w.h.p., provided that the graph does not contain an oriented cycle of length less than

√
log n.

4.1 Introduction

A fundamental problem in distributed systems is to compute aproper vertex coloring. The

importance of vertex coloring can be seen by observing that many distributed algorithms use such a

coloring as a sub-routine in higher-order communication and computation tasks. Examples include

scheduling [88], resource allocation [26], and synchronization. Vertex coloring has applications also

in wireless networks to determine cluster heads, (see for example [75] and the references therein),

routing in wireless networks [88], and in many parallel algorithms [68, 70]. Thus, it is not surprising

that this problem has been heavily studied not only in the distributed setting but also in the PRAM

model of computation starting with Karp and Wigderson [70] and Luby [102].

We consider distributed systems that can be modeled as a graph G = (V,E) with nodes

representing the processors and the edges representing thecommunication links. Given a graph

G = (V,E) with maximum degree∆, the vertex coloring problem is to find a color assignment
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for the vertices ofG so that no two adjacent vertices are given the same color. Theminimum num-

ber of colors required to properly color a graph is called itschromatic number, and is denoted by

χ(G). While it is easy to see that a graph with maximum degree∆ can be colored using at most

∆+1 colors, computing the chromatic number of a graph is NP–hard[48]. Further,χ(G) cannot be

approximated to any reasonable bound in general [41]. Thus,efficient algorithms that color using

∆ + 1 colors are of interest.

In the distributed model of computing, communication is an expensive resource and distributed

algorithms therefore aim at using as little communication as possible. Distributed algorithms for

vertex coloring take the approach of minimizing the number of communication rounds assuming

that in each round a reasonable number of bits can be communicated. Deterministic distributed

algorithms for(∆+1)-coloring that run in a polylogarithmic number of rounds arenot known. The

best known deterministic algorithm [117] requiresnO(1/
√

log n) rounds wheren is the number of

vertices. However, randomization can improve the runtime exponentially and in some special cases,

such as highly dense graphs, even double exponentially [53]. Randomized distributed algorithms

that compute a(∆ + 1)–coloring inO(log n) rounds, with high probability1, are known since more

than a decade [103, 64]. In this work we show that, interestingly, if the underlying graphG is

provided with an orientation on its edges such that the orientation does not induce oriented cycles

of length at most
√

log n, then vertex coloring with(1 + ǫ)∆ colors for a constantǫ > 0, can

be obtained by exchanging essentiallyO(log ∆ +
√

log n) bits, with high probability. Thus, we

show that having orientations on the edges significantly improves the performance of distributed

vertex coloring algorithms. We refer the reader to Section 4.1.3 for precise statements regarding our

results.

We also note that providing an orientation is not cumbersome. If the nodes have unique labels

1With high probability (w.h.p.) means a probability that is at least1 − (1/nc) for c ≥ 1.
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Figure 4.1: Figure shows that edge orientations can be provided naturally in many scenarios.

that are taken from a set with a total order then the labels induce a natural acyclic orientation

on the edges. Edgee = (u, v) is oriented fromu → v if label(u) > label(v) and vice-versa

as shown in Figure 4.1(a). Another natural orientation can be provided as follows, for example

in sensor networks. Information gathering is an important communication primitive for sensor

networks where all the packets have to be forwarded to a single common destination called the

observer[61, 78]. Many protocols for information gathering in sensor networks [61, 78] assume

that the direction to the observer is available. In such a scenario, an orientation for the edges can be

provided according to the distance of the endpoints to the observer. Ties between nodes with equal

distance to the observer can be broken arbitrarily and the resulting orientation will be free of cycles

as shown in Figure 4.1(b). Edge orientations naturally occur also in dynamic networks where new

nodes establish connections to old nodes. Here, edge(v,w) may be oriented asv → w if w is an

existing node in the network andv is a new node joining the network as shown in Figure 4.1(c).

4.1.1 Model and Definitions

We model the distributed system as a graphG = (V,E) with V representing the set of comput-

ing entities, or processors, andE ⊆ V × V representing all the available communication links. We

assume that all the communication links are undirected and hence bidirectional. All the processors
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start at the same time and time proceeds in synchronized rounds. We letn = |V |. The degree of

nodeu is denoteddu and by∆ we denote the maximum degree ofG, i.e.,∆ = maxu∈V du. When

there is no confusion,du will also be used to refer to the number of uncolored neighbors of node

u. By Nu we denote the set of neighbors of nodeu and when there is no confusion, we useNu

to refer to the set of uncolored neighbors ofu. We do not require that the nodes inV have unique

labels of any kind. For our algorithms to work, it is enough that each node knows a constant factor

estimate of the logarithm of the size of the network apart from its own degree and neighbors. When

we consider graphs of constant degree,no global knowledge is required for our algorithm and it

suffices that each node knows its own degree.

Given a graphG = (V,E) a vertex coloring is a mappingc : V → [C] such that if{u, v} ∈ E

thenc(u) 6= c(v), i.e., no two adjacent vertices receive the same color. HereC denotes the number

of colors used in the coloring. We say that a coloring is alocal coloring if every nodeu with degree

du has a color in[ǫdu] when the coloring usesǫ∆ colors. The interest in local coloring arises from

the fact that a local coloring has nice implications when using the coloring in scheduling and routing

problems [88].

In our model, the measure of efficiency is the number of bits exchanged. We also refer to this

as thebit complexity. We view each round of the algorithm as consisting of 1 or morebit rounds. In

each bit round each node can send/receive at most 1 bit from each of its neighbors. We assume that

the rounds of the algorithm are synchronized. The bit complexity of algorithmA is then defined as

the number of bit rounds required by algorithmA. We note that, since the nodes are synchronized,

each round of the algorithm requires as many bit rounds as themaximum number of bit rounds

needed by any node in this round. In our model, we do not count local computation performed by

the nodes. This is reasonable as in our algorithms nodes perform only simple local computation.
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Figure 4.2: Orientation helps in symmetry breaking. In Figure (a) bothv andw choose the same
color. In (b), for existing algorithms both remain uncolored whereas in (c), when using orientation,
nodev may get colored.

In our model, we assume that the edges inE have an orientation associated with them. That

is, for any two neighborsv,w exactly one of the following holds for the edge{v,w}: {v,w} is

oriented eitherv → w or asw → v. In the former we also callv superiorto w and vice-versa in the

latter. Having orientation on the edges is a property that has not been studied in the context of vertex

coloring though it is a natural property since networks usually evolve and for every connection there

is usually a node that initiated it. We show that algorithms for symmetry breaking can be greatly

improved provided that the underlying graph is oriented. The exact way in which orientation is used

for symmetry breaking is explained in Figure 4.2. As shown, if nodesv andw choose the same color

during any round of the algorithm, in the existing algorithms, both nodes remain uncolored as in

Figure 4.2(b) and have to try in a later round. With orientation, if the edge{v,w} is oriented as

v → w as shown in Figure 4.2(c), then nodev can retain its choice provided that there is no edge

{u, v} orientedu → v andu also chooses the same color.

Even though the graphs is equipped with orientation on the edges we still allow that on any

edge bits can still flow in both the directions. Thus we consider undirected graphs but with the edge

orientations.

One parameter that will be important for our investigationsis the length of the shortest cycle

in the orientation. We formalize this notion in the following definition.

Definition 4.1.1 (ℓ–acyclic Orientation) An orientation of the edges of a graph is said to beℓ–

acyclic if the minimum length of any directed cycle induced by the orientation is at leastℓ. Note
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that this is not the girth of the given graph.

We always assume that the input graph is provided with a
√

log n–acyclic orientation.

4.1.2 Related Work

The problem of vertex coloring in distributed systems has a long and rich history. It is an open

problem whether deterministic poly-logarithmic time distributed algorithms exist for the problem of

(∆+1)-vertex coloring [117]. The best known deterministic algorithm to date is presented in [117]

and requiresnO(1/
√

log n) rounds. Following considerations known from the radio broadcasting

model [12] the problem cannot be solved at all in a deterministic round model without the use of

unique identification numbers. Hence, most of the algorithms presented are randomized algorithms.

Karp and Widgerson [70] have shown that a MIS can be found inO(log3 n) rounds w.h.p.

and Luby [102] presents algorithms to find MIS in arbitrary graphs inO(log n) round with high

probability. Luby [103] and Johansson [64] present parallel algorithms that can be interpreted as

distributed algorithms that provide a(∆ + 1)–coloring of a graphG in O(log n) rounds, with

high probability. In the algorithm presented in [103], in every round each node that is not yet

colored has a probability of choosing a color which is set to1/2. Luby’s algorithm requires only

pairwise independence and a derandomization was also shownin [103] for the PRAM (Parallel

Random Access Machine) model of computation. Without such wakeup Johansson [64] presents

an algorithm for∆ + 1 distributed coloring. Recent empirical studies [43] have shown that the

constant factors involved are small and also that a wakeup probability of 1 as in the algorithm of

[64] reduces the number of rounds required. However, the analytical reason for this behavior is

not known. Algorithms for vertex coloring are also presented in [51, 68] in the PRAM model of

computation.
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All of the above cited algorithms can be implemented as distributed algorithms in the message

passing model and run in poly-logarithmic rounds with bit complexity O(log n log ∆), with high

probability. Cole and Vishkin [28] and Goldberg et. al. [51]have shown that a(∆ + 1)–coloring of

the cycle graph onn nodes can be achieved inO(log∗ n) communication rounds. This was shown to

be optimal in Linial [98] by establishing that 3-coloring ann–node cycle graph cannot be achieved

in less than(log∗ n−1)/2 rounds. When unlimited local computation is available Linial [98] shows

how to obtain anO(∆2) coloring inO(log∗ n) rounds. This was later improved by De Marco and

Pelc [106] to show that anO(∆) coloring can be achieved inO(log∗(n/∆)) rounds.

In a related work, Grable and Panconesi [53] present a distributed algorithm in the message

passing model for edge coloring that runs inO((1+α−1) log log n) rounds provided that the degree

of any node in the graph isΩ(nα/ log log n) for any α > 0. Our analysis of Phase I for arbitrary

graphs follows the analysis of Phase II in [53].

Distributed algorithms with the underlying graph equippedwith sense of direction have been

studied in [136, 44]. Sense of direction is a similar notion to that of orientation on edges. Singh

[136] shows that leader election in ann-node complete graph equipped with sense of direction can

be performed in a distributed setting via exchange ofO(n) messages. In [44], the authors show

that having sense of direction reduces the communication complexity of several distributed graph

algorithms such as leader election, spanning tree construction, and depth-first traversal.

4.1.3 Our Results

We start by investigating the bit complexity of distributedvertex coloring algorithms. We first

show that the bit complexity of the coloring problem isΩ(log n) for an non-orientedn-node cycle

graph. That is, any distributed algorithm in which all the nodes start in the same state and know

only aboutn and∆ apart from their neighbors needsΩ(log n) rounds with high probability to arrive
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at a proper coloring using any finite number of colors. We thenshow that when the edges in the

cycle graph are provided with an orientation, then the bit complexity of distributed vertex coloring

algorithms isΩ(
√

log n), with high probability, when using any finite number of colors. This leads

us to the question whether matching upper bounds can be shownfor coloring oriented graphs.

We start with the case of constant degree
√

log n–acyclic oriented graphs and present an algo-

rithm to obtain a(∆+1)–coloring with a bit complexity ofO(
√

log n) with high probability. Thus,

we show the following theorem.

Theorem 4.1.2 Given a
√

log n–acyclic oriented graphG = (V,E) of maximum degree∆, if ∆

is a constant, a(∆ + 1)–vertex coloring ofG can be obtained inO(
√

log n) bit rounds, with high

probability.

The above theorem directly implies that oriented cycle graphs can be 3–colored inO(
√

log n)

bit rounds. Additionally, for the case of constant degree graphs we can also arrive at a local coloring

where the color of every nodeu is in [du + 1]. In our algorithm for constant degree oriented graphs,

it suffices that nodes know only their local degree.

We then extend our algorithm and analysis to the case of arbitrary
√

log n–acyclic oriented

graphs with maximum degree∆. Our main result is a distributed(1 + ǫ)∆–coloring algorithm

for arbitrary
√

log n–acyclic oriented graphs of maximum degree∆. Our algorithm has a bit com-

plexity of O(log ∆) + Õ(
√

log n). By g(n) = Õ(f(n)) we meang(n) = O(f(n)polylog(f(n))).

Specifically, we prove the following theorem.

Theorem 4.1.3 Given a
√

log n–acyclic oriented graphG = (V,E) of maximum degree∆, a

(1 + ǫ)∆–vertex coloring ofG, for any constantǫ > 0, can be obtained inO(log ∆) + Õ(
√

log n)

bit rounds, with high probability.
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By further tightening the analysis, we show that the bit complexity can be reduced toO(log ∆+

√
log n log log n), with high probability, for

√
log n–acyclic oriented graphs with∆ ≥ log n. For

the case of arbitrary
√

log n–acyclic oriented graphs, our algorithm and analysis can bemodified

easily to get a local coloring such that every nodeu gets a color in[(1 + ǫ)du].

4.1.4 Summary of our approach

We now provide a brief summary of our basic approach. Our approach has the same flavor

as existing distributed vertex coloring algorithms [103, 64]. Given any
√

log n–acyclic oriented

graphG = (V,E) of constant degree∆, the algorithm for(∆ + 1)–coloring proceeds as follows.

Communication proceeds in rounds and in each round each yet uncolored nodev chooses a color

cv among the available colors in[∆ + 1] independently and uniformly at random. Nodev then

communicates this color choice to all of its uncolored neighbors. If a node chooses a color that is in

conflict with any of the choices of its neighbors, the conflictresolution rule specifies the course of

action. In the algorithm of Luby[103], Johansson[64], and most other works, the conflict resolution

rule is that uncolored nodes in conflict remain uncolored andhave to try again in subsequent rounds.

The conflict resolution rule we use is based on the orientation on the edges as explained in Section

4.1.1. Our algorithm is thus similar to the existing distributed vertex coloring algorithms [103, 64]

except for the conflict resolution rule.

In our analysis, afterO(
√

log n) rounds we arrive at the situation where connected components

of uncolored nodes only have simple oriented paths of lengthless than
√

log n, with high probability.

Coupled with the
√

log n–acyclic orientation, it can be shown that the nodes in each such connected

component can be organized into less than
√

log n layers. The layering has the property that all the

oriented edges are from a node in a lower-numbered layer to a node in a higher numbered layer. This

property of the layering guarantees a successful coloring of all remaining uncolored nodes in less
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than
√

log n rounds. This gives us the result for constant degree oriented graphs. (Theorem 4.1.2).

To arrive at the bit complexity for arbitrary graphs, (Theorem 4.1.3) we need a few additional tricks

as our analysis shows.

4.1.5 Organization of the Chapter

The rest of the chapter is organized as follows. In Section 4.2 we establish the lower bound

results. In Section 4.3, we present and analyze our algorithm for (∆ + 1)–coloring constant degree

oriented graphs. This will serve as a base for the(1+ ǫ)∆–coloring algorithm for arbitrary oriented

graphs of maximum degree∆ for any constantǫ > 0, in Section 4.4.

4.2 Lower Bounds

In this section we establish lower bounds on the bit complexity of finding a proper vertex

coloring. Recall that a Las Vegas algorithm is a randomized algorithm that always produces a

correct result, with the only variation being its runtime. First, we prove a lower bound for non-

oriented graphs, and then we prove a lower bound for orientedgraphs. Notice that both bounds hold

for any finite number of colors.

Theorem 4.2.1 For every Las Vegas algorithmA there is an infinite family of non-oriented graphs

G s.t. A has a bit complexity of at leastΩ(log n) on G, with high probability, to compute a proper

vertex coloring.

Proof. Consider the cycle ofn nodes, and letSℓ = (uℓ, . . . , u1, v1, . . . , vℓ) be the set of nodes along

a path of length2ℓ of the cycle. Initially, every node inSℓ is in the same states0, with the only

difference that for everyi ∈ {1, . . . , ℓ − 1}, ui considers its left connection to go toui+1 whereas

vi considers its left connection to go tovi+1. (Notice that the cycle is non-oriented, so we can

56



choose any orientation we want for the individual nodes.) Associated withs0 is a fixed probability

distributionPǫ = (pǫ
x)x∈{−,0,1} for sending bitx along the right edge, where “−” represents the case

that no bit is sent andǫ represents the empty history. SincePǫ has only three probability values,

there must be anx0 with pǫ
x0

≥ 1/3. Let E1 be the event that nodesu1 andv1 choose that option.

Thenu1 andv1 receive the same information from their right neighbor. LetPy = (py
x)x∈{−,0,1} be

the probability distribution for sending bitx along the right edge in the second round given that bit

y was received from the right edge in the first round. ThenPx0
applies tou1 andv1. SincePx0

has

only three probability values, there must be anx1 with px0
x1

≥ 1/3. Let E2 be the event that nodes

u1 andv1 choose that option. Thenu1 andv1 again receive the same information from their right

neighbor.

Continuing with this argumentation, it follows that there are eventsE1, . . . , Eℓ with Ei having

a probability of at least1/3 for all i so thatu1 andv1 have received the same information from their

right neighbors. AlgorithmA cannot terminate in this case because in this case the same probability

distribution for choosing a color applies tou1 andv1, and hence, the probability thatu1 andv1

choose the same color is non-zero.

When choosingℓ = log3(n/2 log2 n), the probability for the eventsE1, . . . , Eℓ to occur is at

least
(

1
3

)log3(n/2 log2 n)
= 2 log2 n

n . Moreover, notice thatE1, . . . , Eℓ only depend on the nodes in

Sℓ because information can only travel a distance ofℓ edges inℓ rounds. Hence, we can partition

the n-node cycle inton/2ℓ many sequencesS where each sequence has a probability of at least

2 log2 n
n of running into the eventsE1, . . . , Eℓ that is independent of the other sequences. Thus, the

probability that all node sequences can avoid the event sequenceE1, . . . , Eℓ, which is necessary

for A to terminate, is at most
(

1 − 2 log2 n
n

)n/2ℓ
≤ 1/n, which implies thatA needsΩ(log n) bit-

rounds, with high probability, to finish. ⊓⊔

57



Theorem 4.2.2 For every Las Vegas algorithmA there is an infinite family of oriented graphsG

s.t. A has a bit complexity of at leastΩ(
√

log n) onG, with high probability, to compute a proper

vertex coloring.

Proof. Consider the cycle ofn nodes in which all the edges are oriented in the same direction. Let

Sℓ = (uℓ, . . . , u1, v1, . . . , vℓ) be the set of nodes along a path of length2ℓ of the cycle. Initially,

every node inSℓ is in the same states0. Associated withs0 is a fixed probability distribution

P0 = (p0
x,y)x,y∈{−,0,1} for sending bitx along the left edge and bity along the right edge, where

“−” represents the case that no bit is sent. SinceP0 has only nine probability values, there must be

anx0 andy0 with p0
x0,y0

≥ 1/9. LetE1 be the event that all nodes inSℓ choose that option. Then all

nodes inSℓ−1 = (uℓ−1, . . . , u1, v1, . . . , vℓ−1) receive the same information and must therefore be

in the same states1. Associated withs1 is a fixed probability distributionP1 = (p1
x,y)x,y∈{−,0,1} for

sending bitx along the left edge and bity along the right edge. SinceP1 has only nine probability

values, there must be anx1 andy1 with p1
x1,y1

≥ 1/9. Let E2 be the event that all nodes inSℓ−1

choose that option. Then all nodes inSℓ−2 receive the same information and must therefore be in

the same states2.

Continuing with this argumentation, it follows that there are eventsE1, . . . , Eℓ with Ei having

a probability of at least(1/9)2(ℓ−i+1) for all i so that all nodes inSℓ−i are in the same statesi.

Since these nodes are neighbors, algorithmA cannot terminate withinℓ bit exchanges ifE1, . . . , Eℓ

are true because whatever probability distributionA chooses on the colors, the probability that two

neighboring nodes choose the same color is non-zero, which would violate the assumption thatA is

a Las Vegas algorithm.

The probability thatE1, . . . , Eℓ are true is at least
(

1
9

)

Pℓ
i=1 2(ℓ−i+1) ≥

(

1
9

)ℓ2/2
and when

choosingℓ =
√

2 log9(n/2 log2 n), this results in a probability of at least(2 log2 n)/n. Moreover,
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notice thatE1, . . . , Eℓ only depend on the nodes inSℓ because information can only travel a distance

of ℓ edges inℓ rounds. Hence, we can partition then-node cycle inton/2ℓ many sequencesS

where each sequence has a probability of at least2 log2 n
n of running into the eventsE1, . . . , Eℓ that

is independent of the other sequences. Hence, the probability that all node sequences can avoid the

event sequenceE1, . . . , Eℓ, which is necessary forA to terminate, is at most
(

1 − 2 log2 n
n

)n/2ℓ
≤

1/n , which implies thatA needsΩ(
√

log n) bit-rounds, with high probability, to finish. ⊓⊔

Thus, oriented graphs appear to be easier to color than non-oriented graphs. In the next section

we show that this is indeed the case by providing a matching upper bound for constant-degree

graphs.

4.3 Upper Bound for Constant Degree Oriented Graphs

In this section we present and analyze the algorithm for(∆ + 1)–coloring constant degree ori-

ented graphs. This demonstrates the efficacy of using orientation in vertex coloring algorithms. We

defer the case of arbitrary oriented graphs to Section 4.4 asit requires more complicated arguments

than for constant degree graphs.

The algorithm for vertex coloring constant degree orientedgraphs is given in Figure 4.3. In the

algorithm, the parameterCu refers to the number of colors used in the coloring by nodeu. Each

node executes the algorithm Color-Random until it gets colored.

We analyze algorithm Color-Random for constant degree oriented graphs with a
√

log n–

acyclic orientation and show that algorithm Color-Random can be used to obtain a(∆+1)–coloring

with a bit complexity ofO(
√

log n). The reduction in the bit complexity fromΩ(log n) (due to The-

orem 4.2.1) toO(
√

log n) comes from the fact that once every simple oriented path of length
√

log n

has at least one colored node, the
√

log n–acyclic orientation guarantees us connected components
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Algorithm Color-Random(Cu)
While u is not colored do

1. Nodeu chooses a colorcu from the available colors in[Cu] uniformly at random.
2. Nodeu communicates its choicecu, from step 1, to all of its uncolored neighbors
that have a lower priority overu, i.e. to nodesv such thatu → v.
3. If nodeu does not receive a message from any of its neighborsw with w → u and
cw = cu, then nodeu gets colored with colorcu. Otherwise nodeu remains uncolored.
4. If u is colored during step 3 of the current round, thenu informs all of its uncolored
neighbors about the color ofu.
5. Nodeu updates the list of available colors according to colors taken up byu’s
neighbors.

Figure 4.3: Coloring constant degree oriented graphs by random choices.

of uncolored nodes where each such component only has simpleoriented paths of length less than

√
log n. The

√
log n-acyclicity of the orientation allows us to finish in a further

√
log n rounds.

Theorem 4.3.1 Given a
√

log n–acyclic oriented graphG = (V,E) of maximum degree∆, if ∆

is a constant, a(∆ + 1)–vertex coloring ofG can be obtained inO(
√

log n) bit rounds, with high

probability.

Proof. The analysis below cuts the time into two phases. Phase I endsonce every simple oriented

path of lengthℓ =
√

log n has at least one colored node, and phase II ends once all nodesare

colored. We show that phase I takes at mostr = 4
√

log n rounds, with high probability. For Phase

II, the proof uses the
√

log n–acyclic orientation to argue that a further
√

log n rounds suffice to

color all nodes. For simplicity, we setCu = 2∆ for every nodeu, but the analysis works, with

minor modifications, forCu = ∆ + 1, as long as∆ is a constant.

Consider any simple oriented pathP of lengthℓ. For any nodeu ∈ P with C ′
u remaining colors

andd′u remaining uncolored neighbors, the probability that it chooses a color that is identical to the

choice of any of its uncolored neighbors is at most
∑d′u

j=1 1/C ′
u ≤ d′u/(2∆ − (du − d′u)) ≤ 1/2 as

C ′
u = 2∆ − (du − d′u) andd′u ≤ du.

For anyi ≥ 1, denote byEP,i the event that all nodes inP have a color conflict in roundi.
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Since each node chooses the color independently and uniformly at random, andP is oriented, one

can identify a distinct witness for each color conflict so as to upper boundPr[EP,i | ∩i−1
j=0EP,j] as

Pr[EP,i | ∩i−1
j=0EP,j] ≤ (1/2)ℓ.

Denote byEP the event that the eventEP,i occurs forr consecutive rounds. Then,

Pr[EP ] = Pr[

r
⋂

i=1

EP,i] = Πr
i=1 Pr[EP,i | ∩i−1

j=1EP,j] ≤ (1/2)ℓr .

Let E denote the event that for some simple oriented pathP the eventEP occurs. The number

of simple oriented paths of lengthℓ is at mostn∆ℓ by choosing the first vertex fromn available

choices and choosing each of the nextℓ vertices from the at most∆ available choices. Thus,

Pr[E] = Pr[
⋃

P

EP ] ≤ n∆ℓ Pr[EP ] ≤ 1/n2.

for the above value ofr since∆ = O(1). This completes Phase I of the analysis.

Consider connected components of uncolored nodes. At the end of Phase I, since any simple

oriented path of lengthℓ has at least one colored node, each such component only has simple

oriented paths of length less thanℓ, with high probability. Moreover, the input graph does not have

oriented cycles of length less than
√

log n which implies that each such component can be organized

into less than
√

log n layers with oriented edges going only from a node in a lower-numbered layer

to a node in a higher numbered layer. This layering can be achieved by the following process.

Nodes with no superiors are assigned to layer 0. After removing these nodes, nodes in the rest of

the component with no superiors are assigned to layer 1, and so on, until there are no nodes left.

Such a procedure terminates in less than
√

log n rounds, implying that the layer number of any

node is less than
√

log n. Otherwise, there must exist either a simple oriented path of length at
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Uncolored node

Legend:
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Figure 4.4: Connected component of uncolored nodes. The number at the uncolored nodes within
the connected component gives the layer number they belong to.

least
√

log n or an oriented cycle of length less than
√

log n. Both of these conditions result in a

contradiction and hence the layering process must terminate in less than
√

log n rounds. Figure 4.4

shows an example along with the assignment of nodes to layers.

Now, in Phase II, during every round the uncolored nodes assigned to the lowest layer number

presently get colored as the nodes assigned to the lowest layer can always retain their color choice

from Step 1. This implies that Phase II can finish in less than
√

log n rounds.

Since in each round each uncolored node has to exchangeO(log ∆) = O(1) bits, the bit

complexity of the algorithm Color-Random isO(
√

log n). ⊓⊔

We note that the same proof also holds for3–coloring cycle graphs, with any orientation, with

minimal changes. Coupled with the lower bound result in Theorem 4.2.2, our analysis for the case

of constant degree graphs is tight with respect to the bit complexity, up to constant factors. The

algorithm and the analysis can be modified easily to achieve alocal coloring also.

62



4.4 Upper Bound for Arbitrary Oriented Graphs

In this section we describe and analyze our algorithm for vertex coloring an arbitrary
√

log n–

acyclic oriented graphG using(1 + ǫ)∆ colors for any constantǫ > 0.

Our algorithm and the analysis in this case requires more tools than that for constant degree

graphs while having the same flavor. Theorem 4.3.1 fails to hold once the degree of the input graph

is bounded away from any constant. Graphs below logarithmicdegree, but bounded away from a

constant, pose additional problems as graphs with degree below a certain threshold are not easily

amenable to nice probabilistic bounds. In many papers, for example [53, 116, 37], this problem was

overcome by assuming that the number of colors available ismax{(1 + ǫ)∆, log n} so that sub-

logarithmic degree graphs are colored withlog n colors. We instead take the approach of coloring

with (1 + ǫ)∆ colors as coloring with few colors is more appealing when vertex coloring is used as

a sub-routine in other higher order tasks.

To arrive at our result, we proceed in stages. Based on techniques from [53], we first show

how to arrive at a bit complexity of̃O(log ∆+
√

log n). Later, using advanced techniques, we show

how to arrive at a bit complexity ofO(log ∆)+ Õ(
√

log n). Finally, for graphs with∆ ≥ log n, we

show how to arrive at a bit complexity ofO(log ∆ +
√

log n log log n).

Our algorithm for any nodeu is presented in Figure 4.5. The parameterCu denotes the number

of colors each vertexu can choose from. Each node runs the algorithm in Figure 4.5 while it remains

uncolored.

We now provide a summary of our analysis of algorithm Color. Our analysis cuts time into two

phases. In the first phase we show that for any vertex the number of uncolored neighbors reduces

to at mostc2 log n for a constantc2, in O(log log n) rounds, with high probability. In the second

phase we first show that the graph can be decomposed into connected components of uncolored
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Algorithm Color(Cu)
Phase I
1. SetCu := c1∆ for a constantc1 ≥ 3.
2. Whiledu ≥ c2 log n for a constantc2 do

3. Use Algorithm Color-Random(Cu).
Phase II
4. SetCu := min{2c2 log n, 2du}.
5. Use Algorithm Color-Random(Cu).

Figure 4.5: Algorithm for any nodeu.

nodes such that each such connected component only has simple oriented paths of length less than

√
log n, with high probability. The analysis then proceeds to show that all the nodes can be colored

in a further
√

log n rounds.

In the algorithm and the analysis we also setCu = c1∆ for a constantc1 ≥ 3, for every nodeu,

for the sake of simplicity. Using techniques from [53], it ispossible to extend the following analysis

to use only(1 + ǫ)∆ colors, for any constantǫ > 0.

4.4.1 Analysis for Phase I

In this phase, we show that the number of uncolored neighborsof any nodeu reduces in

a double-exponential fashion, (i.e., inO(log log n) rounds) toc2 log n. This analysis has strong

connections to occupancy problems [109, Problem 3.4],[13], and the edge coloring algorithm of

[53].

Let du(i), Nu(i), Cu(i) refer to the number of uncolored neighbors, the set of uncolored neigh-

bors, and the size of the color palette of nodeu respectively, at the beginning of roundi. Also, let

d̂(i) = maxu du(i).

Lemma 4.4.1 If du(1) ≥ c2 log n thendu(c′ log log n) ≤ c2 log n, with high probability for some

constantc′ ≥ 1.
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Proof. The intuition behind the proof is that at the end of every round, the number of remaining

uncolored neighbors decreases double-exponentially.

During roundi the probability that an uncolored nodeu fails to get colored can be computed as:

Pu(i) := Pr[u does not get colored during roundi] ≤ ∑du(i)
j=1

1
Cu(i) ≤ d̂(i)

α∆ , as, forc1 sufficiently

large, it holds thatCu(i) ≥ α∆ for α = c1 − 1.

The expected number of neighbors ofu that are still uncolored after roundi is, E[du(i + 1)] =

∑

v∈Nu(i) Pv(i) ≤ d̂(i)2/α∆.

Consider the following recurrence relation betweend̂(i + 1) andd̂(i) for a constantc′′.

d̂(i + 1) ≤ d̂2(i)

α∆
+

√

c′′d̂(i) log n. (4.1)

Using a large deviation bound [52, 53], it can be shown thatdu(i + 1) exceeds its expected

value by more than
√

c′′d̂(i) log n with probability less thann−2 for some constantc′′. Thus, it

holds thatdu(i + 1) ≤ d̂(i + 1) w.h.p., for all nodesu.

The recurrence relation in Equation (4.1) can be solved as follows (cf. [53]). Let d̂2(i)/α∆

dominate the second term forr1 rounds. The value ofr1 then satisfieŝd2(i)/α∆ ≤ 2

√

c′′d̂(i) log n.

For this we require that̂d3(r1) ≤ 4c′′α2∆2 log n.

So forr1 rounds, we have:

d̂(i + 1) ≤ 3d̂2(i)/α∆ (4.2)

Using Equation (4.2), it follows that

d̂(r1) ≤ (3/α)2
r1−1

∆
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Hence, we require that:

(

(3/α)2
r1−1

∆
)3

≤ 4c′′α2∆2 log n

which results in a value ofr1 = O(log log n).

From this point on, it holds that

d̂(i + 1) ≤ 5

√

c′′d̂(i) log n (4.3)

Solving Equation (4.3) for a value ofr2 so thatd̂(r2) ≤ c2 log n results inr2 = O(log log n).

Thus afteri∗ = r1 + r2 = O(log log n) rounds, we have for any nodeu, du(i∗) ≤ d̂(i∗) ≤

c2 log n. ⊓⊔

Thus, at the end ofO(log log n) rounds of the algorithm, the number of uncolored neighbors

for every node is at mostc2 log n. This completes Phase I of the analysis.

4.4.2 Analysis for Phase II

The analysis in this phase consists of two sub-phases. In sub-phase II(a), we argue that along

any simple oriented path of length
√

log n there exists at least one colored node, with high probabil-

ity. In the second sub-phase we show that all the remaining uncolored nodes successfully get colored

within
√

log n rounds. Notice that since the number of uncolored neighborsof any node at the be-

ginning of this phase is at mostc2 log n, nodes can use a color palette of sizemin{2c2 log n, 2du}

for this phase as shown in the algorithm in Figure 4.5.
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Analysis for Phase II(a)

We now establish the following lemma which shows that every simple oriented path of length

√
log n has at least one colored node afterO(

√
log n) rounds, with high probability. Let∆∗ denote

the maximum number of uncolored neighbors for any nodeu. After phase I, it holds that∆∗ ≤

c2 log n.

Lemma 4.4.2 For arbitrary
√

log n–acyclic oriented graphsG at the end ofO(
√

log n) rounds,

any simple oriented path of lengthℓ =
√

log n will have at least one colored node, with high

probability. Further, the bit complexity of this phase isO(
√

log n log log n).

Proof. The proof of this lemma is similar to the proof of Phase I of Theorem 4.3.1. Consider any

simple oriented pathP of lengthℓ =
√

log n. Let EP,i denote the event that all the nodes inP

are in a color conflict during a given roundi. Then, along the lines of Phase I of Theorem 4.3.1, it

holds thatPr[EP,i | ∩i−1
j=1EP,j] ≤ (1/2)ℓ. DefineEP to be the event that the eventEP,i occurs for

r = 4c2
√

log n consecutive rounds. Then, it holds that

Pr[EP ] = Pr[∩r
i=1EP,i] = Πr

i=1 Pr[EP,i | ∩i−1
j=1EP,j] ≤ (1/2)ℓr.

Let E denote the event that there exists a pathP for which the eventEP occurs. Since the

number of simple oriented paths of lengthP is at mostn∆ℓ
∗,

Pr[E] ≤
∑

P

Pr[EP ] ≤ n∆ℓ
∗

(

1

2

)rℓ

.

As r = 4c2
√

log n andℓ =
√

log n and∆∗ ≤ c2 log n, the above probability is polynomially small.

The bit complexity of this phase isO(
√

log n log log n) as in each round each uncolored ex-

changesO(log log n) bits. ⊓⊔
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Analysis for Phase II(b)

Consider connected components of uncolored nodes. At the end of Phase II(a), since any

simple oriented path of length
√

log n has at least one colored node, w.h.p., it holds that each such

component has only simple oriented paths of length less than
√

log n with high probability. Also,

the input graphG does not have oriented cycles of length less than
√

log n. For Phase II(b), we

show the following lemma.

Lemma 4.4.3 In Phase II(b), after less than
√

log n rounds, all nodes inG are colored properly.

Further, the bit complexity of Phase II(b) isO(
√

log n log log n).

Proof. The proof of this lemma is similar to that of the proof of PhaseII in Theorem 4.3.1. It

can be shown that any connected component of uncolored nodesonly has simple oriented paths of

length less thanℓ, with high probability. Moreover, the input graph does not have oriented cycles

of length less than
√

log n which implies that each such component can be organized intoless than

√
log n layers with the oriented edges going only from a node in a lower-numbered layer to a node

in a higher numbered layer.

Using the layering, then it can be shown that during each further round, at least one node

gets colored successfully. Thus, this phase requires less than
√

log n rounds and each node ex-

changesO(log log n) bits during every round of this phase. Thus the bit complexity of this phase is

O(
√

log n log log n). ⊓⊔

From the above discussion, the following theorem holds.

Theorem 4.4.4 Given a
√

log n–acyclic oriented graphG = (V,E) of maximum degree∆, for any

constantǫ > 0, a (1 + ǫ)∆–vertex coloring ofG can be obtained iñO(log ∆ +
√

log n) bit rounds,

with high probability.
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Proof. Phase I has a bit complexity ofO(log ∆ log log n) as forO(log log n) rounds, each node

exchangesO(log ∆) bits. For Phase II, the bit complexity isO(
√

log n log log n). Adding the bit

complexity of both the phases, we arrive at the theorem. ⊓⊔

4.4.3 Further Improvements

In this section, we show that the bit complexity of Phase I canbe reduced toO(log ∆ +

log log n) thereby reducing the bit complexity of the algorithm for arbitrary
√

log n–acyclic oriented

graphs toO(log ∆) + Õ(
√

log n). We then show a tighter analysis forhigh degree graphs to arrive

at a bit complexity ofO(log ∆ +
√

log n log log n). By high degree graphs, we mean graphs with

∆ ≥ log n.

Improvements to the Analysis of Phase I

The tightness of the analysis stems from a gradual reductionin the number of colors during

Phase I. This results in savings in the bit complexity of Phase I. For this purpose, Phase I is divided

into sub-phases as follows. Forj ≥ 1, sub-phasej starts when the number of uncolored neighbors

of u is at mostD(j)
u , whereD

(j)
u acts a threshold on the number of uncolored neighbors of nodeu.

D
(j)
u is defined asD(1)

u = du andD
(j)
u =

√

D
(j−1)
u for j ≥ 2. Let C(j)

u denote the size of the color

palette of nodeu during sub-phasej. At the beginning of sub-phasej nodeu reduces the size of its

color palette so thatC(j)
u = c1

√

C
(j−1)
u with C

(1)
u = c1∆.

This effectively reduces the number of bits required to be sent in each sub-phase by a factor of

2 but the proof of Lemma 4.4.1 holds with minimal changes. Thus, in Phase I, it can be seen that

over theO(log log n) sub-phases the number of bits each nodeu sends is at most

O(log log n)
∑

j=1

log C(j)
u ≤

O(log log n)
∑

j=1

2 log c1 + ((log ∆)/2j) = O(log log n + log ∆).
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Algorithm PhaseI
1. Du :=

√
du, Cu := c1∆.

2. Whiledu ≥ c2 log n do
3. Run Algorithm Color–Random(Cu).
4. If du ≤ Du then

5. Du :=
√

Du, Cu := c1

√
Cu

end-while.

Figure 4.6: Improved algorithm for Phase I.

Thus, the bit complexity for Phase I reduces toO(log log n + log ∆).

The modified algorithm for Phase I for nodeu is described in Figure 4.6. Using the tighter

analysis for Phase I and Lemmata 4.4.2–4.4.3, we arrive at the following theorem.

Theorem 4.4.5 Given a
√

log n–acyclic oriented graphG = (V,E) of maximum degree∆, a

(1 + ǫ)∆–vertex coloring ofG for any constantǫ > 0, can be obtained inO(log ∆) + Õ(
√

log n)

bit rounds, with high probability.

Improvements to Phase II

For the case of high degree graphs, we now show how to reduce the bit complexity of Phase II

to O(
√

log n log log n). The algorithm for Phase II remains the same as shown in Figure 4.5. The

analysis of Phase II now consists of 3 sub-phases.

In sub-phase II(a), we show that the number of uncolored neighbors of any node decreases to

O(
√

log n log log n) afterO(
√

log n/ log log n) rounds with high probability. In sub-phase II(b) we

then show that every simple oriented path of length
√

log n/ log log n has at least one colored node,

with high probability, afterO(
√

log n/ log log n) rounds. Finally, in sub-phase II(c), we show that

every node can be colored after a furtherO(
√

log n/ log log n) rounds. In this phase, every node

can use a color palette of size2c2 log n.
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Analysis for Phase II(a)

For sub-phase II(a), we show the following lemma.

Lemma 4.4.6 In Phase II(a), inO(
√

log n
log log n) rounds, the number of uncolored neighbors of any node

decreases to
√

log n log log n, with high probability. Further, the bit complexity of thissub-phase is

O(
√

log n).

Proof. Consider any nodeu. At the end of phase I, it holds thatdu ≤ c2 log n, with high probability.

Since the number of colors used byu is 2c2 log n, it also holds that

Pr[nodeu fails to get colored in a given round] ≤ 1/2.

Consider any subsetA of the uncolored neighbors ofu. Let EA denote the event that all the

nodes inA remain uncolored afterr = 4c2
√

log n
log log n consecutive rounds. Then, it holds that

Pr[EA] ≤ (1/2)r|A|(1−1/
√

log n)

using the orientation and the witnessing scheme of Theorem 4.3.1. Notice that as we are guaranteed

of
√

log n–acyclicity we can find a set of at least|A|(1−1/
√

log n) nodes in conflict with a distinct

witness for each color conflict.

Let Eu,s denote the event that for nodeu, there exists a set ofs uncolored neighbors at the end

of r rounds. Then,

Pr[Eu,s] = Pr[
⋃

A⊆Nu,|A|=s

EA] ≤
⋃

A⊆Nu,|A|=s

Pr[EA] =

(

du

s

)(

1

2

)rs(1−1/
√

log n)

.
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Denote byEu the event that for nodeu there exist more than
√

log n log log n uncolored neigh-

bors. Using Boole’s inequality,

Pr[Eu] ≤
du
∑

s=
√

log n log log n

Pr[Eu,s] ≤
du
∑

s=
√

log n log log n

(

du

s

)

· (1/2)rs(1−1/
√

log n) ≤ 1

n2
.

asrs ≥ 4c2 log n anddu ≤ c2 log n. Now, denote byE the event that for some nodeu, the event

Eu occurs. Then,Pr[E] = Pr[
⋃

u∈V Eu] ≤ 1/n. Thus, the number of uncolored neighbors of any

node decreases to
√

log n log log n with high probability after4
√

log n/ log log n rounds.

During this phase, each uncolored node exchangesO(log log n) bits in each round as the palette

size is2c2 log n. Thus, the bit complexity of this sub-phase isO(
√

log n). ⊓⊔

Analysis for Phase II(b)

At the end of sub-phase II(a), it holds that the number of uncolored neighbors of any node

u is at most
√

log n log log n. Recall that∆∗ = maxu du. After sub-phase II(a), it holds that

∆∗ ≤
√

log n log log n.

Lemma 4.4.7 In Phase II(b), in16
√

log n/ log log n rounds, in every simple oriented path of

length
√

log n/ log log n there is at least one node that gets colored, with high probability. Fur-

ther, the bit complexity of this sub-phase isO(
√

log n log log n).

Proof. Consider any simple oriented pathP of uncolored nodes of lengthℓ =
√

log n/ log log n.

Denote byEP the event that no node inP gets colored in16
√

log n/ log log n rounds. SinceP is

oriented and the choices of each node are independent, usinga witnessing scheme similar to that in

the proof of Theorem 4.3.1, it holds that:

Pr[EP ] ≤
(√

log n log log n

2c2 log n

)ℓ·16
√

log n/ log log n

≤
(

log log n

2c2
√

log n

)
16 log n
log log n

≤ 1

n4
,
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if n is sufficiently large. In the above, the first inequality holds since the number of uncolored

neighbors is
√

log n log log n and the number of colors thatu can choose from is2c2 log n.

Let E denote the event that there exists a simple oriented pathP of lengthℓ such that for path

P , the eventEP occurs. The number of simple oriented paths of lengthℓ =
√

log n/ log log n is at

mostn · ∆ℓ
∗. Thus,

Pr[E] = Pr[
⋃

P

EP ] ≤
n∆ℓ

∗
∑

j=1

1/n4 ≤ ∆ℓ
∗/n

3.

The above probability is polynomially small since∆∗ ≤ √
log n log log n. Thus, along any

simple oriented path of length
√

log n/ log log n, at least one node gets colored with high probabil-

ity at the end of16
√

log n/ log log n rounds.

The bit complexity of this sub-phase is easily seen to beO(
√

log n log log n) as in each round,

each uncolored node exchangesO(log log n) bits. ⊓⊔

This completes the analysis for Phase II(b). In Phase II(c),using arguments similar to that of

Lemma 4.4.3, it can be shown that in a further
√

log n/ log log n rounds, every node gets colored,

with high probability. The bit complexity of Phase II(c) isO(
√

log n log log n). Putting together

everything, we arrive at the following theorem.

Theorem 4.4.8 Given a
√

log n–acyclic oriented graphG = (V,E) of maximum degree∆ ≥

log n, for any constantǫ > 0, a (1 + ǫ)∆–vertex coloring ofG can be obtained inO(log ∆ +

√
log n log log n) bit rounds, with high probability.

Notice that for Theorem 4.4.8 to hold, the input graph only needs to be
√

log n/ log log n–

acyclic, but we stated the theorem with the
√

log n–acyclicity assumption for the sake of consis-

tency.
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The following corollary can be easily obtained showing thatfor the case of dense
√

log n–

acyclic oriented graphs, our result on the bit complexity isclose to the worst-case optimal.

Corollary 4.4.9 Given an arbitrary
√

log n–acyclic oriented graphG = (V,E) with maximum

degree∆ = Ω(2
√

log n log log n), for any ǫ > 0, a (1 + ǫ)∆-vertex coloring can be obtained in

O(log ∆) bit rounds, with high probability.

4.5 Chapter Summary and Acknowledgements

We presented algorithms for distributed vertex coloring using a simple and natural model.

While our results are tight in general, a related question toask is whether any further conditions

on the orientation would result in better bounds or whether certain orientations outperform other

orientations. For example, if the orientation or the graph is known to be acyclic, would it be possible

to color in fewer bit rounds?

A preliminary version of the results contained in this Chapter appear in [77]. This work was

done with Melih Onus, Department of Computer Science, Arizona State University and Christian

Schindelhauer, Computer Science Deparmtment, Universityof Paderborn.
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Part II

Peer-to-peer Overlay Networks



Chapter 5

P2P Networks: Deterministic

Constructions

5.1 Introduction

In recent years, peer-to-peer overlay networks have becomeextremely popular for a variety

of reasons. For example, the fact that peer-to-peer systemsdo not need a central server means

that individuals can search for information or cooperate without fees or an investment in additional

high-performance hardware. Also, peer-to-peer systems permit the sharing of resources (such as

computation and storage) that otherwise may sit idle on individual computers. Therefore, it is not

surprising that peer-to-peer systems have inspired an enormous amount of research. Despite many

advances, fundamental problems have remained open, such as:

1. Is it possible to design deterministic peer-to-peer overlay networks with properties compara-

ble to randomized peer-to-peer systems?

2. How can peers of non-uniform bandwidth be organized in an overlay network?
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Why are these problems important and non-trivial? An obvious advantage of a deterministic over

a randomized solution is the ability tolocally self-correctthe overlay network so that it not only

fulfills the given connectivity rules but also retains certain desirable topological properties such

as a high expansion. The property ofself-stabilizationwas introduced by Dijkstra in his 1974

paper [32] and is considered an important property in existing peer-to-peer systems [142, 125, 129].

By definition, (pseudo-)random constructions cannot be self-correcting with regard to expansion

because the systems can be in a state with a poor expansion although all connectivity rules are

fulfilled. Although this may be unlikely to happen if all nodes are honest, adaptive adversarial

attacks can make such a situation very likely (see also [34]). Designing scalable, deterministic

overlay networks with a high expansion is a highly non-trivial problem. The first such construction

just recently emerged, and the construction and its analysis is quite involved [8].

Also, organizing peers of non-uniform bandwidth in a scalable way is an important and non-

trivial problem. It is important because in reality, peers have different connections to the Internet

with bandwidths that may be several orders of magnitude apart. Also, future peer-to-peer systems

will have to allow peers to adjust the bandwidth they want to contribute to it to be acceptable since

many peer-to-peer applications may run in a peer at the same time. Thus, a system is needed

that can organize peers of non-uniform bandwidth and that can adapt to changing bandwidths in

a scalable way. DHT-based peer-to-peer approaches in theirbasic form cannot take advantage of

high bandwidth peers, because their approach of giving every peer the same degree and randomly

distributing peers in the system will isolate high bandwidth peers, making them ineffective. A

straight-forward solution would be to simply include multiplevirtual peersfor each high-bandwidth

peer into the system. This approach, however, does not work well in general, because allowing a

peer to have multiple virtual peers in the system reduces itsscalability and increases its vulnerability.
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It reduces its scalability because frequent bandwidth changes may create a high update cost when

using virtual peers, and it increases its vulnerability because when a high-bandwidth peer leaves,

many virtual peers will leave with it, potentially creatingdisruption of service and high repair costs

for the overlay network. It would therefore be much better togive every peer just asingle, bounded

degreenode in the network while retaining the property that high-bandwidth peers can be utilized

well. This is exactly what we solve with the overlay network proposed in this chapter. Before we

present our network, we review previous work.

5.1.1 Overlay networks for uniform peers

A large collection of scalable peer-to-peer overlay networks has been proposed in recent years.

Among them are Tapestry [155], Chord [142], Pastry [129], CAN [125], Viceroy [105], Koorde

[67], and DH graphs [110]. Also generic approaches have recently been presented that allow one to

turn general families of static graphs into dynamic graphs.See, for example, [110] and [2]. All of

these constructions crucially depend on the fact that nodesare given random IDs (which may either

be obtained by a random number generator or with the help of a pseudo-random hash function).

Hence, they cannotguaranteea good expansion or diameter.

Recently, a number of constructions for overlay networks emerged that allow good topological

properties forarbitrary node IDs. Among them are skip graphs [6], skip nets [59], and the Hyperring

[8]. Whereas skip graphs and skip nets still need a random number generator for the topology,

the Hyperring is purely deterministic and the only dynamic overlay network to date that has a

guaranteed low diameter and high expansion. However, whereas in the randomized constructions

the work for a node insertion and deletion can be made as low asO(log n), w.h.p., the work for a

node insertion and deletion in the Hyperring isO(log3 n), wheren is the current number of nodes

in the system. So an open question has been whether this can bereduced toO(log2 n) or even
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O(log n). Also, the Hyperring is rather complicated to maintain and therefore an open question has

also been whether simpler approaches exist for organizing peers in a deterministic way. The results

of this chapter answers both of these questions in the affirmative.

5.1.2 Overlay networks for non-uniform peers

Peers of high bandwidth are often more reliable and participate in the network for a longer

time than low bandwidth peers. Though it uses an unstructured approach, Gnutella has a tendency

to integrate long-living peers more tightly into the network than short-living peers and therefore

can be seen as a heuristic to take advantage of high bandwidthpeers. A more structured approach

is the super-peer architecture of Kazaa [72]. It classifies peers into two classes: the strong (high

bandwidth) peers and the weak (low bandwidth) peers, and it permits a weak peer to be connected

to exactly one strong peer. All queries are routed through strong peers, which are also called super-

peers. Super-peer networks are also part of JXTA 2.0 [143].

Publications on various super-peer networks can be found in[111, 151, 156]. Also multi-

tier topologies (i.e. topologies with more than two classesof peers) have been proposed (e.g.,

[139]), where each level consists of peers with approximately the same capabilities. None of these

publications have studied in a formal way how well their topologies can handle arbitrary unicast or

multicast problems.

5.1.3 Overlay networks for multicasting

There are a number of results on overlay networks for multicasting. Overlay based approaches

that just create a network for a single multicast group can befound in [9, 31, 62, 128]. For example,

in [62] the authors show how to construct an overlay network of tree topology rooted at the source

of the multicast. In [9], the authors create a hierarchical topology based on clustering. In [128], the
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authors show how to create a tree topology that can be used to achieve reliable broadcasting.

Approaches that allow multiple multicast groups to be formed over the same overlay network

are usually implemented on top of DHT-based systems such as Chord, CAN, Tapestry, or Pastry

[20, 22, 91, 126, 141, 157]. The works [141, 91] are based on the Chord [142] overlay network.

The scheme of [126] use the CAN proposed in [125] so as to create a sub-CAN consisting of the

nodes forming a multicast group. Multicasting in the group is then realized by flooding the sub-CAN

with additional rules to minimize duplicates. The work of Bayeux [157] is based on the Tapestry

network proposed in [155] and the approach of Scribe [20] is based on the Pastry network [129].

For an evaluation of several of these protocols see [22], forexample. All of these approaches are

scalable, but they only work well for uniform peers because messages for these multicast groups

will be routed through the underlying DHT-based networks.

5.1.4 Our results

We propose a dynamic overlay network, calledPagoda, that can handle routing, data man-

agement, multicasting, and node insertions and deletions in a scalable and efficient way. In the

following, n always denotes the current number of peers or nodes in the system.

Uniform overlay networks, routing, and data management

For the uniform case, i.e. all nodes have the same bandwidth and storage, our main results for

the Pagoda network are:

• Maintenance: Any isolated node insertion or deletion can be executed inO(log n) time and

work.
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• Routing: There is a local, randomized routing strategy that routes any set of packets in which

each node has at most one packet and every packet has a random destination inO(log n) time,

w.h.p.

• DHT: There is a distributed hash table method that can keep data distributed among nodes so

that every node is responsible for an expectedO(1/n) fraction of the data.

Non-uniform overlay networks and multicasting

Our main results for the non-uniform case are:

• Maintenance: Any isolated node insertion or deletion can be executed inO(log2 n) time and

work.

• Muliticasting: The Pagoda network for non-uniform nodes creates a congestion for routing

arbitrary concurrent multicast requests that is only by anO(∆ + log n) factor larger than

the congestion achievable by abest possibleoverlay network of maximum degree∆ for that

particular problem.

Apart from proving existential results, we also provide local-control strategies for building and

maintaining multicast trees so that a performance as predicted by the competitive bound can be

achieved. We also show that under certain local admission control scenarios, our network can

guarantee that rate reservation requests for multicastingare successful with high probability.

5.1.5 Rest of the Chapter

We start in Section 5.2 with the description of the perfect, static form of the Pagoda, and

we prove some basic properties. In Section 5.3 we show how to turn the Pagoda into a dynamic

overlay network for the case that all nodes have the same bandwidth. We describe how to efficiently

81



insert a node into or delete a node from the Pagoda, and we showhow to perform routing and data

management in an efficient and robust manner. In Section 5.4,we extend the Pagoda network to

the case that we have arbitrary non-uniform node bandwidths, and in Section 5.5 we show how this

network can be used for efficient multicasting.

5.2 The static Pagoda network

Our overlay network is basically a combination of a completebinary tree and a family of

leveled graphs that are similar to the well-known Omega network [92], together with some short-

cut edges to keep the diameter low. It is calledPagoda. We first define a perfect, static form of

the network before describing dynamic constructions. Below we recall the definition of2−ary de

Bruijn graph (see also Definition 2.4.4).

Definition 5.2.1 Letd ∈ IN0. Thed-dimensional de Bruijngraph, denotedDB(d), is an undirected

graph with node setV = [2]d and an edge setE = {{x, y} | x, y ∈ [2]d and there arep, q ∈ {0, 1}

so thatx = (b1, b2, . . . , bd−1, p) andy = (q, b1, b2, . . . , bd−1)}.

000

001

100

010

011

111

110

101

Figure 5.1: The structure ofDB(3)

Figure 5.1 presents the 3-dimensional de Bruijn,DB(3). It can be seen thatDB(d) has2d

nodes, a maximum degree of 4 and diameterd. Based on the de Bruijn graph, we now define a

network called the de Bruijn exchange network (DXN) below.
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Definition 5.2.2 (de Bruijn Exchange Network (DXN)) For d ∈ IN0, thed-dimensional de Bruijn

exchange network, DXN (d), is an undirected graph with node setV = [d + 1] × [2]d and the

following edge set:

E = {{(j, x), (j + 1, y)} | j ∈ [d],

x, y ∈ [2]d, {x, y} ∈ E(DB(d)) or x = y}

Thus,DXN (d) can be viewed asd + 1 copies ofDB(d) combined together to form a leveled

network with edges in the de Bruijn network now going across adjacent levels and each node being

connected to its copy in an adjacent level.

0,0 0,1

1,0 1,1

0,00

1,111,10

0,01 0,110,10

1,011,00

2,00 2.,01 2,10 2,11

0, ǫ

Figure 5.2: The structure ofPG(2) consisting ofDXN (0),DXN (1) andDXN (2). The tree edges
are shown in dashed lines and the shortcut edges are shown in dotted lines.

Definition 5.2.3 Let d ∈ IN0. Thed-dimensional Pagoda, PG(d), is an undirected graph that

consists ofd + 1 de Bruijn exchange networks,DXN (0), . . . ,DXN (d), where each node(i, x) ∈

[i+1]×[2]i ofDXN (i) has an edge to the nodes(0, x0) and(0, x1) in DXN (i+1) and, additionally,

to all nodes(0, y) in DXN (i + 1) that have an edge to(1, x0) or (1, x1).
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In addition to this, for everyi andj ∈ {0, . . . , i}, every node(j, x) in DXN (i) has short-cut

edges to nodes(j, x0), (j, x1), (j + 1, x0), and(j + 1, x1) in DXN (i + 1).

Ignoring the short-cut edges, the Pagoda is a leveled network with the root being at level 0.

Levels are consecutively numbered from 0 through(
∑d

i=0(i + 1)) − 1. Given a node at levelℓ, the

nodes it is connected to in levelℓ − 1 are called itsparents, and the nodes it is connected to in level

ℓ + 1 are called itschildren.

The Pagoda network consists of the following types of edges:

• column edgesjoining node(j, x) to node(j + 1, x) in a DXN,

• tree edgesjoining node(i, x) in DXN (i) to nodes(0, x0) and(0, x1) in DXN (i + 1),

• short-cut edgesjoining node(j, x) in DXN (i) to nodes(j, x0), (j, x1), (j + 1, x0), and

(j + 1, x1) in DXN (i + 1),

• de Bruijn edgesrepresenting edges of the form(j, x) in DXN (i) to (j + 1, y) in DXN (i)

with (x, y) ∈ E(DB(i)), and

• balancing edgesrepresenting all the remaining edges.

We also denote nodes(0, j) in DXN (i) of PG(d) with j ∈ [2]i and0 ≤ i ≤ d astop nodes

and similarly nodes(i, j) in DXN (i) of PG(d) with j ∈ [2]i and0 ≤ i ≤ d asbottomnodes and

the rest asintermediatenodes.

Each of the above types of edges are important for our protocols to work. Column edges

and tree edges allow to keep our protocols simple and efficient, de Bruijn edges allow to perform

efficient routing (and deterministic level balancing in thedynamic Pagoda), and short-cut edges

keep the diameter and congestion low. The balancing edges are used to minimize congestion during

concurrent join/leave operations.
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5.2.1 Basic properties

Figure 5.2 shows the 2-dimensional PagodaPG(2). PG(d) has
∑d

i=0(i+1)2i ≈ (d+1)2d+1

nodes and maximum degree 20. We start with the following lemma.

Lemma 5.2.4 PG(d) hasO(d2) levels and a diameter ofO(d).

Proof. The number of levels inPG(d) is
∑d

i=0(i + 1) = O(d2) asPG(d) consists ofd + 1

DXN networks,DXN (0), DXN (1), · · · , DXN (d). The claim about the diameter follows easily as

DXN(i) has diameteri and distance between nodesu andv in DXN (i) andDXN (j) respectively

is thus at mostmax{i, j} + d, using the de Bruijn and shortcut edges. ⊓⊔

The following lemma shows thatPG(d) also has a good expansion. Recall that the node

expansion is defined asα = minU :|U |≤|V |/2 |N(U)|/|U | whereN(U) is the neighbor set ofU .

Lemma 5.2.5 PG(d) has an expansion ofΩ(1/d).

Proof. We prove the lemma by showing that every permutation routingproblem in the Pagoda can

be routed with an expected congestion ofO(d).

Consider any permutation routing problemπ ∈ [n]. In the following we analyze the expected

congestion at any nodeu when using the routing strategy in section 5.3.3 forπ.

We start with stage 1. Consider any node inDXN (i). Since there arei nodes in the column ofu

that may send their packet throughu, u is passed by at mosti packets. Any bottom node inDXN (i)

then gets2(i + 1) packets from the nodes in its 2 child columns inDXN (i + 1). Since all packets

in the bottom nodes inDXN (i) are sent to top nodes inDXN (i) chosen uniformly at random, each

node inDXN (i) has an expected congestion of2(i + 1). These packets are then forwarded to the

bottom nodes of the next higher exchange network, causing anexpected congestion of4(i+2) at the

bottom nodes ofDXN (i). Thus, during stage 1, each node inDXN (i) has an expected congestion
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of at mosti+ 2(i+ 1)+ 4(i+ 2) ≤ 7(i+ 2). In stage 2, the maximum number of packets that have

to be shipped acrossDXN (i) is at most the number of nodes inDXN (i− 1) and above, which can

be easily seen to be at most2|DXN (i)|. Thus, each node receives on expectation at most 2 packets

during stage 2. Stage 3 is symmetric to stage 1 and therefore creates the same expected congestion

as stage 1. Thus, the total expected congestion at any node isO(d).

Suppose now that the node expansion iso(1/d). In this case there must be a setU with

|N(U)| = o(|U |/d) and |U | ≤ n/2. Then consider the permutationπ that requires to send all

packets in nodes inU to Ū whereŪ = V \ U with V denoting the set of nodes inPG(d). In this

case, the expected congestion must beω(d), contradicting our bound above. Thus, the expansion of

PG(d) is Ω(1/d). ⊓⊔

5.2.2 Pagoda vs. existing approaches

Our overlay network construction is closest to the line of papers following the CAN approach

[125]. The basic idea behind CAN is to combine an infinite complete binary treeT with a family

of graphsG = {Gℓ | ℓ ∈ IN0} with |V (Gℓ)| = 2ℓ so that for everyℓ ≥ 0 the nodes in levelℓ

are interconnected according toGℓ. Initially, a peer is just stored at the root of the tree. Insertions

and deletions of peers are handled so that the invariant is maintained that every path down the tree

starting with the root contains exactly one peer. Peers are interconnected according to the edges in

G where a peer inherits all edges to its descendants. To keep the level distribution of the nodes in

balance, and therefore their degree low, it was suggested toeither use deterministic load balancing

along the edges inG or to choose random positions for newly inserted nodes [2, 3,125]. However,

for any familyG of bounded degree graphs such a deterministic load balancing strategy can result in

a very poor expansion (as low asO(1/nǫ) for some constantǫ > 0), so the CAN approach crucially

depends on randomness to be well-connected. In contrast to this, our way of combining a tree with a
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family of graphs allows local, deterministic updates whileguaranteeing an expansion ofΩ(1/ log n)

at any time.

This result is possible because the way we use the Pagoda network in a dynamic setting differs

from the CAN approach in two fundamental ways. First of all, in the dynamic Pagoda the invariant

is preserved that all parent positions of an occupied node position are occupied, whereas in CAN

the invariant is maintained that every path down the CAN treefrom the root contains exactly one

occupied position, and therefore peers are only at the edge of the CAN tree. Secondly, the Pagoda

network uses a DXN network with multiple levels at each tree level and not just single-level con-

nections. If one just used a single de Bruijn graph at each tree level as this was suggested, for

example, in [99], then deterministic balancing strategies(to keep nodes with missing children at

approximately the same level) would perform poorly (i.e. the expansion can be as low asO(1/nǫ)

for some constantǫ > 0). This would not only be the case in the CAN approach but also in our

approach of having all parent positions occupied.

Also the way the Pagoda network handles non-uniform peers isfundamentally different from

previous approaches. Instead of using many virtual nodes ora multi-tier network to incorporate

peers of non-uniform bandwidth, every peer is just associated with a single node, and a simple heap

property is used to organize the peers in the system: every parent of a peer must have a bandwidth

that is at least as large as the bandwidth of that peer. Thus, local, relative rules are used to organize

peers instead of the rather global nature of the rules using virtual nodes or multi-tier networks (since

an agreement on the minimum bandwidth and bandwidth-to-tier assignments is necessary there).
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5.3 The dynamic Pagoda network for uniform nodes

Our basic approach for the dynamic Pagoda network is to keep the nodes interconnected in a

network that represents a subnetwork of the static Pagoda network of infinite dimension. In this

section, we assume that all nodes have a bandwidth of 1. At anytime, the dynamic Pagoda network

has to fulfill the following invariant:

Invariant 5.3.1

(a) Position: For any node in the dynamic Pagoda, all of its parent positions are occupied.

(b) Consistency:For any pair of nodesv andw in the dynamic Pagoda,v andw are connected

in the dynamic Pagoda if and only ifv andw are connected in the static Pagoda.

We start with some facts about the dynamic Pagoda network. A node is calleddeficientif it has

a missing child along a column or tree edge (i.e. we do not consider missing children reachable via

de Bruijn edges).

Lemma 5.3.2 If Invariant 5.3.1 is true, then in the dynamic Pagoda network with n nodes, the

difference between the largest level and the smallest levelwith deficient nodes is at mostlog n.

Proof. Let v be any node of largest level in the Pagoda. Notice that such a node must be deficient.

Suppose thatv is at position(j, x) in someDXN (d). The fact that every node must have all of its

parent positions occupied and the way theDXN is constructed ensure thatv is connected to at least

2j nodes at positions(0, y) in DXN (d), wherey is either the result of a right shift ofx by at most

j positions or a left shift ofx by at mostj positions, padded with arbitrary 0-1 combinations. Thus,

if j = d, then all positions in row 0 ofDXN (d) must be occupied. Ifj < d, then one can easily

check that all positions in rowj in DXN (d − 1) must be occupied. Hence, the difference between
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the largest level and the smallest level with a deficient nodeis at mostd. Taking this into account,

one can show thatd ≤ log n, which yields the lemma. ⊓⊔

This lemma has some immediate consequences when combining it with results about the static

Pagoda:

Lemma 5.3.3 If Invariant 5.3.1 is true, then the dynamic Pagoda network with n nodes is a bounded

degree network and hasO(log2 n) levels, a diameter ofO(log n), and an expansion ofΩ(1/ log n).

Proof. The claim about degree, levels and diameter follow from Invariant 5.3.1, Lemma 5.2.4

and Lemma 5.3.2. Using the same routing strategy as in the proof of Lemma 5.2.5, one can show

that every permutation routing problem can be routed with anexpected congestionO(log n). This

can then be used to show that the dynamic Pagoda network withn nodes has an expansion of

Ω(1/ log n). ⊓⊔

Next we define local control algorithms that allow nodes to join and leave the system, denoted

by the operations JOIN and LEAVE, while preserving Invariant 5.3.1 at any time (under the condition

that nodes depart gracefully).

5.3.1 Isolated Join and Leave operations

First, we describe the JOIN and LEAVE protocol for the case that just one node wants to join or

leave the system at a time.

The isolated JOIN protocol

The basic strategy of the join protocol is to make sure that every new node is inserted at a place

that fulfills Invariant 5.3.1. Suppose that nodeu wants to join the system. This is done in two stages.
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Figure 5.3: Figure (a) shows the operation of stage 1 and (b) shows the operation of stage 2.

Stage 1 Suppose that nodev, at position(j, x) in DXN (i), is initiating JOIN(u) to insert node

u into the network. Ifv has a short-cut edge to a node at position(j, x0) in DXN (i + 1), then it

forwards the request to that node. Let this new node bev′. If v′ does not exist then we refer to node

v asv′.

We are now at some nodev′, at position(j′, x′) in DXN (i′). If v′ has a short-cut edge to a

node at position(j′, x′1) in DXN (i′ + 1) (here the column with suffix 1 is used to ensure an even

spreading of JOIN requests), then it forwards the request to that node. Let this node be the newv′.

We repeat this until no newv′ exists. Call this last nodev′′.

We are now at some nodev′′, at position(j′′, x′′) in DXN (i′′). If v′′ is not deficient thenv′′

forwards the request to the node at position(j′′ +1, x′′) in DXN (i′′) if j′′ < i′′, and else it forwards

the request to the node at position(0, x′′1) in DXN (i′′ + 1). This is the newv′′. This is repeated

until no newv′′ exists. Call this last nodew. The operation of this stage is shown in Figure 5.3(a)

wherev transfers the request along the edges shown. At this point stage 1 ends and we proceed with

stage 2 on this node.
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Stage 2 Initially, the JOIN request must be at some deficient nodew. If w = (i, y) in some

DXN (d) with 0 < i < d, thenw requests information about the column child (i.e. the child

reachable via the column edge) from all parents ofw. If all parents report an existing child,w can

integrateu as its column child without violating Invariant 5.3.1(a). Otherwise,w forwards the JOIN

request foru to any parentw′ reporting a missing column child, i.e. nodew′ is deficient.

If i = 0, thenw requests information from its parents about each tree childthat is a parent of its

column child. If all relevant tree children exist,w can integrateu as its column child, and otherwise

w forwards the JOIN request to any parentw′ reporting a missing tree child.

Finally, if i = d, thenw picks any of its missing tree childrenv and requests information from

w’s parents about each column child that is a parent ofv. If all relevant column children exist,w

can integrateu at the position ofv, and otherwisew forwards the JOIN request to any parentw′

reporting a missing column child. Figure 5.3(b) shows the operation of this stage where the insert

request is transfered along the edges shown.

This is continued untilu can be integrated.

The isolated LEAVE protocol

Suppose that a nodeu wants to leave the Pagoda. This is also done in two stages. Stage 1 is

the same as stage 1 for the JOIN protocol.

Stage 2 Initially, the LEAVE request must be at some deficient nodew. If w has a child, thenw

forwards the request to any one of its children. This is continued untilw does not have any children.

Once this is the case,w exchanges its position withu so thatu can leave the network.

The JOIN and LEAVE protocols above achieve the following result.
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Theorem 5.3.4 Any isolatedJOIN or LEAVE operation can be executed inO(log n) time and with

constant topological update work.

Proof. Consider any JOIN request starting at some nodev. From the construction, it can be seen

that the request is transferred through at mostd short-cut edges until the request reaches a nodev′

in DXN (d − 1) (the second largestDXN in the system). From a node inDXN (d − 1), at most

O(log n) column or tree edges have to be traversed to reach a deficient node w in DXN (d) or

DXN (d − 1). From nodew on, every time the request is transferred to a deficient node,the level

of the nodew′ receiving the request decreases by one. Hence, it follows from Lemma 5.3.2 that the

JOIN request can be transferred along at mostlog n deficient nodes. Thus, an isolated JOIN request

can be executed inO(d) = O(log n) time.

Also every LEAVE request is sent along at mostd short-cut edges andO(d) column or tree

edges until it reaches a deficient nodew. Fromw, it takes at mostlog n further nodes to reach a

node without children, at which the LEAVE request can be finished. Hence, also any isolated LEAVE

request can be executed inO(d) = O(log n) time.

The bound on the update work (i.e. the number of edge changes)is obvious. ⊓⊔

5.3.2 Concurrent Join and Leave operations

We also study the congestion of concurrent versions of the JOIN and LEAVE protocol. Notice

that the bounds are guaranteed.

The concurrent JOIN protocol

Suppose that nodeu wants to join the system. This can also be done in two stages. Stage 1 is

as before, but stage 2 has to be changed to resolve conflicts among multiple JOIN requests.
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Stage 2. Initially, the JOIN request must be at some deficient nodew at some position(j, x). Each

deficient node has a slot in its local memory for every position (j′, x) with j < j′ ≤ |x| (notice

that |x| is the dimension ofw’s DXN), every position(j′, x0) and(j′, x1) with 0 ≤ j′ ≤ |x| + 1,

and every position(j′, x00), (j′, x01), (j′, x10), and(j′, x11) with 0 ≤ j′ ≤ |x| + 2. Now, every

deficient nodew at position(j, x) does the following in each time step:

• Receive requests:Nodew receives new JOIN requests and assigns each request to an empty

slot (j′, y) with smallest possiblej′ andy. (If w runs out of empty slots, it may buffer the

request somewhere else, but in the situations that we will consider, this cannot happen.)

• Check Slots:Nodew checks for every occupied slot(j′, y) with j′ > 0 whether all the parent

positions of(j′, y) not managed byw are already occupied, either because there is already a

node at those positions, or the deficient node responsible for those positions has already filled

this slot. (This can be checked viaDXN edges.) If not,w sends the JOIN request in(j′, y)

over to the deficient nodew′ managing a parent slot to store it there. Furthermore,w checks

for every occupied slot(0, y) whether slot(|y| − 1, y/2) is already occupied. This is done by

using the balancing edges. If not,w moves the request from(0, y) to (|y| − 1, y/2).

• Insert: If the slot (j′, y) representing a child ofw fulfills j′ > 0 and is occupied, thenw

checks whether all the other parent positions of(j′, y) are already occupied by a node (which

can be done viaDXN edges). If so,w moves to position(j′, y) and inserts the node whose

join request is stored in slot(j′, y) at its old position. For the case thatj′ = 0, w inserts the

new node at position(j′, y) and sends to this node all requests in slots relevant for it. If any

of the other child positions ofw is still empty,w remains a deficient node.

Theorem 5.3.5 Any set of concurrentJOIN requests with at most one request for each old node can

be executed with congestionO(log n).
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Proof. First, we bound the congestion in non-deficient nodes, whichis created in stage 1 of the

JOIN protocol. Notice that any request starting at column(j, x) will proceed with columns(j, x0),

(j, x01), (j, x011), (j, x0111), etc. This guarantees that for any two requests starting at columns

x andy with x 6= y, they will traverse different columns for any columns of bitlength more than

max{|x|, |y|}, no matter whether these columns are in the sameDXN or not. Hence, as long as

every node has at most one JOIN request, at most2d requests will pass any node of the Pagoda in

stage 1, whered is the largest value so that the Pagoda has a node inDXN (d). This completes the

congestion bound for non-deficient nodes.

Due to the congestion bound, at most2d JOIN requests will arrive at any deficient node. Hence,

the largest slot position a JOIN request will ever occupy is at mostd + d/2 levels higher than the

largest slot position of a deficient node in the Pagoda. Sincelevels of deficient nodes can only be

d + 2 levels apart from each other, it is not difficult to see that the slots given to the deficient nodes

always suffice to accommodate all JOIN requests in our case. Now, each JOIN request will only

move along a fixed sequence of slots. This sequence has a length of at mostO(d), and it is the

same for all requests in slots of this sequence. Hence, any slot in a deficient node is traversed by

at mostO(d) requests, and since each deficient node only hasO(d) slots, the congestion bound for

the deficient nodes follows. ⊓⊔

The concurrent LEAVE protocol

Concurrent LEAVE requests can also be done in two stages. Stage 1 is as before, but stage 2

has to be changed to resolve conflicts among multiple LEAVE requests.

Stage 2. Initially, the LEAVE request must be at some deficient nodew at some position(j, x).

Each deficient node has a slot in its local memory for every position (j′, x) with 0 ≤ j′ ≤ j, every
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position(j′, x/2) with 0 ≤ j′ ≤ |x| − 1 if x’s least significant bit is 0, and every position(j′, x/4)

with 0 ≤ j′ ≤ |x| − 2 if x’s two least significant bits are 0. Now, every deficient nodew at position

(j, x) does the following in each time step:

• Receive requests:Node w receives new LEAVE requests and assigns each request to an

empty slot(j′, y) with largest possiblej′ andy. If there is no empty slot left, andy′ is the

lowest row number of slots inw, forward the request via a to the deficient node responsible

for row numbersy/2. (If there is no such deficient node,w may buffer the request somewhere

else, but in the situations we will consider, this cannot happen.)

• Check slots:Then,w checks for every occupied slot(j′, y) with j′ < |y| whether the all child

positions of(j′, y) are currently occupied. If so,w checks whether the slot in the deficient

nodes responsible for those positions are already filled. Ifnot,w moves the LEAVE request to

some deficient node, who will store the request in that slot.

• Completion: If the slot(j′, x) representingw’s position is occupied, thenw checks whether

all of its child positions are still occupied. If not, andj′ > 0, w orders the node at position

(j′ − 1, x) to take the position of the node whose LEAVE request occupies slot(j′, x) and

moves to position(j′ − 1, x). If j′ = 0, thenw checks whether its parent is a deficient node.

If not, w does the same as forj′ > 0. Otherwise,w takes over the position of the node in slot

(j′, x) and forwards all of its remaining LEAVE requests to its parent.

Notice that whenever a LEAVE request meets a JOIN request, the node that wants to join can

take over the position of the node that wants to leave, finishing the two requests immediately.

Theorem 5.3.6 Any set of at mostn/2 concurrentLEAVE requests can be executed with congestion

O(log n).
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Proof. The proof is very similar to the proof for the JOIN requests above. ⊓⊔

5.3.3 Routing

Suppose that we want to route unicast messages in the Pagoda network. Consider any such

unicast packetp with sources = (j, x) in DXN (i) and destinationt = (j′, z) in DXN (i′). First,

p picks a random pair of real values(c, r) ∈ [0, 1)2 (a precision oflog n bits for each is sufficient).

Then,p is sent in three stages:

1. Spreading stage:First, sendp from s along column edges and a tree edge to(i − 1, x/2)

in DXN (i − 1). Then, sendp upwards to the node(0, y) in DXN (i − 1) with y being the

closest prefix ofr. From there, forwardp to the node(k, y/2) in DXN (i− 2) with k/(i− 2)

being closest toc.

2. Shuttle stage:Forwardp along short-cut edges across nodes(k′, y′) with k′ being closest to

c andy′ being the closest prefix ofr until a node(k′, y′) in DXN (i′ − 2) is reached.

3. Combining stage:Perform stage 1 in reverse direction (withs replaced byt) to forwardp to

t.

Notice that as long ass andt are non-deficient nodes, this strategy is successful evenwhile nodes

join and leave the system, because the position of every nodethat is an non-deficient node will be

fixed in the Pagoda. Also, whenever a node leaves, the node replacing it can inherit its packets so

that no packet gets lost. More general strategies for ensuring reliable communication even while

nodes are moving, using the concept of virtual homes, can be found in Section 5.5.6.

With these facts in mind, one can easily design a protocol based on the random rank protocol

(see, e.g., [130, Chapter 7]) to show the following theorem.
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Theorem 5.3.7 If every node wants to send at most one packet, the packets have random destina-

tions, and every node being the destination of a packet does not move forO(log n) steps, the routing

strategy above can route the packets inO(log n) time, with high probability.

5.3.4 Data management

Finally, we show how to dynamically manage data in Pagoda. Weuse a simple trick to dis-

tribute data evenly among the nodes of the Pagoda so that it issearchable. Suppose that we have

a (pseudo-)random hash function mapping each data item to some real vector(c, r) ∈ [0, 1)2. The

current place of a data itemd is always the lowest possible position(j, x) in the Pagoda wherex is

the closest prefix ofr andj/|x| is closest toc among allj′/|x| with 0 ≤ j′ ≤ |x| (|x| denotes the

length ofx, and thus the dimension of theDXNowning(j, x)).

This strategy implies that ifDXN (d) represents the largest exchange network that has occupied

positions in the Pagoda, then all data items will be stored atnodes inDXN (d − 2), DXN (d − 1),

or DXN (d). Since every node will at most have to store anO(1/(d · 2d)) fraction of the data and

d · 2d = Θ(n), we get:

Theorem 5.3.8 The data management strategy ensures that every node is onlyresponsible for an

expectedO(1/n) fraction of the data at any time, and this bound even holds with high probability

if there are at leastn log n data items in the system.

Notice that none of the DHT-based systems can achieve the bounds above in their basic form

– they only achieve a bound ofO(log n/n). Combining the data management strategy with our

routing strategy above, requests to arbitrary, different data items with one request per node can be

served inO(log n) time, w.h.p. The results in Section 5.5 imply that this also holds for cases in

which some nodes want to access the same data item, i.e. we have a multicast problem, if requests
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can be combined.

5.4 The dynamic Pagoda network for non-uniform nodes

Next we show that the Pagoda network can also be used for arbitrary non-uniform node band-

widths. In this case, we want to maintain the following heap property to allow efficient multicasting,

apart from the invariants for the Pagoda network of uniform nodes.

Invariant 5.4.1 For any nodev in the Pagoda,

(a) Position: all of its parent positions are occupied,

(b) Consistency:For any pair of nodesv andw in the dynamic Pagoda,v andw are connected

in the dynamic Pagoda if and only ifv andw are connected in the static Pagoda.

(c) Heap: the bandwidth ofv is at most the bandwidth of any of its parents.

Similar to the uniform case, we require these invariants to be fulfilled while nodes join and

leave the system. Because of item (c), we cannot just do a single exchange operation to integrate or

remove a node but we have to be more careful. First, we describe the JOIN and LEAVE operations

for the isolated case, and then we consider the concurrent case.

5.4.1 Join and Leave operations

For any nodeu in the Pagoda,max-child(u) refers to the child of maximum bandwidth and

min-parent(u) refers to the parent with minimum bandwidth.
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The isolated JOIN protocol

Suppose that nodev is executing JOIN(u) to insert a new nodeu with bandwidthb(u) into the

network. This is done in three stages. Stages 1 and 2 are identical to the uniform case. So it remains

to describe stage 3 which is similar to inserting a node in a binary heap.

Stage 3 Once the JOIN request foru has reached a deficient node with an empty column or tree

child position in whichu can be integrated without violating Invariant 5.4.1(a),u is integrated there

with active bandwidtha(u) equal to the minimum ofb(u) and the bandwidth of its min-parent. The

active bandwidth is the bandwidth it is allowed to use without violating Invariant 5.4.1(b). Then,

u repeatedly comparesb(u) with a(u). If a(u) < b(u), it replaces its position with the position

of its min-parent and afterwards updatesa(u) to min{b(u), b(min-parent(u))}. Onceu reaches a

position witha(u) = b(u), the JOIN protocol terminates. The process of movingu upwards is

calledshuffle-up.

The isolated LEAVE protocol

Suppose that a nodeu wants to leave the Pagoda. Then it first sets its active bandwidth tob(u).

Afterwards,u repeatedly replaces its position with its max-child and updates its active bandwidth

to a(u) = b(max-child(u)) until it reaches a position with no child. At this point,u is excluded

from the system so that Invariant 5.4.1 is maintained. The process of movingu downwards is called

shuffle-down.

Bandwidth changes

If the bandwidth of some nodeu increases, we use the shuffle-up procedure, and if the band-

width of some nodeu decreases, we use the shuffle-down procedure to repair Invariant 5.4.1.
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Isolated update requests have the following performance.

Theorem 5.4.2 Any isolated join operation, leave operation, or bandwidthchange of a node needs

O(log2 n) time and work to repair the invariant.

Proof. First, consider the insertion of some nodeu. The process of moving the request ofu

downwards only needsO(log n) time. According to Lemma 5.3.3,u is integrated at some level

ℓ = O(log2 n). Hence, the shuffle-up process only requiresO(log2 n) messages and edge changes

because each exchange of positions betweenu and some parentv to repair Invariant 5.4.1 movesu

one level upwards and requires updating only a constant number of edges. Every shuffle operation

maintains the invariant for all nodes involved in it. Hence,the total time and work isO(log2 n).

For the case of an isolated leave operation of nodeu, it holds that the leave request would

be transferred alongO(log2 n) levels according to Lemma 5.3.3. Thus, the shuffle-down process

requiresO(log2 n) messages and edge changes. Hence, the total time and work required for an

isolated leave operation isO(log2 n). Bandwidth changes are handled as either a shuffle-up or

shuffle-down and hence the time and work requirements for bandwidth change are alsoO(log2 n).

⊓⊔

The concurrent JOIN protocol

The only difference between the isolated and concurrent JOIN protocol is that we need to be

more careful about exchanging positions. If a nodeu wants to replace its position with some parent

v, thenu checks whetherv is a node that has not finished its JOIN operation or bandwidth increase

operation yet (i.e.a(v) < b(v)). If so,u does nothing. Otherwise,u replaces its position withv.
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The concurrent LEAVE protocol

Also the concurrent LEAVE protocol is similar to the isolated LEAVE protocol, with the only

difference that if some nodeu in the process of leaving the network wants to replace its position

with some childv, u first checks whetherv is a node that has not finished its LEAVE operation or

bandwidth decrease yet (i.e.a(v) > b(v)). If so,u does nothing. Otherwise,u replaces its position

with v.

Bandwidth increase or decrease is handled similarly. The next lemma shows that the concurrent

operations always terminate with a work that is at most the sum of the work for isolated update

operations.

Lemma 5.4.3 For any set ofk concurrent insertions, deletions, and bandwidth changes of nodes,

the work and time required to repair Invariant 5.4.1 isO(k log2 n).

Proof. The work bound is obvious. Thus, it remains to prove the time bound.

Considerk concurrent update requests. From the analysis in the uniform case we know that

O(k log n) work is necessary for nodes of JOIN requests to be integrated into the system. Each time

step progress is made here until all JOIN requests are integrated.

Afterwards, we mark all nodes with 1 that have not completed their JOIN or bandwidth in-

crease operation yet, all nodes with -1 that have not completed their LEAVE or bandwidth decrease

operation yet, and all other nodes with 0. Suppose that thereis at least one node marked as 1. Then

let v be any of these nodes of minimum level. Since the level ofv must be at least 1 (as the root

cannot be a 1-node), it can replace its position with its min-parent, thereby making progress.

On the other hand, suppose that there is at least one node marked as -1. Then letv′ be any of

these nodes of maximum level. Ifv′ does not have any children, thenv′ can leave, and otherwise it

can replace its position with its max-child, thereby makingprogress in any case.
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Hence, we make progress in every time step. Since the total work of the shuffle-up, shuffle-

down, and departure operations is bounded byO(k log2 n), the time spent for executing these oper-

ations is also bounded byO(k log2 n). ⊓⊔

5.5 Multicasting

Finally, we study how well the non-uniform Pagoda supports arbitrary concurrent multicasting.

We first define the concurrent multicast problem, provide a routing strategy in the Pagoda network

to route multicast requests and then finally show that the strategy is competitive with respect to

congestion in the best possible network for the given problem.

5.5.1 The concurrent multicast problem

In the concurrent multicast problem, we are given a set of client-server-demand triples called

streams, (Tk, sk,Dk), whereTk is a set of client nodes served by a server nodesk andDk is a

demand vector which specifies the flow demanded ofsk by each client node fork ≥ 1. All the k

multicast requests are to be satisfied concurrently and we are interested in the congestion caused

in the Pagoda network due to the flows created. We are interested in comparing the congestion

created in the Pagoda network to that of an optimal network ofdegree∆OPT for the given multicast

problem. Notice that our definition of the problem allows fora single multicast stream to have

different classes of service based on the demand vector.

5.5.2 Routing strategy

We start by constructing a flow system for one server,sk, and one clientt ∈ Tk. We name

this flow system,fk,t. We assume thatsk is a node inDXN (i) andt is a node inDXN (j). Our
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routing strategy has three stages, called thespreadingstage, theshuttlestage and thecombining

stage, described below.

1. Spreading stage: This stage spreads flow originating atsk in DXN (i) evenly among the

nodes inDXN (i − 2). This is done in three steps.

a. Move the flow fromsk along column edges to the top node inDXN (i).

b. Move the flow upwards to the bottom node inDXN (i−1) along the tree edge connecting

the twoDXN ’s. From there, cut the flow into2i−1 flow pieces of uniform size and send

piecei upwards to node(0, i) along the unique path of de Bruijn edges representing

right shifts.

c. Move all flow from the top nodes inDXN (i − 1) to the bottom nodes inDXN (i − 2)

along tree edges. Every bottom node inDXN (i− 2) sends flow along its column edges

so that each node in the column gets the same fraction of flow. That is, at the end every

node inDXN (i − 2) has a1/((i − 1)2i−2) fraction of the flow ofsk.

2. Shuttle stage:Short-cut edges are used to send the flows forward toDXN (j−2) (which may

be upwards or downwards in the Pagoda) so that the flows remainevenly distributed among

the nodes in each exchange network visited fromDXN (i − 2) to DXN (j − 2).

3. Combining stage: This stage is symmetric to stage 1, i.e. we reverse stage 1 to accumulate

all flow in t.

This results in a flow system,fk,t, for a sourcesk and a destinationt ∈ Tk. Let fk,t(e) be

the flow through any edgee in this flow system. The procedure is repeated for each clientt ∈ Tk.

We now construct a flow system,fk, for the streamk. We lay the flow systemsfk,t one on top of

the other. The flow through an edge in systemfk is the maximum flow through the same edge in
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eachfk,t. That is, letfk(e) be the flow through any edgee in flow systemfk. Then we have the

following:

fk(e) = max
t∈Tk

fk,t(e)

Note that we select the maximum flow because if there are two flows of the same stream going

through an edge then we simply keep the one with the higher bandwidth (the lower bandwidth

stream may be reconstructed from the higher one). We use flow systemfk to route multicast flow

for streamk.

5.5.3 Competitiveness

In this section we show that the Pagoda network isO(∆OPT +log n)-competitive with respect

to congestion in the best possible network of degree∆OPT when the multicast problem is posed as

a flow problem. Specifically, we prove the following theorem.

Theorem 5.5.1 The Pagoda network onn nodes of non-uniform bandwidth that satisfies Invari-

ant 5.4.1 has a competitive ratio ofO(∆OPT + log n) for any multicast flow problem compared to

the congestion in an optimal network for this problem whose degree is bounded by∆OPT.

Proof. Let OPT be a network of degree∆OPT that routes the given flow system with congestion

COPT. Without loss of generality, we assume that every demand is at most the bandwidth of the

source and destination.

Consider any nodeu in pagoda. Let it be in exchange networkDXN (i). We show that the

congestion at this node due to the flow system resulting from our routing strategy above is no more

than O(log nCOPT) due to stages1 and 3 and O(∆OPTCOPT) due to stage2. We show these

bounds in parts. We first bound the congestion atu due to stage1, c1(u). The flows throughu

due to stage1 are the sum of the flows that originate inDXN (i), DXN (i + 1) andDXN (i + 2).
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Let the congestion due to each of these bec1a(u), c1b(u) andc1c(u) respectively. Clearly,c1(u) =

c1a(u) + c1b(u) + c1c(u). We bound each of these three separately:

Stage 1a: Nodeu receives flow from nodes that are below it (in the same column)in exchange

networkDXN (i). We call this setSu,1a. The flow is
∑

k maxv∈Su,1a{dk(v)}. Note that the max

term is used since flows belonging to the same stream are combined, resulting in a flow of largest

demand among these. Therefore, the congestion atu is:

c1a(u) =
1

b(u)

∑

k

maxv∈S{dk(v)} ≤
∑

v∈S

∑

k

dk(v)

b(v)
≤ |Su,1a| · COPT

The setSu,1a contains at mostlog n nodes. Thereforec1a(u) ≤ log n · COPT.

Stage 1b:Nodeu receives flow from the bottom nodes ofDXN(i). Let f ′
k(·) be the flow sent up by

a bottom node. Thus, each bottom node sends a flow off ′
k(·)/2i to each top node. Note thatf ′ is

purely the spreading caused by stage 1b.

Let Su,1b be the set of bottom nodes with paths crossingu, and letD be the set of top nodes

with paths crossingu. We now bound|Su,1b| and|D|. Let u be in levelh of DXN(i). There are2i

nodes in each level ofDXN(i), and each node has an address ofi bits. Due to the bit-shift routing

of the de Bruijn graphs, the number of paths crossingu is |Su,1b| · |D| = 2i. This can be seen by

observing that the nodes inSu,1b must have the samei − h most significant bits asu and nodes in

D must have the sameh least significant bits asu giving |Su,1b| = 2i−h and|D| = 2h.

The flow from each nodev ∈ Su,1b that reachesu is
|D|·f ′

k(v)

2i , which is the number of nodes in

D times the amount of flow destined for each node in the top row ofDXN (i). Since |D|
2i = 1

|Su,1b| ,

this becomes
f ′

k(v)
|Su,1b| .

Since flows belonging to the same multicast group merge into one flow equal to the maximum

of the two it follows that the flow that reachesu is
∑

k maxv∈Su,1b

f ′

k(v)

|Su,1b| . Assumingv1 andv2 are
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the two tree children ofv, the congestion atu is

c1b(u) =
1

b(u)

∑

k

maxv∈Su,1b

f ′
k(v)

|Su,1b|
≤

∑

v∈Su,1b

∑

k f ′
k(v)

b(v) · |Su,1b|

≤ 1

|Su,1b|
∑

v∈Su,1b

(c1a(v1) + c1a(v2)) ≤ 2 log n · COPT

Stage 1c:Nodeu receives flow from the bottom node in its column. Therefore, the congestion at

u, c1c(u) is at most the congestion at the bottom node in the exchange network. The bottom node

receives flow from its two descendants inDXN(i + 1). Note that the two descendants will send up

equal flows, let one of them bev. So,c1c(u) ≤ 2c1b(v) ≤ 4 log n · COPT.

We show the bounds for flows due to stage2 with the help of Lemma 5.5.2. We need to lower

bound the congestion that an optimal network can achieve. Wedo this by showing how an optimal

network has limited bandwidth to send flows.

Lemma 5.5.2 LetEOPT be the set of edges in the optimum network. For any pair of setsX andY

that are subsets of the set of nodes, letD(X,Y ) =
∑

sk∈X maxv∈Tk∩Y {dk(v)} andB(X,Y ) =

∑

(u,v)∈EOPT∩X×Y min{b(u), b(v)}. ThenCOPT ≥ D(X,Y )/B(X,Y ).

Proof. Consider any pair of setsX,Y ⊆ V . B(X,Y ) as defined in the statement measures

the bandwidth between setsX and Y . Note that it is not necessary thatX and Y form a cut.

Similarly, D(X,Y ) is the demand thatX asks ofY . The ratio ofB(X,Y ) to D(X,Y ) is the

average congestion. The maximum congestion must be at leastthe average congestion. Therefore

COPT ≥ D(X,Y )
B(X,Y ) . ⊓⊔
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Stage 2:Let U be the set of nodes in the Pagoda which belong to all exchange networks above and

including DXN(i + 1). Let Z be all nodes in exchange networkDXN(i + 2). Let V be all nodes

below and including exchange networkDXN(i + 3). Let the collective flow through exchange

networkDXN(i) bef . Any stream whose source is inU ∪ Z and has a destination inV ∪ Z must

go throughDXN(i) according to our routing strategy. The expression for the flow is:

f =
∑

sk∈U∪Z

maxv∈V ∪Zdk(v)

Due to lemma 5.5.2 we boundf as follows:

f ≤ (|U |∆OPT max
i∈V ∪Z

{bi} + |U ∪ Z|∆OPT max
i∈V

{bi} + |Z|∆OPT max
i∈Z

{bi}) · COPT

The first term accounts for bandwidth betweenU andV ∪ Z, the second term for bandwidth

betweenV andU ∪ Z, and the third term for bandwidth withinZ. Hence,

f ≤ 3 |U ∪ Z|∆OPT max
i∈V ∪Z

{bi} · COPT ≤ 3 |U ∪ Z|∆OPT bu · COPT

Since the Pagoda spreads tree flow evenly across all nodes in each exchange network, the flow

throughu is at most f
|DXN (i)| . Thereforec2(u) ≤ f

|DXN (i)|·bu
. The construction of the Pagoda

implies that|U ∪ Z| < 2 |Z|, and|DXN (i)| ≥ |Z|
12 . Thus,c2(u) ≤ 72 ∆OPT · COPT.

The congestion atu due to stage 3 is identical to the congestion due to stage 1 because the two

cases are symmetric. Hence,c(u) = 2 c1(u)+c2(u) ≤ (14 log n+72 ∆OPT) ·COPT. The theorem

follows. ⊓⊔
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5.5.4 Turning multicast flows into trees

In practice, it may be expensive or impossible to divide and recombine streams. Instead, we

choose a pseudo-random hash functionh that maps every nodev in the Pagoda to a pair of real

values(c, r) ∈ [0, 1)2. Similar to the routing strategy in Section 5.3.3, we can then adapt the

multicast scheme in the following way for a sources and targett:

1. Spreading stage:This stage has three sub-stages as earlier. Stage (a) is the same as above,

but instead of spreading the flow in (b), we route all flow to thenode(0, y) in DXN (i − 1)

with y being the closest prefix ofr. From there during stage (c), we forward the flow to the

node(k, y/2) in DXN (i− 2) with k/(i − 2) being closest toc. (In the above, notice that we

are comparing a label in[2]i with a real numberr which is done by treating the label in[2]i

as a binary decimal number which then represents a real number in [0, 1) uniquely.)

2. Shuttle stage: Forward the flow along short-cut edges across nodes(k′, y′) with k′ being

closest toc andy′ being the closest prefix ofr until a node(k′, y′) in DXN (j−2) is reached.

3. Combining stage:Reverse the spreading stage to send the flow tot.

Multicast flows that belong to the same stream are combined sothat for every edgee, the flow for

that stream throughe is the maximum demand over all flows of targetst that are part of that stream.

Using this rule, it is not surprising that the expected congestion of our integral flow scheme is equal

to the congestion of the divisible flow scheme above.

Theorem 5.5.3 The integral multicast flow scheme has an expected competitive ratio ofO(∆OPT+

log n) compared to an optimal network with degree∆OPT.

Proof. The theorem can be shown by following the line of arguments inthe proof of Theorem 5.5.1.

Here, we just give an intuition of why the theorem is correct.We start with bounding the expected
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congestion for stages 1 and 3.

Lemma 5.5.4 The expected congestion from routing the spreading stage isO(log n)-competitive

against an optimal network of degree∆OPT.

Proof. Let di be the total demand requested by nodei across all streams, and letbi be nodei’s

bandwidth.

Consider the congestion on any node inDXN (i) due to stage (a) of the spreading stage. Since

flow is sent up along column edges, the maximum congestion occurs at the top nodes ofDXN (i).

If dmax is the largest demand of any node in some nodev’s column, thenv must route at most

(i + 1) · dmax demand, under the worst case assumption that the demands arefor different streams

and cannot be combined. Sincev has at least the bandwidth of every node with demanddmax, this

is O(log n)-competitive with respect to congestion.

Now consider the congestion at any node inDXN (i − 1) caused by stage (b) of the spreading

stage. Here, any node(0, j) in DXN (i−1) receives flow along the column edges from node(i−1, j)

in DXN (i − 1) which receives flow from at most two nodes(0, j0) and(0, j1) in DXN (i). Since

the nodes inDXN (i) have flow of at most(i+1)dmax from stage (a), the demand at any node(0, j)

in DXN (i − 1) is at most2(i + 1)dmax which isO(log n)–competitive with respect to congestion.

From the bottom nodes inDXN (i − 1) the flow reaches a top node inDXN (i − 1). Since these

top nodes are chosen independently and uniformly at random,the expected demand at any of the

top nodes is no more than the demand at the bottom nodes. Further, the bit-shift routing properties

of the de Bruijn graph [130] which can be extended to DXN implythat the expected demand at the

intermediate nodes inDXN (i− 1) would be no more than the demand at the bottom nodes. Putting

these arguments together, one can show that the expected congestion at the top nodes inDXN (i−1)

is O(log n)–competitive.
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Similar arguments apply to stage (c) of the spreading stage and one can show that the expected

congestion at any node inDXN (i − 2) is O(log n)–competitive. ⊓⊔

The following lemma bounds the expected congestion due to stage 2.

Lemma 5.5.5 The expected congestion from routing flow in the shuttle stage isO(∆OPT)–competi-

tive against an optimal network of degree∆OPT.

Proof. Consider the boundary between any two DXN networks. The flowscrossing this boundary

upwards (resp. downwards) along short-cut edges must have aset of sourcesS and a set of desti-

nationsT with S ∩ T = ∅. Hence, there is a cut in the optimal network that all these flows have

to cross. Furthermore, since we are sending exactly one copyof the stream across the cut, we are

sending no more flow than OPT must send. The same upper bound onthe demand across a cut as

shown in Lemma 5.5.2 holds as in the divisible flow case. Sincethe nodes along which the flows

travel are randomly selected, the expected congestion at any node would be the total flow divided

by the number of nodes in the DXN, which implies that the congestion isO(∆OPT)-competitive in

expectation. ⊓⊔

Combining the two lemmata and noting that the congestion dueto stage 3 is no more than the

congestion of stage 1, yields Theorem 5.5.3. ⊓⊔

5.5.5 Multicast streaming

Next, we address the issue of how to use the multicasting capabilities for multimedia streaming

where peers can enter and leave a multicast stream at any time. To ensure reliable streaming, a

mechanism is needed to join and leave a multicast stream, to reserve bandwidth in the nodes along

that stream, and to use a local admission control rule for admitting multicast stream requests in a
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fair and transparent way.

Joining and leaving a multicast stream

Consider the situation that nodeu in the Pagoda wants to join a multicast streamS of source

s. Nodeu then prepares a control packet containing the demandd requested by it and sends the

control packet tos as described in Section 5.5.4. Along its way, the control packet will try to

reserve a bandwidth ofd. If it succeeds, it will continue to reserve bandwidth alongits way until it

reaches a point in which for the streamS a bandwidth of at leastd is already reserved.

Every node along the multicast stream will only store for each of its incoming edges the client

requesting the stream with the largest demand.

Suppose now that some nodeu wants to leave a multicast streamS. Then it first checks whether

it is the client with largest demand forS that traverses itself by checking its incoming edges. If not, u

does not need to send any control packet. Otherwise,u checks whether there is a path of some client

v for S into u. If so,u prepares a control packet with the largest demand of these clients. Otherwise,

u prepares a control packet with demand 0. This control packetis sent towards the sources of S

as in Section 5.5.4. Each time the control packet reaches a node v that is also traversed by other

clients toS (that arrive at different incoming edges), the demand of thecontrol packet is updated

to the largest demand of these clients. This is continued until the control packet reaches a nodev

traversed by some client forS with demand larger than the original demand ofu.

Rate reservation

For a rate reservation scheme to be transparent and fair, a policy is needed that gives every peer

a simple, local admission control rule with the property that if a request is admissible according to

this rule, then the rate reservation request should succeedwith high probability. We will investigate
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two such rules:

Suppose that every nodev representing a server in the network offers multimedia streams

s
(v)
1 , s

(v)
2 , . . . with ratesr(v)

1 , r
(v)
2 , . . . so that

∑

i r
(v)
i ≤ b(v). Then consider the following rules for

some clientv.

• Admission rule 1: Admit any multicast request to some serverw as long asb(v) ≤ b(w) and

the total demand of the requests inv does not exceedǫb(v)/ log n.

• Admission rule 2: Admit any multicast request to some serverw as long asv is not belonging

to any other multicast group and the demand of the request does not exceedǫmin{b(v),b(w)}
log n .

Rule 1 will normally be the case in practice because servers of streams usually have a higher band-

width than clients, but rule 2 would also allow multicastingif this is not true.

Theorem 5.5.6 When using admission rule 1 or 2, every request fulfilling this rule can be accom-

modated in the Pagoda, w.h.p.

Proof. Recall the integral multicast routing strategy in Section 5.5.4. Consider any multicast

problem that fulfills rule 1 or rule 2. Using the proof of Theorem 5.5.1, one can easily show that

for any nodeu in the Pagoda,c1a(u) = c1b(u) = c1c(u) = O(ǫ) andc2(u) = O(ǫ). Hence, the

expected total amount of demand traversingu is O(ǫb(u)). Since any single demand throughu

can be at mostǫb(u)/ log n (demands from or to a nodev will always traverse only nodesw with

b(w) ≥ b(v)), and the flows for different servers follow paths chosen independently at random, it

follows from the well-known Chernoff bounds that the total amount of demand traversingu is also

O(ǫ) with high probability. Hence, making the constantǫ small enough, the admission rules 1 and

2 will work correctly with high probability. ⊓⊔

Notice that also a combination of rules 1 and 2 is allowed.
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5.5.6 Multicasting in a dynamic setting: virtual homes

Our multicast tree approach above has several problems. First, it requires to know the position

of the server in the Pagoda to join a stream from it, and second, it requires to update the multicast

stream each time the server or a client moves. Fortunately, this problem has an easy solution: For

every nodev, let h(v) ∈ [0, 1)2 be chosenindependenton its position in the Pagoda. For example,

h(v) may depend onv’s IP address. Thenv can treat the node closest toh(v) two DXNs abovev

as itspersonal virtual homethat only has to move ifv leaves its current DXN.

Suppose that every node continuously informs its virtual home about its current position and

that virtual home responsibilities are exchanged whenevernodes exchange positions. Thenv only

has to update its connection to the multicast stream if it leaves its current DXN. However, when

using the short-cut edges, such an update can be done in constant time so that the disruption of

service tov is kept at a minimum. While frequent switches between DXNs could cause frequent

update operations, a lazy virtual home update strategy can be used to easily solve this problem.

A third problem with dynamic conditions is that intermediate nodes may change their requested

bandwidth. We can useactivebandwidth restrictions to ensure that the previous invariant continues

to hold, so that routing is still valid. Since the invariant continues to hold, congestion remains low

and the admission control theorems remain true.

5.6 Chapter summary and acknowledgements

In this chapter we have shown that there exist deterministicconstructions of overlay networks

that can handle peers of non-uniform bandwidth efficiently.We showed that the resulting network,

Pagoda, guarantees a logarithmic diameter, bounded degree, and 1/logarithmic expansion. The

construction is also deterministic.
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Isolated peer join and leave operation can be done usingO(log2 n) time and work and reduces

to O(log n) time and constant topological update for the special case where all the nodes in the

network have same bandwidth. We also investigated the time and work bounds for the case of

concurrent join and leave operations.

Apart from the above properties, we also showed that the Pagoda network guarantees good

load balancing properties when used as a distributed hash table, in the case where all the nodes in

the network offer the same storage.

In addition, we demonstrated that the Pagoda network has a good competitive ratio with respect

to congestion for routing concurrent multicast requests (see Theorem 5.5.1).

In the current form, when the nodes have non-uniform storagecapacities, the Pagoda network

is not easily amenable as a DHT satisfying load balance properties. In fact, distributed data man-

agement for uniform storage systems is well understood as most structured overlay networks can be

easily used to arrive at a good data management strategy. Butfor the case of non-uniform storage

systems, very little is known. Only recently [133] solutions are proposed.

A preliminary version of this chapter appeared in [14]. Thiswork is done jointly with Ankur

Bhargava, Chris Riley and Mark Thober. Qian Li also participated in early stages of this work.
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Chapter 6

P2P Networks: Supervised P2P Systems

In the previous chapter, we saw that designing deterministic peer-to-peer networks is a highly

non-trivial problem. Though we presented a solution for this, the entire construction is quite com-

plex. On the other hand, it is known that traditional served-based systems can provide guarantees on

reliability and are therefore preferable for critical applications that need a high level of reliability.

But they are not easily scalable unless special high-cost hardware is employed. However, the advan-

tage of peer-to-peer systems is that they can scale to millions of sites even with low-cost hardware.

An interesting question is whether it is possible to marry the two approaches in order to share their

benefits without sharing their disadvantages. In this chapter, we proposesupervised peer-to-peer

systemsas a possible solution. Our approach also results in deterministic constructions.

6.1 Introduction

A supervised peer-to-peer systemis a system in which the overlay network is formed by a

supervisor but in which all other activities can be performed on a peer-to-peer basis without in-

volving the supervisor. That is, all peers that want to join (or leave) the network have to contact

115



the supervisor, and the supervisor will then initiate theirintegration into (or removal from) the net-

work. All other operations, however, may be executed without involving the supervisor. In order

for a supervised network to be highly scalable, we propose two central requirements that have to be

fulfilled:

1. The supervisor needs to store at most a polylogarithmic amount of information about the

system at any time (i.e. if there aren peers in the system, storing contact information about

O(log2 n) of these peers would be fine, for example), and

2. The supervisor needs at most a constant number of messagesto include a new peer into, or

exclude an old peer, from the network.

The second condition makes sure that the work of the supervisor to include or exclude peers from

the system is kept at a minimum. Still, one may certainly wonder whether supervised peer-to-peer

systems are really as scalable as pure peer-to-peer systemson the one hand and as reliable as server-

based systems on the other hand. In this chapter, we argue that our approach can result in highly

scalable and highly reliable systems.

6.1.1 Motivation

First of all, remember that even pure peer-to-peer systems need some kind of a “rendezvous

point”, such as a well-known host server [118] or a well-known web-address like gnutellahosts.com,

which allows new peers to join the system. The rendezvous point typically does not play any

role in the overall topology of the network but just acts as a bridge between new nodes and the

existing network. This means that nodes have to self-organize to form an overlay network with

good topological properties such as diameter, degree and expansion. In such a scenario, we saw in

the last chapter that (a) randomized constructions cannotguaranteea good expansion or diameter
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and (b) deterministic constructions involve complex balancing schemes [14] to arrive at a good

topology.

We show that allowing the supervisor to oversee the topologyof the overlay network, apart

from working as the rendezvous point, tremendously simplifies the problem of maintaining the

above mentioned desirable properties of the peer-to-peer network. Hence, as long as the commu-

nication effort of a supervisor for including or excluding apeer is only a low constant, supervised

designs should compete well with pure peer-to-peer systems.

Our approach has many interesting applications in the area of grid computing [127, 135, 33],

WebTV, and massive multi-player online gaming [49], as outlined in Section 6.7. A supervisor may

also serve, for example, as a reliable anchor for code execution rollback, which is important for

failure recovery mechanisms such as those used in the Time Warp system [39]. This would make

supervised peer-to-peer systems particularly interesting for grid computing [127]. With our concept,

supervised peer-to-peer systems can scale to millions of peers without requiring the supervisor to be

more powerful than just having a normal workstation with a 100 Mbit/s connection. Also, it is much

easier to recover from temporary network partitions with a supervised system than a pure peer-to-

peer system. This is useful for systems in which fast recovery is important due to real-time content,

such as Internet radio or Internet TV. Finally, though supervised peer-to-peer systems are not as

stable as server-based systems with powerful servers, their advantage is that because the supervisor

only takes care of the topology but may not be involved at all in peer-to-peer activities, it is from a

legal point of view a much safer design than the server-baseddesign.

6.1.2 Our Results

In Section 6.2, we show how to combine known techniques proposed for peer-to-peer systems

such as the hierarchical decomposition approach of CAN [125], and the continuous-discrete ap-
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proach [110] in a novel way to obtain a general framework for the design of supervised peer-to-peer

systems. Our approach requires the supervisor to store aconstantamount of information about the

system at any time and to only send and receive alow constantnumber of messages in order to inte-

grate or remove a peer from the system. We demonstrate our approach by showing how to maintain

a supervised hypercube network and a supervised de Bruijn network with it. Our scheme can also be

extended to allow concurrent join/leave operations or allow multiple supervisors as outlined in Sec-

tion 6.4. In order to demonstrate that supervised systems can be made highly scalable, we propose

solutions in Section 6.4 that allow a supervisor to serve many join and leave requests concurrently

and then extend our basic design to allow multiple supervisors. Afterwards, in Sections 6.5 –6.6 we

look at robustness issues. We discuss how our supervised design can be extended to handle random

faults. We also present and analyze a simple scheme involving the supervisor so that the resulting

network is robust even against adaptive adversarial join/leave attacks, a study recently initiated in

[132]. Finally, we discuss in Section 6.7 various applications of our supervised approach.

6.1.3 Related work

Special cases of supervised peer-to-peer systems have already been formally investigated [118,

128, 127], but to the best of our knowledge a general framework for supervised peer-to-peer systems

has not been presented yet.

In [118], the authors consider a special node called thehost serverthat is contacted by all

new peers that join the system. The overlay network maintained by the host server is close to a

random-looking graph. As shown by the authors, under a stochastic model of join/leave requests the

overlay network can, with high probability, guarantee connectivity, low diameter, and low degree.

Alternative designs were later proposed in [128, 127]. In [128] it is shown how to maintain a tree

topology using a supervisor for guaranteed broadcasting and in [127] it is shown how to maintain a
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supervised overlay network with de Bruijn graph topology for grid computing and load balancing.

In this work, we propose a unified model that enables one to create a large class of supervised

overlay networks.

Most of the distributed systems are either server-based or peer-to-peer. For example, Napster

is rather server-based because all peer requests are handled at a single location. Also systems

like SETI@home [135], Folding@home [45], and distributed.net [33] are heavily server-oriented

because they do not allow peer-to-peer interactions. Othersystems such as the IBM OptimalGrid

allow communication between peers but it still uses a star topology and therefore is still closer to

being server-based than supervised. Extensive research oncomputational grids is also done in the

Globus Alliance but they do not appear to consider topological designs in their research.

The line of research that is probably closest to our approachis the work on overlay networks in

the area of application-layer multicasting. Among them areSpreadIt [31], NICE [9], Overcast [62],

and PRM [10], to name a few. However, these systems only focuson specific topologies such as

trees, and they do not seem to be generalizable to a universalapproach for supervised systems. Other

protocols for application-layer multicasting such as Scribe [20], Bayeux [157], I3 [141], Borg [154],

SplitStream [21], and CAN-Multicast [126] are rather extensions of a pure peer-to-peer system. For

an evaluation of several of these protocols see [22], for example.

6.2 A general framework for supervised peer-to-peer systems

Our general framework for supervised peer-to-peer systemsneeds several ingredients, includ-

ing the hierarchical decomposition technique [125], the continuous-discrete technique [110], and the

recursive labeling technique. After presenting these techniques we show how to put them together

in an appropriate way so that we obtain a universal approach for supervised peer-to-peer systems.
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Afterwards, we give some examples that demonstrate how to apply this approach to maintain a

supervised hypercubic network and a supervised de Bruijn network.

6.2.1 The hierarchical decomposition technique

Consider anyd–dimensional spaceU = [0, 1)d for somed ≥ 1. Thedecomposition treeT (U)

of U is an infinite binary tree in which the root representsU and for every nodev representing the

subcubeU ′ in U , the children ofv represent two subcubesU ′′ andU ′′′, whereU ′′ andU ′′′ are the

result of cuttingU ′ in the middle at the smallest dimension in whichU ′ has a maximum side length.

Let every edge to a left child inT (U) be labeled with 0 and every edge to a right child inT (U)

be labeled with 1. Then the label of a nodev, is the sequence of all edge labels encountered when

moving along the unique path from the root ofT (U) downwards tov. Ford = 2, the result of this

decomposition is shown in Figure 6.1.

1110

000

0100

10

0

. . . . . . .. . . . . . .

0 1

0 1 0 1

0 1 0 1 0 1 1

Figure 6.1: The decomposition tree ford = 2.

Our goal for the supervised peer-to-peer system will be to map the peers to nodes ofT (U) so

that

1. the subcubes of the (nodes assigned to the) peers are disjoint,
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2. the union of the subcubes of the peers gives the entire setU , and

3. the peers are only distributed among nodes of two consecutive levels inT (U).

The above goals are important for the following reason. Recall the CAN based approach of

[125]. The basic idea is to combine an infinite complete binary tree T with a family of graphs

G = {Gℓ|ℓ ∈ IN0} with |V (Gℓ)| = 2ℓ for everyℓ ≥ 0. The first two goals are required so that every

path down the tree starting with the root contains exactly one peer which is the basic invariant for the

CAN-based approach [125]. In order to keep the degree low, a basic goal of the CAN approach is to

keep the nodes in as few levels of the treeT as possible. This can be quantized bylevel imbalance

being defined as the maximum difference between the levels ofthe nodes inT . This parameter is

called theglobal gapin [2]. The third goal thus asks for an assignment of nodes to levels so that the

level imbalance is close to optimal.

Whereas CAN-based peer-to-peer systems usually satisfy the first two properties, they have

problems with the third property. For example, using randomized strategies [2, 125] involve ad-

vanced techniques such as multiple-choice hashing [107] and result in a level imbalance that is

within O((log log n)/ log d) for d ≥ 2. But as we will see, it will be easy for our supervised

peer-to-peer approach to also maintain the third property using deterministic strategies.

6.2.2 The continuous-discrete technique

The basic idea underlying the continuous-discrete approach [110] is to define a continuous

model of graphs and to apply this continuous model to the discrete setting of a finite set of peers.

Consider anyd-dimensional spaceU = [0, 1)d, and suppose that we have a setF of functions

fi : U → U , i ≥ 1. Then we defineEF as the set of all pairs(x, y) ∈ U2 with y = fi(x) for some

i. Given any subsetS ⊆ U , let Γ(S) = {y ∈ U \ S | ∃x ∈ S : (x, y) ∈ EF }. We say that(U,EF )

121



is connectedif for any subsetS ⊂ U it holds thatΓ(S) 6= φ.

Consider now any set of peersV , and letR(v) be the region inU that has been assigned to

peerv. Let GF (V ) be the graph with node setV and edge set

E(GF ) = {(v,w) ∈ V × V | ∃x ∈ R(v), ∃y ∈ R(w), (x, y) ∈ EF }

That is,E(GF ) contains an edge(v,w) for every pair of nodesv andw for which there is an

edge(x, y) ∈ EF with x ∈ R(v) andy ∈ R(w). Using the above setting, the following theorem

holds:

Theorem 6.2.1 Suppose that∪v∈V R(v) = U and(U,EF ) is connected, then alsoGF (V ) is con-

nected.

The proof of the above theorem follows from the definitions. Thus, to arrive at a situation

whereGF (V ) is connected we have to ensure that∪v∈V R(v) = U . But the goals of the hierarchical

decomposition technique ensure such an assignment.

Let ρ = maxu,v∈V |R(v)|/|R(u)| be the smoothness [110] of the above assignment scheme.

Then, using the properties of the hierarchical decomposition technique it holds thatρ is indepen-

dent ofn andρ ≤ 2. Havingρ a constant has nice implications as described in [110] even when

considering an arbitrary setF of functions.

6.2.3 The recursive labeling technique

In the recursive labeling approach, the supervisor assignsa label to every peer that wants to

join the system. The labels are represented as binary strings and are generated in the following

order:

0, 1, 01, 11, 001, 011, 101, 111, 0001, 0011, 0101, 0111, . . .
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Basically, ignoring label 0, when stripping off the least significant bit, the supervisor is first creating

all binary numbers of length 0, then length 1, then length 2, and so on. More formally, consider

the mappingℓ : IN0 → {0, 1}∗ with the property that for everyx ∈ IN0 with binary representation

(xd . . . x0)2 (whered is minimum possible),

ℓ(x) = (xd−1 . . . x0xd)

Thenℓ generates the sequence of labels displayed above. In the following, it will also be helpful

to view labels as real numbers in[0, 1). Let the functionr : {0, 1}∗ → [0, 1) be defined so that

for every labelℓ = (ℓ1ℓ2 . . . ℓd) ∈ {0, 1}∗, r(ℓ) =
∑d

i=1
ℓi

2i . Then the sequence of labels above

translates into

0, 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, . . .

Thus, the more labels are used, the more densely the[0, 1) interval will be populated. When using

the recursive approach, the supervisor aims to maintain thefollowing invariant at any time:

Invariant 6.2.2 The set of labels used by the peers is{ℓ(0), ℓ(1), . . . , ℓ(n − 1)}, wheren is the

current number of peers in the system.

The above invariant is useful for our approach as shown in Section 6.2.4 so that all the three

goals of the hierarchical decomposition technique are met.

This invariant is preserved when using the following simplestrategy:

• Whenever a new peerv joins the system and the current number of peers isn, the supervisor

assigns the labelℓ(n) to v and increasesn by 1.

• Whenever a peerw with labelℓ wants to leave the system, the supervisor asks the peer with
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currently highest labelℓ(n − 1) to take over the role ofw (and thereby change its label toℓ)

and reducesn by 1.

6.2.4 Putting all pieces together

Now we are ready to put the pieces together. We assume that we have a single supervisor for

maintaining the overlay network. In the following, the label assigned to some peerv will be denoted

asℓv. Givenn peers with unique labels, we define thepredecessorof peerv, denotedpred(v), as the

peerw for which r(ℓw) is closest from below tor(ℓv). We define thesuccessorof peerv, denoted

succ(v), as the peerw for which r(ℓw) is closest from above tor(ℓv) (viewing [0, 1) as a ring in

both cases). Given two peersv andw, we define theirdistanceas

δ(v,w) = min{(1 + r(ℓv) − r(ℓw)) mod1, (1 + r(ℓw) − r(ℓv)) mod1}

In order to maintain a doubly linked cycle among the peers, wesimply have to maintain the follow-

ing invariant:

Invariant 6.2.3 Every peerv in the system is connected topred(v) andsucc(v).

Now, suppose that the labels of the peers are generated via the recursive strategy above. Then

we have the following properties:

Lemma 6.2.4 Let n be the current number of peers in the system, and letn̄ = 2⌊log n⌋. Then for

every peerv ∈ V , |ℓv| ≤ ⌈log n⌉ andδ(v,pred(v)) ∈ {1/(2n̄), 1/n̄}.

So the peers are approximately evenly distributed in[0, 1) and the number of bits for storing a

label is almost as low as it can be without violating the uniqueness requirement.
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Now, recall the hierarchical decomposition approach. The supervisor assigns every peerp to

the unique nodev in T (U) at levellog(1/δ(p,pred(p))) with ℓv being equal toℓp (padded with 0’s

to the right so that|ℓv| = |ℓp|). As an example, if we have 4 peers currently in the system, then the

mapping of peer labels to node labels is

0 → 00, 1 → 10, 01 → 01, 11 → 11

With this strategy, it follows from Lemma 6.2.4 that all three demands formulated in the hierarchical

decomposition approach are satisfied.

Consider now any familyF of functions acting on some spaceU = [0, 1)d and letC(p) be

the subcube of the node inT (U) thatp has been assigned to. Then the goal of the supervisor is to

maintain the following invariant at any time.

Invariant 6.2.5 For the current setV of peers in the system it holds that

1. the set of labels used by the peers is{ℓ(0), ℓ(1), . . . , ℓ(n − 1)}, wheren = |V |,

2. every peerv in the system is connected topred(v) andsucc(v), and

3. there are bidirectional connections{v,w} for every pair of peersv andw for which there is

an edge(x, y) ∈ EF with x ∈ C(v) andy ∈ C(w).

6.2.5 Maintaining Invariant 6.2.5

Next we describe the actions that the supervisor has to perform in order to maintain Invari-

ant 6.2.5 during an isolated join or leave operation. For simplicity, we assume that all nodes are

reliable and trustworthy and also that peers depart gracefully i.e., they announce their departure to

the supervisor. (Non-graceful departures and untrustworthy nodes are treated in Section 6.5). We
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also assume that the supervisor can in each round send a message that can contain up to a constant

amount of information. We start with the following important fact which can be easily shown.

Fact 6.2.6 Whenever a new peerv enters the system, thenpred(v) has all the connectivity infor-

mationv needs to satisfy Invariant 6.2.5(3), and whenever an old peer w leaves the system, then it

suffices that it transfers all of its connectivity information topred(w) in order to maintain Invari-

ant 6.2.5(3).

The first part of the fact follows from the observation that whenv enters the system, then the

subcube ofpred(v) splits into two subcubes where one resides atpred(v) and the other is taken

over byv. Hence, ifpred(v) passes all of its connectivity information tov, thenv can establish

all edges relevant for it according to the continuous-discrete approach. The second part of the fact

follows from the observation that the departure of a peer is the reverse of the insertion of a peer.

Thus, if the peers take care of the connections in Invariant 6.2.5(3), the only part that the

supervisor has to take care of is maintaining the cycle. For this we require the following invariant.

Invariant 6.2.7 At any time, the supervisor stores the contact information of pred(v), v, succ(v),

andsucc(succ(v)) wherev is the peer with labelℓ(n − 1).

We now describe how to maintain Invariant 6.2.5 during any join or leave operation.

Join: If a new peerw joins, in order to satisfy Invariant 6.2.7, the following actions are performed.

In the following,S denotes the supervisor.

• S informsw thatℓ(n) is its label,succ(v) is its predecessor, andsucc(succ(v)) is its succes-

sor.

• S informssucc(v) thatw is its new successor.
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• S informssucc(succ(v)) thatw is its new predecessor.

• S askssucc(succ(v)) to send its successor information to the supervisor, and

• S asksv which is nowpred(w) to send the connectivity information according toF to node

w.

• S setsn = n + 1.

Leave: If an old nodew leaves and reportsℓw, pred(w), andsucc(w) in order to maintain Invariant

6.2.5(3), the following actions are performed. In the following, S denotes the supervisor. Recall

that we are assuming graceful departures.

• S informs v (the node with labelℓ(n − 1)) that ℓw is its new label,pred(w) is its new

predecessor, andsucc(w) is its new successor.

• S informspred(w) that its new successor isv andsucc(w) that its new predecessor isv.

• S informs pred(v) that succ(v) is its new successor andsucc(v) that pred(v) is its new

predecessor.

• S askspred(v) to send its predecessor information to the supervisor and toaskpred(pred(v))

to send its predecessor information to the supervisor.

• S asks nodev to transfer all of its connectivity information according to F to pred(v), and

• S setsn = n − 1.

Thus, the supervisor only needs to handle a constant number of messages for each arrival or

departure of a peer. In fact, at most 8 messages suffice for each operation, and each message is very

small. If we assume, for example, that the supervisor has a 100 Mbit/s connection, each message
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has a size of 64 bytes, we have 1,000,000 peers in the system, and each peer stays in the system for

a minute (on average), then the bandwidth of the supervisor is in principle high enough to handle all

of the arrivals and departures (though this would need a highparallelization of the handling of join

and leave requests, as discussed in Section 6.4). Moreover,a peer can join and leave the supervised

system with a constant number of communication rounds. Hence, our join method is much faster

than in pure peer-to-peer systems where the join request of apeer first has to be forwarded to the

right location, which usually takesΩ(log n) time.

6.3 Examples

In this section we show some examples to illustrate the powerof the supervised approach.

We show how to maintain dynamic variants of two well- known network topologies, namely the

hypercube and the de Bruijn network.

6.3.1 Dynamic Hypercube Network

Consider thed-dimensional Hypercube network with nodes labeled(x1, x2, . . . , xd) ∈ {0, 1}d

and nodesu andv are neighbors if and only if their labels differ in exactly one position.

For a supervised hypercubic network, letU = [0, 1) and selectF as the family of functions

FH := {f−
i , f+

i : U → U |i ∈ IN} with

f+
i (x) = (x + (1/2i)) mod1 and f−

i (x) = (x − (1/2i))mod1

Using the above family of functions, then the neighbors of point x ∈ U are defined as{y|y =

f−
i (x), xi = 1} ∪ {y|y = f+

i (x), xi = 0}.

Using our framework, the following lemma holds by Invariant6.2.5.
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Lemma 6.3.1 A supervised dynamic hypercubic network can be maintained with O(1) time and

work for each (isolated) join and leave request.

In addition to the above lemma, we now show that the dynamic hypercube has the following

topological properties.

Theorem 6.3.2 At any time, using the supervised framework, a dynamic hypercube can be main-

tained so that:

• the network has a degree ofO(log n)

• the network has a diameterO(log n) and,

• the network has an expansionΩ(1/log n).

Proof. The bound on the degree follows as each peerv is mapped to an intervalR(v) of size in at

most2/n wheren = 2⌊log n⌋ and each functionf ∈ FH maps an intervalI to another intervalf(I)

of length same as that of intervalI. Moreover, oncei ≥ 1 + log n, the intervalfi(I) is contained in

the regionR(pred(v)) ∪ R(v) ∪ R(succ(v)). Hence, the degree of any peer isO(log n).

For the diameter, we note that for any two pointsx = (x1, x2, . . . , xd) andy = (y1, y2, . . . , yd)

when usingFH , it takes at mostk edge traversals to adjust(x1, x2, . . . , xk) to (y1, y2, . . . , yk)

following the standard bit-flipping scheme of the hypercube. Sincex andy may differ in at most

O(log n) bit positions, it follows that the diameter of the dynamic hypercube isO(log n).

For the expansion, recall that the supervised approach mapspeers to at most two consecutive

levels of the decomposition tree. If all the peers are mappedto a single level of the tree then the

GFH
(V ) has ad–dimensional hypercube as a subgraph and hence has an expansion of Ω(1/ log n).

If the peers are mapped to two consecutive levels, thenGFH
(V ) has alog n–dimensional hypercube

as a subgraph and hence has an expansionΩ(1/ log n) = Ω(1/ log n). ⊓⊔
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Notice that the expansion we can guarantee using the supervised approach is better than what pure

hypercubic peer-to-peer systems like Chord [142] can achieve.

6.3.2 Dynamic de Bruijn Network

Recall the definition of thed–dimensional de Bruijn network where nodes are labeled(x1, x2,

. . . , xd) ∈ {0, 1}d and a node with label(x1, x2, . . . , xd) has nodes(0, x2, . . . , xd) and(1, x2, . . . ,

xd) as neighbors.

For a supervised de Bruijn network, consider the spaceU = [0, 1) and selectFD := {f0, f1 :

U → U} as the family of functions onU with

f0(x) = x/2 and f1(x) = (1 + x)/2

The family FD of functions approximate the de Bruijn edges. Hence, when using the super-

vised framework and maintaining Invariant 6.2.5, the following lemma holds.

Lemma 6.3.3 A supervised dynamic de Bruijn networkGFD
(V ) can be maintained withO(1) time

and work for each (isolated) join and leave request.

Moreover, the following theorem can be shown along the linesof Theorem 6.3.2. Notice that

the expansion that can be guaranteed is also better than known peer-to-peer systems that are based

on the de Briujn network [67, 110].

Theorem 6.3.4 At any time, using the supervised framework, a dynamic de Bruijn network can be

maintained so that:

• the network has a degree ofO(1)

• the network has a diameterO(log n) and,
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• the network has an expansionΩ(1/log n).

As these examples show, choosing the family of functionsF appropriately, various topologies

are possible.

6.4 Concurrency

In this section we extend our approach to concurrent join andleave operations and also provide

a way to allow multiple supervisors.

6.4.1 Concurrent Join/Leave Operations

In order to be able to handled join or leave requests in parallel, Invariant 6.2.5 just needs to

be extended by one more rule given below. In the following,predi(v) (resp.succi(v)) denotes the

ith predecessor, (resp. successor), ofv on the cycle of nodes. That is,pred0(v) = pred(v) and

predi(v) = pred(predi−1(v)).

4. Every peerv in the system is connected to itsdth predecessor and itsdth successor

In addition to this, given thatv is the node with labelℓ(n− 1), Invariant 6.2.7 needs to be extended

to:

Invariant 6.4.1 At any time, the supervisor stores the contact information of v, the2d successors

of v, and the3d predecessors ofv.

These invariants can be preserved as follows:
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Concurrent Join Operation In the following, letv be the node with labelℓ(n − 1). Let thed

new peers bew1, w2, . . . wd. Then the supervisor integrateswi betweensucci(v) andsucci+1(v)

for everyi ∈ {1, . . . , d}. As is easy to check, this will violate rule (4) for the2d closest successors

of v and thed − 2 closest predecessors ofv. But since the supervisor knows all of these nodes, it

can directly inform them about the change. In order to repairInvariant 6.4.1, the supervisor will

request information about thedth successor from thed furthest successors fromv and will setv to

wd. Thus, we obtain the following result:

Claim 6.4.2 The supervisor needs at mostO(d) work andO(1) time (given that the work can be

done in parallel) to processd join operations.

Concurrent Leave Operation Let thed peers that want to leave the system bew1, w2, . . . , wd.

For simplicity, we assume that they are outside of the peers known to the supervisor, but our strategy

below can also be easily extended to these cases. The strategy of the supervisor is to replacewi by

pred2(i−1)(v) for everyi. As is easy to check, this will violate rule (4) for thed closest successors

of v and the3d closest predecessors ofv. But since the supervisor knows all of these nodes, it

can directly inform them about the change. In order to repairInvariant 6.4.1, the supervisor will

request information about thedth predecessor from thed furthest predecessors fromv and theirdth

predecessors and will setv to pred2d(v). Thus, we obtain the following result:

Claim 6.4.3 The supervisor needs at mostO(d) work andO(1) time (given that the work can be

done in parallel) to processd leave operations.

6.4.2 Multiple Supervisors

In this section, we show multiple supervisors can work together in maintaining a single super-

vised peer-to-peer system. We assume that the number of supervisors it not too large so that it is
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reasonable to connect them in a clique.

In a network withk supervisorsS0, S1, · · ·Sk−1, the[0, 1)-ring is split into thek regionsRi =

[(i− 1)/k, i/k), i ∈ {1, . . . , k}, and supervisorSi is responsible for regionRi. The supervisors are

assigned distinct labelssi which is equal to the binary representation ofi using⌈log2 k⌉ bits. For

example, with4 supervisors, the labels of the supervisors are00, 01, 10 and11. Every supervisor

manages its region as described for a single supervisor above, with the exception of the borders of

its region. The borders are maintained by communicating with the neighboring supervisors on the

ring.

Each time a new node wants to join the system via some supervisor Si, Si forwards it to a

random supervisor who will integrate it into the system. To generate labels for the nodes in the

system, supervisorSi prepends its own label to the labels generated according to section 6.2.3 with

the modification that label1 is the first label to be generated. Thus in a system with 4 supervisors,

where supervisor 2 has labels1 = 01 supervisorS2 generates0111 as the label for the third node

to join the system underS2. To formalize the above discussion, letni be the number of nodes that

are being managed by supervisorSi currently with
∑n

i=1 ni = n being the total number of nodes

in the system currently. Then, supervisorSi maintains the following invariant:

Invariant 6.4.4 The set of labels generated by supervisori Si, i ∈ [k] is

{si · 1, si · 01, si · 11, si · 001, . . .}

where the· operator denotes binary concatenation.

The above sequence of labels is generated by stripping of thesi most significant bits and the

least significant bit, then supervisorSi is enumerating all binary numbers of length 0, followed by
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length 1 and so on. The mappingℓ : IN0 → {0, 1}∗ from section 6.2.3 can then be easily provided.

SupervisorSi also maintains the invariant that whenni nodes are in the system managed bySi

then the set of labels used is{ℓ(0), ℓ(1), . . . , ℓ(ni−1)}. Using techniques from section 6.2.1–6.2.3,

it can be shown that supervisorSi has to only take care of maintaining the doubly linked cycle of

peers and the peers have to maintain the connections according to Invariant 6.2.5(3).

Each time a nodev under some supervisorSi wants to leave the system,Si contacts a random

supervisor (which may also be itself) to provide a node that can replacev.

Thus, the join rule provides a random distribution of the peers among the supervisors and it is

not too difficult to verify that the leave rule preserves thisrandom distribution. Hence, when using

the Chernoff bounds we get the following claim. In the following claim, the phrase high probability

refers to a probability that is at least1 − 1/kc for a constantc.

Claim 6.4.5 Let n be the total number of nodes in the system. Then it holds for every i ∈ [k] that

the number of nodes currently placed inRi is in the rangen/k±O(
√

(n/k) log k + log k
log log k ), with

high probability.

This implies that ifn is sufficiently large compared tok, all properties formulated above for a

peer-to-peer system with one supervisor can be preserved, including the property that the peers are

only distributed among nodes of two consecutive levels of the decomposition tree.

6.5 Robustness against Random Faults

So far we have assumed that the peers announce their departure to the supervisor and thus are

said to be graceful. In reality, however, such an assumptioncannot be justified as peers may depart

ungracefully. In this section, we show how to handle ungraceful departures under the assumption
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that ungraceful departures are uniformly distributed among the nodes in the[0, 1) interval and the

rate of ungraceful departures is low enough so that the supervisor can handle.

6.5.1 The Random Fault Model

We now introduce therandom fault modelunder which we want to show robustness guarantees

for the supervised overlay network. To state the model more formally, we let each node in the

system have a probability of failurepi that is independent of any other node in the system. We

require that the average failure probabilityp =
∑n

i=1 pi be such thatp is a constant between0 and

1. Thus, our model does not require that all peers have the samefailure probability. Additionally,

we require that the failure probabilities are also spread uniformly. Nodes can depart at any time

without informing the supervisor about their departure. Wesay that the network (system) is in a

valid state if it holds that form available peers in the network, them peers occupy positions with

labelsℓ(0) throughℓ(m− 1) and all the invariants are met. The goal of the supervisor canbe stated

as arriving at a valid state in a finite amount of time after allthe faults (ungraceful departures) have

occurred and in this case we say that the supervisor has been able torecoverthe network.

Towards this goal, the supervisor now maintains the following invariants fork = c log n, for

some large constantc. We start with the following notation.

Definition 6.5.1

• For anyv ∈ V , we letNv := {v}∪{predi(v)|i = 1, 2, · · · , k}∪{succi(v)|i = 1, 2, · · · , k}.

• For anyV ′ ⊆ V , we letR(V ′) := ∪v∈V ′ R(v).

Finally, recall from Section 6.2.2 thatΓ(s) for anyS ⊆ U refers to the neighbors inU \ S of

nodes inS according toEF .
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Invariant 6.5.2 Every nodev is connected to:

• predi(v) andsucci(v) for i ∈ {1, 2, . . . k}, and

• all nodesw such thatΓ(R(Nv)) ∩ Γ(R(Nw)) 6= φ.

The above connectivity rules introduce ak–wise redundancy in the system as each node main-

tains connections to nodes in itsk-neighborhood. The supervisor stores the contact information

according to the following invariant.

Invariant 6.5.3 The supervisor maintains the following connections.

• Join connections: These are to the2k successors and3k predecessors of the nodev with

label ℓ(n− 1). These connections are similar to the connections specifiedby Invariant 6.4.1.

• Repair connections:These are to some peerw, thek closest predecessor positions ofw, and

thek closest successors positions ofw. By the predecessor (successor) positions of a nodew

we mean the positions in the unit interval that precede (resp. succeed) nodew and may or

may not be occupied by any peer currently in the system.

The join and leave operation are now extended as follows. To insert a neww into the system,

the supervisor assigns a label tow and proceeds according to a normal join operation in section

6.2.5 and also satisfying invariant 6.5.2. To maintain Invariant 6.5.3, the supervisor updates its join

connections accordingly by requesting relevant information. The leave operation of a gracefully

departingw now follows similarly to that of a basic leave operation by the supervisor reversing the

last join operation.

Thus the supervisor has to maintain only a logarithmic amount of information. The cost of

join and leave operation increases toO(log n) from a constant. As the size of the network increases

136



or decreases by a factor of 2, the supervisor updates the value of k accordingly by a factor of±c.

The supervisor also updates its repair connections ifw or any successor/predecessor ofw departs

by choosing the closest successor/predecessor position.

The above operations along with the invariants have the following property under the random

fault model. We start with the following lemma.

Lemma 6.5.4 Under the random fault model, consider any setS of k consecutive positionsq1, q2,

· · · , qk where peerv is chosen for positioni independently and uniformly at random from then

peers in the network. Then, the probability that either all positions are occupied or none of the

positions are occupied by a peer is polynomially small.

Proof. Let Xi be a random variable defined so thatXi = 1 if and only if the peer in positionqi

fails and0 otherwise. It holds that:

E[Xi] = Pr[peer in positionqi fails] =

n
∑

j=1

Pr[peerj is in positionqi] · pj = p

Let the random variableX :=
∑k

i=1 Xi. As theXi’s may not be independent, we may not

use Chernoff bounds onX. However, it can be shown that the random variablesXi’s are negatively

correlated as follows.

Pr[Xi = 1|X1 = 1,X2 = 1, · · · ,Xi−1 = 1] ≤ n

n − k
· p ≤

(

1 +
k + 1

n

)

p =: pu

The above probability represents the increase in the average failure probability of peer assigned

to positionqi in the setS under the worst-case scenario that all the previous positions in the setS

have failed peers.
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Thus, it holds that for any subsetS′ ⊆ {1, 2, · · · , k},

E[Πi∈S′Xi] = Pr[∧i∈S′ Xi = 1] = Πi∈S′ Pr[Xi = 1|X1 = 1,X2 = 1, . . . ,Xi−1 = 1] ≤ Πi∈S′pu

Hence, the random variablesXi’s can be seen as negatively correlated with probabilitypu and we

can use the Chernoff bounds onX to show that the event that all peers inS fails, i.e. the event

{X ≥ (1 + δ)kpu}, has a polynomially small probability sincep is bounded from above by a

constant.

Similarly one can show that the random variablesXi’s are positively correlated as follows:

Pr[Xi = 1|X1 = 1,X2 = 1, · · · ,Xi−1 = 1] =
n

n − k
· p ≥ (1 − (k − 1)/n) p =: pℓ

For anyS′ ⊆ {1, 2, · · · , k}, it then holds that

E[Πi∈S′Xi] = Πi∈S′ Pr[Xi = 1|X1 = 1,X2 = 1, . . . ,Xi−1 = 1] ≤ Πi∈S′ pℓ

This means that the random variablesX1,X2, · · ·XS are positively correlated with probability

pℓ allowing one to use Chernoff bounds onX (cf. [131, Lemma 1.41]) to show that the the event that

none of the peers inS fail, i.e., the event{X ≤ (1 − δ)kpℓ}, has a polynomially small probability,

sincep is bounded from above by a constant. ⊓⊔

Theorem 6.5.5 When considering the random fault model, the supervisor canrecover the network

in a finite amount of time after all the faults have occurred.

Proof. To prove the theorem, first notice that the supervisor alwaysknows the positions in the cycle

that should be occupied as this is precisely the positions with a label amongℓ(0) to ℓ(n− 1). From
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the above lemma it holds that in any regionR, with high probability at least one position has a failed

peer and not all positions have failed peers. Thus, the supervisor can always make progress during

the repair process by the way the repair connections are updated. Also, by performing one complete

tour of the unit interval, the supervisor can bring the network to a valid state. ⊓⊔

For the dynamic setting that faults may occur while the supervisor is in the middle of a repair

phase, we argue that in any time intervalT large enough so that the supervisor can complete a entire

tour around the[0, 1) interval and so that the average error probability stays as aconstant between

0 and1 and the faults are evenly distributed around the unit interval. Then, during any such interval

T , according to the above lemma, the supervisor never encounters the situation that it cannot make

any progress while processing ungraceful departures.

6.6 Robustness against Adaptive Adversarial Attacks

In this section we describe a simple scheme to guarantee robustness against even adaptive ad-

versarial join/leave attacks. Due to the presence of supervisor, our scheme for providing robustness

under an adaptive adversary is surprisingly simple.

While the results of the previous section guarantee that thesystem is robust to random node

failures, the system is not robust against adaptive adversarial attacks. Such attacks take the form

of adversarial nodes that can join and leave the system as many times as they wish. In our system,

adaptive adversarial attacks can easily disconnect the supervisor from the rest of network by taking

positions that the supervisor is connected to. This would then make it difficult for new peers to

join the system. The adversary can also place nodes at critical positions so that routing in the

network is disrupted by not forwarding the packets or forwarding them to the wrong location or by

injecting lots of packets destined for other adversarial nodes so that the network would be heavily
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congested. These type of attacks are recently studied in [132] by showing how to maintain a robust

ring network of nodes under the presence of such a powerful adversary. While mechanisms for other

network topologies are not known, using the supervised approach we show how to extend our basic

scheme to provide robustness guarantees for any overlay network under the presence of an adaptive

adversary.

Formally, we allow the adversary to own up toǫn of the n nodes in the system for some

sufficiently small constantǫ > 0. These nodes are also calledadversarialnodes and the rest are

calledhonestnodes. The supervisor and the honest nodes are oblivious to adversarial nodes, i.e.,

there is no mechanism to distinguish at any time whether a particular node is honest or not. To

achieve robustness in the presence of an adaptive adversary, we use the following scheme.

In the following, aregion is an interval of size1/2i in [0, 1) starting at an integer multiple of

1/2i for somei ≥ 0, and a nodev belongs to a regionR if r(ℓv) ∈ R. Recall thatn = 2⌊log n⌋. The

supervisor organizes the nodes into regions so that each region contains betweenc log n and2c log n

nodes for some constantc > 1. Whenever these bounds are violated in a region, the supervisor splits

it or merges it with a neighboring region. Then nodes are also organized into 5 setsS1 to S5 and

the following invariant is maintained for these sets.

Invariant 6.6.1 At all times,

1. S1 hasn̄/8 nodes with labelsℓ(0), ℓ(1), . . . , ℓ(n/8 − 1).

2. S2 hasn/8 nodes with labelsℓ(n/8), ℓ(n/8 + 1), . . . , ℓ(n/4 − 1).

3. S3 hasn/4 nodes with labelsℓ(n/4), ℓ(n/4 + 1), . . . , ℓ(n/2 − 1).

4. S4 hasn/2 nodes with labelsℓ(n/2), ℓ(n/2 + 1), . . . , ℓ(n − 1).

5. S5 has the remainingn − n nodes with labelsℓ(n), ℓ(n + 1), . . . , ℓ(n − 1).
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Figure 6.2: Logical organization of nodes into five sets. Thenumber against node position indicates
the set to which the node belongs to.

The following invariant describes the connections maintained by the nodes in the various sets

and the connections maintained by the supervisor. To simplify notation, for a real numberx ∈ [0, 1),

R(x) is the region thatx belongs to andSi(R) is the set ofSi-nodes belonging toR. For every

regionR, let SR = S1(R) ∪ S2(R) andS̄R = S3(R) ∪ S4(R) ∪ S5(R) if R precedesR(r(ℓ(n)))

and otherwise,SR = S1(R) andS̄R = S2(R) ∪ S3(R) ∪ S4(R) ∪ S5(R). For every regionR let

MR = S1(R) ∪ S2(R) ∪ S3(R).

Invariant 6.6.2 For all regionsR, everySR-node is connected to all nodes inSR ∪ S̄R. EverySR-

node is also connected to all nodes in the predecessor and successor regions ofR, denotedpred(R)

andsucc(R), and for everyu ∈ SR that has a connection to a nodev ∈ SR′ according to Invariant

6.2.5(3), allSR-nodes are connected to allSR′-nodes.

The supervisor is connected to all the nodes inSR in the regionsR(r(ℓ(n− 1))), pred(R(r(ℓ(

n − 1)))) andsucc(R(r(ℓ(n − 1)))). The above connections are calledjoin connections.

The supervisor is connected to all the nodes inMR for some regionR, and to a special node

v∗ ∈ MR. These connections are calledmixing connections.
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Figure 6.3: Physical organization of nodes into five sets.

Figure 6.2 shows the logical organization of the nodes and the setsS1 throughS5 and Figure

6.3 shows the physical organization. Our organization of the nodes ensures that in a constant fraction

of the network, the adversarial nodes cannot influence the network behavior.

The setS1 is also referred to as thestableset. The goal of the supervisor is to have the honest

nodes in the majority in every setS1(R) of sizec log n nodes, with high probability. The reason for

this goal are stated shortly.

The setS2 is in a stage called thesplit-and-mergestage becauseS2-nodes are merged into the

stable set or removed from it as nodes join or leave the system. The setS3 is in a stage calledmixing

stage in which the supervisor performs transpositions according to a uniformly chosen permutation

to ensure that the nodes are well-mixed before being integrated into the stable set.

The setS4 is in a reservoirstage.S4 is used to fill departed positions in the setsS1 to S3 by

selecting random nodes inS4 and filling their positions with the last nodes inS5. Finally, the setS5

is in afilling stage where new nodes are added by assigning them the labelℓ(n).

142



The join and leave operation have to be extended so that the supervisor can ensure the majority

condition at all times. We first describe the modifications tothe join/leave operations.

Join:

The supervisor assigns to the new node the labelℓ(n) and integrates it so that the Invari-

ants 6.6.1 and 6.6.2 are satisfied.

Afterwards, the supervisor updatesv∗ to be successor ofv∗ among the nodes inMR. If there

is no such node, thenMR is updated to theMR′ whereR′ is the region succeeding regionR and

v∗ is taken to be the first node inMR′ . Suppose thatv∗ belongs to the setSi in MR for a region

R. Then the supervisor picks a nodew with position betweenv∗ and 1 (exclusive) uniformly at

random and exchanges the positions ofw andv∗. This is realized by the supervisor informing all

nodes inS1(R(ℓ(n))) the positions of nodesv∗ andw so that this is reliably done without involving

the supervisor.

Each time a new node causes the supervisor to switch from a region R to succ(R), the nodes

in S2(R) are merged intoS1(R) as prescribed by Invariant 6.6.2.

Observe that during the join operation, nodes inMR undergo transpositions that has the effect

of permuting the nodes according to a permutation chosen uniformly at random from the set of

all permutations of size|MR|. This is crucial to guarantee robustness as shown in the following

result. Thus, once a pass has been made through all positionsof S1 ∪ S2 ∪ S3, the positions in

Si, i ∈ {1, 2, 3} form a random permutation.

Leave:

If a nodev leaves withv ∈ S4 ∪ S5, the supervisor simply replaces it by the last node inS5.

Otherwise, the supervisor replacesv by a random node inS4 and fills the position of that random
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node with the last node inS5. This is followed by performing a mixing operation similar to that

done during a join operation. (The supervisor initiates theleave operation forv only if a majority of

S1-nodes inv’s region notify it about that. In this case, the supervisor has the necessary information

to correctly initiate the replacement.) Each time a departure causes the supervisor to switch from

a regionR to pred(R), the nodes inS2(pred(R)) are split away fromS1(R) as prescribed by

Invariant 6.6.2.

Majority Condition

The goal of the above scheme of the supervisor is to ensure that in any region ofR of loga-

rithmic size, the honest nodes are in a majority with high probability. This condition is referred as

the majority conditionand is useful in the following way. Suppose the majority condition holds.

Then quorum strategies can be used to wash out adversarial behavior as follows. Consider any set

T of c log n nodes inS1. According to Invariant 6.6.2, all the honest nodes inT are connected to

all nodes inT . To perform any network operation such as finding the node with a given label, all

the nodes inT perform majority voting. The outcome of the operation is determined uniquely if a

majority of the nodes inT agree on the outcome. This means that for adversarial nodes to have any

influence on the outcome of a network operation, they should be in a majority in the setT of c log n

nodes since we assume that honest nodes act honestly.

6.6.1 The Semi-adaptive Model

Before we proceed further, we outline the way in which the nodes join/leave the system. We

start by considering a model similar to that [132] where honest nodes do not leave the system and

only adversarial nodes may join/leave the system in an adaptive manner. Certainly this is a simple

model but is very illustrative.
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Theorem 6.6.3 For a sufficiently small constantǫ > 0 it holds that as long as the adversary owns

at mostǫn nodes, the above scheme guarantees that in every regionR of sizec log n for c ≥ 1, the

honest nodes are in the majority inS1(R), with high probability.

Proof. We first consider the following random experiment. Considerm balls placed inm bins such

that there is exactly one ball in each bin. The balls are labeled uniquely from 1 throughm and the

bins are numbered from 1 throughm. Now, the ball in bin 1 is switched with the ball in a bin chosen

uniformly at random from bins 1 throughm. This is followed by switching the ball in bin 2 with the

ball in a bin chosen uniformly at random from the bins 2 through m. This is continued until we visit

the ball in binm − 1. Also, the choice of bin at any time is independent of the previous choices.

This random experiment creates a random permutation ofm balls in the bins as it holds that:

• Every permutation is an outcome of the random experiment, i.e., any permutation of the balls

assigned to bins can be produced by the above experiment, and

• Any permutation, or outcome of the random experiment, is equally likely with a probability

of 1/m!.

Consider the basic model where only adversarial nodes may join/leave the system. Aftern

join/leave operations the effect of the mixing operations is the same as that of choosing a random

permutation of size|S1∪S2∪S3|. It then follows that as nodes inS1, S2 andS3 are permuted during

the mixing operationsR, we arrive at a situation where given any position inSi, for i ∈ {1, 2, 3},

the probability that the node at that position is an adversarial node is at most ǫn
P3

i=1 |Si|
≤ 4ǫ/3.

We prove the theorem in this case by considering any fixed setT = S1(R) of c log n positions

in a regionR. Given that any position inT is occupied by an adversarial node with probability

close toǫ, the probability that a majority of the positions inT are occupied by adversarial nodes is
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at most:
|T |
∑

k=|T |/2

(|T |
k

)

(4ǫ/3)k ≤ 2|T |−1(4ǫ/3)|T |/2 ≤ (16ǫ/3)c log n/2 ≤ 1/n4

if c ≥ 3 andǫ < 1/6. Since there are at mostn/c log n regions of sizec log n, the probability that

for some such region the majority condition is violated is atmost1/n3 using Boole’s inequality.⊓⊔

We now extend the model to allow also honest nodes to leave thesystem but so that the leave

operations of the honest nodes are spread uniformly around the [0, 1) interval. This means that

the adversary cannot issue join/leave requests for honest nodes adaptively. The same proof extends

easily to the case where honest nodes may also leave the system but such leave operations are spread

uniformly in the[0, 1) interval. In this case, it holds that in any regionR, the expected number of

leave operations required so that a majority of the honest nodes leave the system isΘ(n). During

each such leave operation the probability that the positionis replaced by an adversarial node isO(ǫ).

Since afterO(n) operations, the nodes inR are replaced by the transpositions, havingǫ low enough

will ensure that the majority condition holds for every regionR with high probability.

6.6.2 The Fully Adaptive Model

Finally, consider the situation where the adversary can force honest nodes to leave in a non-

uniform or adaptive manner. We call this thefully adaptive model. In this case it is possible that

from a given region, a majority of the honest nodes are made toleave. This case captures the

most difficult scenario for distributed systems as it becomes difficult to ensure uniform spreading

of adversarial nodes. The reason for this is that using the above scheme, the following sequence

of join/leave operations violate the majority condition for some regionR. Fix any regionR and

assume thatR has no adversarial nodes at this time. Now the adversary can force honest nodes

from R to leave successively. During each such leave operation, the probability that an adversarial
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node entersR is Θ(ǫ). So afterΘ(log n) leave operations of honest nodes fromR, the expected

number of adversarial nodes inR is Θ(ǫ|R|). By repeating the scheme forΘ(log n) times, where

during these operations no adversarial node leavesR, the majority condition forR can be violated.

Note that during theseΘ(log2 n) nodes inR may be part of exchange operations initiated outside of

R. But the probability of this is onlyΘ(log n/n), which is small enough so that the above scheme

is not affected.

What led to the failure of the existing scheme is that the supervisor does not have a chance to

make any transpositions in regionR until Θ(n) join/leave operations have occurred. This presented

a window for the adversarial nodes to gain a majority in region R as the honest nodes leave en-

masse.

The Modified Leave Operation

We proceed as follows during the leave operation. Recall that the leave operation of nodev

with a position inS1 ∪ S2 ∪ S3 involves replacing the position ofv with a nodew chosen from

S4 uniformly at random. The supervisor now maintains a specialpositionp∗ in every regionR.

During every leave operation of a node with a position inR, the supervisor also exchanges the node

in positionp∗ with that of another nodew′ chosen independently and uniformly at random from the

nodes inS4. Positionp∗ is then updated to be the successor of positionp∗ among the positions in

the regionR. If there is no successor position ofp∗ in regionR, thenp∗is taken to be the first node

in R.

With this modified leave operation we now show the following theorem similar to Theorem

6.6.3.

Theorem 6.6.4 In the fully adaptive model, for a sufficiently small constant ǫ > 0 it holds that as
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long as the adversary owns at mostǫn nodes, the above scheme guarantees that in every regionR

of sizec log n for c ≥ 1, the honest nodes are in the majority inS1(R), with high probability.

Proof. In addition to the proof of Theorem 6.6.3, we also consider the case that honest nodes may

leave from any given regionR.

Consider any regionR. Denote by theageof nodev in R as the number of leave operations

from R during which nodev is not replaced. Upon entering the regionR, nodev has age 0 and

during every time step thatv is still in R, the age ofv increases by 1. It then holds that the age

of any node inR while using the modified leave operation is at most|R|. The reason for this is

that after|R| more leave operations, nodev is certainly replaced by another node via an exchange

operation.

It also holds that during any leave operation fromR, the probability that the node in position

p∗ is replaced by an adversarial node is at mostǫn
|S4| ≤ 2ǫ. It then follows that the expected number

of adversarial nodes inR due to|R| leave operations is at most2ǫ|R|. Since the actions of leave

operations are independent, one can use Chernoff bounds to show that the majority condition holds

for regionR with high probability whenǫ is sufficiently small. ⊓⊔

Notice that the modified leave operation is actually replacing nodes inS1 ∪S2∪S3 with nodes

in S4. This may sound artificial but the following counter-example suggests that replacing the node

at positionp∗ with that of another node at a position chosen uniformly at random from the positions

in S1 ∪ S2 ∪ S3 still allows the adversary to gain a majority in some regionR as follows. Fix a

regionR. It holds that there will be on expectationΘ(n/ log n) regions, excludingR, where the

positionp∗ is currently occupied by an adversarial node. Now the adversary issues a leave request

from one of these regions. The probability that an adversarial nodes then enters the regionR is at

leastΘ(1/n). But, using the scheme repeatedly, while not disturbing theregionR, the adversary

148



can gain a majority inR. Hence, we have to exchange the node at positionp∗ with a node fromS4.

This attack can be seen as an indirect attack on regionR.

It is worth noting that such a strong guarantee can be provided with a simple scheme. The

amount of information the supervisor has to maintain is onlylogarithmic. The analysis is also not

as complicated as that of [132] and the presence of a supervisor limits the ability of the adversary

even with adaptive join/leave attacks. The simplification results from the fact that nodes inS1, S2

andS3 are isolated from the node join/leave operations allowing the supervisor to permute the nodes

before integrating them into the existing network.

6.7 Applications

We now discuss some applications of the supervised overlay networks that arise in the area of

distributed computing.

6.7.1 Grid Computing

Recently, many systems such as SETI@home [135], Distributed.net [33] have been proposed

for distributed computing. A main drawback of such systems is that the topology of the system is

a star graph with the central server maintaining a direct connection to each client. Such a topology

imposes heavy demands on the central server. Instead, we canuse the basic approach of Section

6.2 to design a overlay network for distributed computing. Peer-to-peer connections allow subtasks

to be spawned without the involvement of the supervisor so that the demands on the server can be

significantly reduced. This is particularly interesting for distributed branch-and-bound computations

as was discussed in [127].
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6.7.2 WebTv

Our approach can also be used in Internet applications such as WebTv. In such an application,

there are typically various channels that users can browse or watch while being connected to the

Internet. The number of channels ranges in the scale of hundreds while the number of users can

range in the scale of millions. Such a system should allow users to quickly zap through channels.

Hence, such a system should allow for rapid integration and be scalable to large number of users.

Our supervised overlay networks can easily achieve such a smooth operation. Suppose that every

channel has a supervisor, each supervisor maintains its ownbroadcast network, and the supervisors

form a clique. Then it follows from our supervised approach,which can handle join and leave oper-

ations in constant time, that users browsing through channels can be moved between the networks in

a very fast way, comparable to server-based networks, so that users only experience an insignificant

delay.

6.7.3 Massive Multi-player Online Gaming

Distributed architectures for massive multi-player online gaming (MMOG) are being studied

recently (see e.g., [49]). The basic requirements of such a system includes authentication, scalabil-

ity, and rapid integration. Traditionally, such systems have been managed by a central server that

takes care of the overall system with limited communicationbetween the users. As can be seen,

such a system will not be scalable and also might experience heavy congestion at the central server.

Hence, distributed architectures are required at a certainscale. A supervised overlay network natu-

rally satisfies the requirements. Authentication of entities can be done by the supervisor (or multiple

supervisors) and the system stays highly scalable because of the relatively low load on the super-

visor. Rapid integration is also possible since the supervisor can handle integration of new peers
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(players in this setting) with a constant number of communication rounds.

Typically in a MMOG, it is possible to partition the virtual world into what are calledlocales.

In an architecture based on supervised overlay networks then it would be possible to have one (or

more) supervisor to be responsible for each such locale. Whenever a player moves between locales,

the supervisor can coordinate the join/leave of the player quickly. Also, based on number of players

based at various locales, the supervisors can be distributed so that the load at the supervisors stays

balanced.

6.8 Chapter Summary

In this chapter, our goal is to design highly scalable and highly reliable systems. We proposed a

method, supervised peer-to-peer systems, that inherits the advantages of both peer-to-peer systems

and centralized server-based systems. Our unified scheme for building a supervised peer-to-peer

system from a large class of topologies is not very complicated.

We also showed that robustness guarantees under a strong adversarial model can also be pro-

vided with small modifications to the basic design. Our construction falls under the category of

pro-activeapproaches to providing robustness guarantees, as opposedto reactiveapproaches which

take some action only when certain conditions are met. Compared to the approach of [132], the

scheme presented in Section 6.6 is much simpler owing to the presence of the supervisor.

We note that our supervised peer-to-peer system can be easily extended to function as a dis-

tributed hash table (DHT) as shown in [127]. While [127] focuses on networks with a de Bruijn

topology, the results can be easily extended for any topology. Also, our design guarantees that the

load among the peers is balanced up to a low constant factor inexpectation, when using known

techniques [69] of hashing data using a (pseudo)-random hash function.
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A preliminary version of the results in this chapter appeared in [79].
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Part III

Wireless Ad hoc Networks



Chapter 7

Wireless Ad Hoc Networks: Model and
Spanner

In this chapter, we consider the problem of designing overlay networks for wireless ad hoc

networks. While many local control algorithms have been already suggested in the literature, most

of them are based on an oversimplified model of wireless communication. We first suggest a model

that is much more general than previous models. It allows thepath loss of transmissions to signif-

icantly deviate from the idealistic unit disk model and doesnot even require the path loss to form

a metric. Also, our model is apparently the first proposed foralgorithm design that does not only

model transmission and interference issues but also aims atproviding a realistic model for phys-

ical carrier sensing. Physical carrier sensing is needed sothat our protocols do not requireany

prior information (not even an estimate on the number of nodes) about the wireless network to run

efficiently.

Based on this model, we propose a local-control protocol forestablishing a constant density

spanner among a set of mobile stations (ornodes) that are distributed in an arbitrary way in a

2-dimensional Euclidean space. More precisely, we establish a backbone structure by efficiently

electing cluster leaders and gateway nodes so that there is only a constant number of cluster leaders

and gateway nodes within the transmission range of any node and the backbone structure satisfies
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the properties of a topological spanner.

Our protocol has the advantage that it is locally self-stabilizing, i.e., it can recover fromanyini-

tial configuration, even if adversarial nodes participate in it, as long as the honest nodes sufficiently

far away from adversarial nodes can in principle form a single connected component. Furthermore,

we only need constant size messages and a constant amount of storage at the nodes, irrespective of

the distribution of the nodes. Hence, our protocols would even work in extreme situations such as

very simple wireless devices (like sensors) in a hostile environment.

7.1 Introduction

An important problem for wireless ad hoc networks has been todesign overlay networks that

allow time- and energy-efficient routing. Many local-control strategies for maintaining such overlay

networks have already been suggested, but mostly high-level wireless models have been used for

their analysis. However, since mobile ad-hoc networks havemany features that are hard to model

in a clean way, it is not clear how well these strategies may actually perform in practice. Major

challenges are how to model wireless communication and how to model mobility. Here, theoretical

work is still in its infancy. So far, people in the algorithmscommunity have mostly looked atstatic

wireless networks (i.e. the wireless stations are always available and do not move). Even in such

static situation, modeling wireless networks is difficult due to the following reasons.

• The area over which a wireless node can transmit messages successfully, called thetrans-

mission rangeand denoted byrt, can be of arbitrary shape due to the characteristics of the

environment, transmission power, and other factors. This makes it very difficult to model the

concept of message transmission accurately.

• Wireless devices are prone to interference problems. This can be caused by wireless devices
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transmitting simultaneously or due to external factors. Just like the transmission range, the

area over which a wireless node can cause interference, called theinterference rangeand

denoted byri, can also be of arbitrary shape. Usually, the interference range is bigger than

the transmission range.

• Wireless devices often use their ability to sense the carrier before transmitting. This is called

physical carrier sensing. Physical carrier sensing is needed so that protocols do notrequire

anyprior information (not even an estimate on the number of nodes) about the wireless net-

work to run efficiently. However, modeling physical carriersensing has not been done in the

theoretical community.

A variety of models are proposed in the literature for wireless networks. Below, in Section

7.2 we first review the models so far proposed and point out some of their short-comings. We then

introduce our new model for wireless networks in Section 7.3. In Section 7.4 we define the span-

ner problem and make some initial observations. Section 7.5discusses related work for overlay

constructions for wireless networks. In Section 7.6 a briefoverview of our entire protocol is pre-

sented. In Sections 7.7–7.8 we present and analyze our threephase protocol. The chapter ends with

a summary and acknowledgements.

7.2 Models of Wireless Networks

7.2.1 Unit Disk Graph (UDG) model

By far the easiest model of wireless models is called the unitdisk graph model (see e.g.,

[47, 146, 138, 85]). In this model, all wireless nodes are assumed to have the same transmission

rangeR. The neighborhood of any node thus consists of all other nodes that are within a distance
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Figure 7.1: Neighborhood of nodeu according to UDG model.

R and all links are bidirectional. When the transmission range is scaled to1, we get the following

definition for unit disk graph.

Definition 7.2.1 (Unit Disk Graph) The graphG = (V,E) with V being a set of wireless stations

located in a 2-dimensional Euclidean plane and for anyu, v ∈ V , the edge(u, v) ∈ E if and only

if the Euclidean distance betweenu andv is at most1 is called the unit disk graph corresponding

to V .

Transmission of messages are said tointerfereat a node if at least two of its neighbors transmit

at the same time. A node can only receive a message if it does not interfere with any other message.

Figure 7.1 shows the neighborhood of nodeu according to the UDG model where nodeu has node

v andw as neighbors but not nodex, and nodeu can interfere at nodesv andw.

7.2.2 Packet Radio Network (PRN) model

In the packet radio network model (see e.g., [30, 80, 82, 81]), the network is modeled as a

graph and the wireless units, or nodes, form the vertex set, and two vertices are connected by an

edge if and only if the corresponding wireless nodes are within the transmission range of each other.

Thus, this model removes the assumption that all nodes have the same transmission range and also

does not rely on Euclidean distances to model the transmission range. The interference model is
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Figure 7.2: Neighborhood of nodeu according to PRN model.

the same as that of the UDG model. Figure 7.2 shows the graph obtained by using the PRN model

where nodeu has nodev as a neighbor but not nodew, and nodeu can interfere at nodev but not

nodew.

The packet radio network model is a simple and clean model that allows one to design and

analyze algorithms for overlay networks with a reasonable amount of effort. However, since it is a

high-level model, it does have some serious problems with certain scenarios in practice. In reality,

the transmission range of a message is not the same as its interference range and for the network in

Figure 7.2, it is possible that nodew may still interfere at nodeu even though they are not neighbors.

There are other serious problems due to interference that this model suffers from, which we discuss

in Chapter 8.

7.2.3 Transmission, Interference Model

One of the drawbacks of the PRN model is that it models the interference range to be the same

as that of the transmission range. However, in reality, the interference range of a node is usually

bigger than its transmission range. There are a limited number of papers that use a model that

differentiates between the transmission range and the interference range , see e.g,. [4, 55, 56, 57, 83].

In these models, in general, the interference range is takento be a constant factor bigger than that of

the transmission range. This is shown in Figure 7.3 where node u has nodesv andw as neighbors,
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Figure 7.3: The general transmission, interference model.

nodeu can interfere at nodex and nodeu cannot interfere at nodey. As shown, these models still

assume a disk model in a sense that the transmission range andinterference range can be modeled

by two distance values that hold irrespective of the position of a node. Thus, this model can be

seen as an extension of the UDG model to handle a bigger interference range. We propose a more

general model.

7.3 A new model for wireless communication

In order to motivate our model, we first review some commonly used transmission techniques

in wireless communication. We will concentrate here on the IEEE 802.11 standard because IEEE

802.11-based radio LANs are currently dominating the market and will most probably do so also in

the future. The IEEE 802.11 standard distinguishes betweena Physical (PHY) layer and a Medium

Access Control (MAC) layer for the transmission of messages. The 802.11 MAC protocols are

based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA).
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7.3.1 Carrier sensing

The basic approach of the CSMA/CA scheme is as follows. Whenever a node has a packet to be

transmitted, it first listens to the channel to ensure that noother node is transmitting. If the channel is

clear, it transmits the packet. Otherwise, it uses an exponential back-off scheme until it either finds

a time point in which the channel is clear so that it can transmit its packet or aborts the transmission

due to too many failed attempts. (The idea of back-off is thatwhenever a node that has a packet

to transmit experiences a busy channel, it retries at a subsequent time with a reduced probability of

transmission. In exponential back-off, the retransmission probability is reduced exponentially.)

In wireless devices, there is usually just one antenna for both sending and receiving, and hence

the nodes are not able to listen while sending. For this and other reasons there is no collision

detection capability like in the Ethernet. Therefore, acknowledgment packets (ACK) have to be sent

from the receiver to the sender to confirm that packets have been correctly received.

In wireless ad hoc networks that rely on a carrier-sensing random access protocol, such as IEEE

802.11, the wireless medium characteristics generate complex phenomena such as the well-known

hidden-node problemand theexposed-node problemas shown in Figure 7.4. In order to handle

these problems, the MAC layer usesphysicalandvirtual carrier sensingtechniques.

The physical-carrier-sensing part of the CSMA scheme is provided by a Clear Channel Assess-

ment (CCA) circuit. This circuit monitors the environment to determine when it is clear to transmit.

It can be programmed to be a function of the Receive Signal Strength Indication (RSSI) and other

parameters. The RSSI measurement is derived from the state of the Automatic Gain Control (AGC)

circuit. Whenever the RSSI exceeds a certain threshold, a special Energy Detection (ED) bit is

switched to 1, and otherwise it is set to 0. By manipulating a certain configuration register, this

threshold may be set to an absolute power value oft dB, or it may be set to bet dB above the

160



(b)(a)

A
B

C D

B

C

A

Figure 7.4: Figure in (a) shows the hidden node problem wherenodesA andC cannot send toB at
the same time and (b) shows the exposed node problem whereC cannot sent packets toD while B
is sending toA asC senses busy medium thoughA is out of the transmission range ofC.

measured noise floor, wheret can be set to any value in the range 0-127. The ability to manipulate

the CCA rule allows the MAC layer to optimize the physical carrier sensing to its needs.

Virtual carrier sensing is usually achieved by using two control packets, Request-To-Send

(RTS) and Clear-To-Send (CTS), which are exchanged before the data transmission is taking place.

Virtual carrier sensing has been added to 802.11 to mitigatethe hidden node problem. More pre-

cisely, before transmitting a data frame, the source node sends an RTS packet to the receiving node

announcing the upcoming frame transmission. Upon receiving the RTS packet, the destination

replies by a CTS packet to indicate that it is ready to receivethe data frame. Upon receiving the

CTS packet, the sender initiates transmitting the actual data. Both the RTS and CTS packets contain

the total duration of the transmission, i.e. the overall time needed to transmit the data frame and the

related ACK, so that other nodes within the transmission range of either the source or the destination

stay silent until the transmission is complete.
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7.3.2 Transmission range, interference range, and physical carrier sensing range

Every data transmission mechanism has a minimum signal-to-noise ratio (SNR) at which a

data frame can still be transmitted with a reasonably low frame error rate. The minimum SNRs for

802.11b, for example, are 10dB for 11Mbps, 8dB for 5.5Mbps, 6dB for 2Mbps, and 4dB for 1Mbps,

and for 802.11a, 23dB is usually the minimum SNR for 54Mbps. In the 802.11a standard [115], the

minimum dB values are defined as the received signal strengthlevel at which the frame error rate

(FER) of a 1000-octet frame is less than 10%.

The SNRs above specify thetransmission range, TX RANGE, of the data transmission mech-

anism, i.e. the maximum range within which data frames can still be received correctly. The trans-

mission range is highly dependent on the environment. A reasonable model for determining the

transmission range is the log-normal shadowing model [89, 122]. In this model, the received power

at a distance ofd relative to the received power at a reference distance ofd0 is given in dB as

−10 θ log10 (d/d0) + Xσ

whereθ is the path loss coefficient andXσ is a Gaussian random variable with zero mean and

standard deviationσ (in dB) that models the influence of the background noise.θ usually ranges

from 2 (free space) to 5 (indoors) [124]. For example, if the received power at a distance of 100

meters from the transmitting node is 40 dB, then at a distanceof 200 meters, the received power

would be40 − 10 θ + Xσ dB = 20 + Xσ dB when we useθ = 2.

When using forward error correction mechanisms as proposedin the IEEE 802.11e MAC stan-

dard currently under development, the transition between being able to correctly receive a data

frame with high probability and not being able to correctly receive a data frame with high proba-

bility is very sharp. As shown in [25], it can be less than 1 dB.Thus, in an ideal environment the
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transmission range is an area with a relatively sharp borderthat in reality, however, may be blurred

due to environmental effects.

A limitation of the shadowing model is that it is only applicable in uniform environments. In

non-uniform environments, the signal strength can exhibita non-monotonic behavior. For example,

it can happen that the sender positionA has a smaller distance to a positionB than to a positionC

and yet the strength of the signal fromA received atB is lower than the signal strength received at

C. This can even happen ifB andC are close by.

The PCSRANGE is the range within which a node can detect a busy channel. As explained

earlier, this range can be set through the CCA circuit. The IFRANGE is the range within which

a transmitting node can cause interference at other nodes. Thus a transmission from nodeu can

interfere a receiving nodev if v is in the IFRANGE of u. Normally, IF RANGE is larger than the

TX RANGE and a good approximation is to use the range over which the signal strength is above a

certain constant fraction of the white Gaussian noise.

From the above, it can be said that for the interference and physical carrier sensing ranges

there does not seem to be a commonly accepted definition in practice. So we will use a conservative

model for these ranges to make sure that our results in this model are meaningful in practice.

7.3.3 Formal model

In our model, we assume that we are given a setV of mobile stations, ornodes, that are

distributed in an arbitrary way in a 2-dimensional Euclidean space. For any two nodesv,w ∈ V ,

let d(v,w) be the Euclidean distance betweenv andw. Furthermore, consider any cost functionc

with the property that there is a fixed constantδ ∈ [0, 1) so that for allv,w ∈ V ,

• c(v,w) ∈ [(1 − δ) · d(v,w), (1 + δ) · d(v,w)] and

163



r i

tr

w

rst(T,P)

rsi (T,P)

a

b

c

(c)

u

w

v

(b)

v

w

b

a
c

u

(a)

Figure 7.5: Properties of the new model for wireless communication.

• c(v,w) = c(w, v), i.e.,c is symmetric.

c determines the transmission and interference behavior of nodes andδ bounds the non-uniformity

of the environment. Notice that we do not requirec to be monotonic in the distance or to satisfy the

triangle inequality. This makes sure that our model even applies to highly irregular environments.

In Figure 7.5(a), for example, the distance betweenu andv is greater than the distance betweenu

andw. Yet, the cost of communicating betweenu andw, c(u,w), is bigger thanc(u, v). In Figure

7.5(a), nodeu can communicate directly with nodesv, a, andc but not with nodesb andw. Similar

cost functions were also used in [87].

We assume that the nodes use some fixed-rate power-controlled communication mechanism

over a single frequency band. When using a transmission power of P , there is a transmission range

rt(P ) and an interference rangeri(P ) > rt(P ) that grow monotonically withP . The interfer-

ence range has the property that every nodev ∈ V can only cause interference at nodesw with

c(v,w) ≤ ri(P ), and the transmission range has the property that for every two nodesv,w ∈ V

with c(v,w) ≤ rt(P ), v is guaranteed to receive a message fromw sent out with a power ofP (with

high probability) as long as there is no other nodeu ∈ V with c(v, u) ≤ ri(P
′) that transmits a

message at the same time with a power ofP ′. Figure 7.5(b) shows the above ranges for a nodev.

164



For simplicity, we assume that the ratioρ = ri(P )/rt(P ) is a fixed constant greater than 1 for

all relevant values ofP . This is not a restriction because we do not assume anything about what

happens if a message is sent from a nodev to a nodew within v’s transmission range but another

nodeu is transmitting a message at the same time withw in its interference range. In this case,

w may or may not be able to receive the message fromv, so any worst case must be assumed in

the analysis. The only restriction we need, which is important for any overlay network algorithm

to eventually stabilize, is that the transmission range is asharp threshold. That is, beyond the

transmission range a message cannot be received any more (with high probability). This is justified

by the fact that when using modern forward error correction techniques, the difference between the

signal strength that allows to receive the message (with high probability) and the signal strength that

does not allow any more to receive the message (with high probability) can be very small (less than

1 dB).

Nodes can not only send and receive messages but also performphysical carrier sensing, which

has not been considered before in models proposed in the algorithms community. Given some

sensing thresholdT (that can be flexibly set by a node) and a transmission powerP , there is a

carrier sense transmission (CST) range, denotedrst(T, P ), and acarrier sense interference (CSI)

range, denotedrsi(T, P ), that grow monotonically withT andP . The rangerst(T, P ) has the

property that if a nodev transmits a message with powerP and a nodew with c(v,w) ≤ rst(T, P )

is currently sensing the carrier with thresholdT , thenw senses a message transmission (with high

probability). The rangersi(T, P ) has the property that if a nodev senses a message transmission

with thresholdT , then there was at least one nodew with c(v,w) ≤ rsi(T, P ) that transmitted a

message with powerP (with high probability). More precisely, we assume that themonotonicity

property holds. That is, if transmissions from a setU of nodes within thersi(T, P ) range causev
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to sense a transmission, then any superset ofU will also do so. The two sensing ranges are shown

in Figure 7.5(c) shows the sensing ranges. When all nodes usea transmission powerP and nodew

uses a threshold ofT , in this example, nodew canalwayssense transmissions of nodea while it

maysense transmissions of nodeb andcan neversense transmissions of nodec.

For simplicity, we will assume in the following that for the carrier sense ranges, for all relevant

values ofT andP , rsi(T, P )/rst(T, P ) = ri(P )/rt(P ).

7.4 Our contributions

Our contributions are two-fold: apart from the new model forwireless networks, we demon-

strate how to develop and analyze algorithms on top of this model by presenting self-stabilizing

local-control algorithms for building constant density dominating sets and spanners.

In our algorithms, the nodes do not requireanya-priori knowledge about the other nodes, not

even an estimate on their total number. Also, fixed identification numbers of any form are not

required so that our protocols may even be applicable to the important field of sensor networks. It

is sufficient for us if the nodes choose identification numbers so that there are no local conflicts

(which can be easily achieved with random, local-control coloring strategies). In this case, we also

say that the labels arelocally distinctmeaning that the label of a nodeu is different from the label

of any nodev that is within the transmission range ofu. We only require that the mobile hosts can

synchronize in rounds of constant length. This can be done, for example, with the help of GPS

signals or any form of beacons (that are sufficiently far apart in time for a round of our protocols to

complete).

In order to obtain a constant density spanner under an arbitrary distribution of nodes, we pro-

ceed in two stages. First, we show that there is a simple, distributed protocol to obtain a constant
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density dominating set, and then we show how to extend this protocol in order to also obtain a

constant density spanner.

It is worth noting that our protocols only need a constant amount of storage at each node,

irrespective of the distribution of the nodes. The constantonly depends on theδ in our model.

Moreover, our protocols can self-stabilize even if some of the nodes showarbitrary adversarial

behavior. We only require the honest nodes that are outside acertain range of the adversarial nodes

to be placed so that they can in principle form a single connected component. In this case, the

protocol would then arrive at a constant density spanner in afinite amount of time. So our protocols

would even work for very primitive devices in hostile environments.

7.4.1 Constant density dominating set

We start with the following definitions for dominating set and maximal independent set.

Definition 7.4.1 (Dominating set) Given an undirected graphG = (V,E), a subsetU ⊆ V is

called adominating setif all nodesv ∈ V are either inU or have an edge to a node inU . A

dominating setU is calledconnectedif U forms a connected component inG. Thedensityof a

dominating setU is the maximum over all nodesv ∈ U of the number of neighbors thatv has inU .

Definition 7.4.2 (Maximal independent set (MIS)) Given an undirected graphG = (V,E), a

subsetU ⊆ V is called anindependent setif for any pair of nodesv,w ∈ U , there is no edge

betweenv andw in G. If an independent setU has the property that every nodev ∈ V \ U is a

neighbor of at least one node inU , thenU is called amaximal independent set.

Given an arbitrarily distributed setV of nodes in a 2-dimensional Euclidean space, let the

graphQr = (V,Er) contain all edges{v,w} with d(v,w) ≤ r. Suppose that we select a maximal
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independent setU in Qr. Then this is also a dominating set of constant density because in the 2-

dimensional Euclidean space a node can have at most five neighbors within a distance ofr that are

part of an independent set inQr [144]. Note that a constant density dominating set is also a constant

factor approximation of a minimum dominating set, a well-studied problem in the algorithms and

wireless networking community.

Now, let us consider the graphGr = (V,E′
r) that contains all edges{v,w} such thatc(v,w) ≤

r. Sincec(v,w) ≤ (1 + δ) d(v,w), it follows from [144]:

Fact 7.4.3 Every nodev can have at most five neighbors within a Euclidean distance ofr/(1 + δ)

that are part of an independent set inGr.

Otherwise, there must be a pairv,w ∈ V with c(v,w) ≤ (1+δ)d(v,w) ≤ (1+δ)·r/(1+δ) = r

that are in an independent set inGr, a contradiction. Furthermore, becausec(v,w) ≥ (1−δ)d(v,w),

a node can only be connected inGr to nodes up to a Euclidean distance ofr/(1 − δ). Hence, it is

easy to see that for every nodev there is a setCv of neighbors ofv in Gr of constant size so that for

every neighborw of v in Gr there is a neighborw′ ∈ Cv with d(w,w′) ≤ r/(1 + δ). Combining

this with Fact 7.4.3, we get:

Fact 7.4.4 For any independent set inGr it holds that every nodev in Gr can have at most a

constant number of neighbors in this set, where the constantdepends onδ.

Now, recall that any maximal independent set in a graphGr is also a dominating set inGr, and

according to the fact above, any maximal independent set inGr has a constant density (i.e., every

node only has a constant number of neighbors in that set). Hence, in order to obtain a dominating

set of constant density, it suffices to design an algorithm that constructs a maximal independent set

in Gr. It turns out that constructing such a set is quite tricky, given the uncertainties in our model,

but we can construct something close to that so that the following result holds.
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Theorem 7.4.5 For any desired transmission ranger and any initial situation, the dominating set

protocol generates a constant density dominating set inGr in O(log4 n) communication rounds,

with high probability.

Hence, our protocol self-stabilizes withinO(log4 n) rounds. Interestingly, this result is only

possible because our protocol uses physical carrier sensing. It is known that if physical carrier

sensing is not available and the nodes have no estimate of thesize of the network, then it takesΩ(n)

steps on expectation for a single message transmission to besuccessful [66] in any protocol.

7.4.2 Constant density spanner

We start with the definition of a spanner.

Definition 7.4.6 (Spanner) A subgraphH of a graphG is called a(topological)t-spannerof G if

for every pair of nodesv,w in G there is a path inH from v to w whose length is at mostt times

the minimum length of a path fromv to w in G. In this case,t is also called thestretch factoror the

spanning ratioof H.

Notice that a connected dominating set forms a topological spanner. If the connected domi-

nating set has constant density, then we say that the resulting topological spanner also has constant

density. We thus extend the dominating set protocol by additional protocols that connect the nodes

in the dominating set via so-called gateway nodes so that thefollowing result holds.

Theorem 7.4.7 For any desired transmission ranger and any initial situation, the spanner protocol

generates a constant density spanner inGr in O(D log2 n + log4 n) communication rounds, with

high probability, whereD is the maximum number of nodes that are within the transmission range

of a node.
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All of our protocols can self-stabilize even under adversarial behavior as long as the nodes

outside a range ofr′ = Θ(r) of adversarial nodes form a connected component inGr.

7.5 Related work

The problem of finding a minimum dominating set is an important restriction of the more gen-

eral set cover problem. The minimum dominating set problem has been proven to be NP-complete

in [48, 71]. If we take all nodes as dominating set then this will include less than(∆ + 1) times

the size of optimal minimum dominating set, where∆ is the maximum degree in the graph, so an

O(∆) approximation is trivial. The greedy algorithm first takes anode with maximum degree and

continues taking the node which covers maximum number of uncovered nodes until every node is

covered. This algorithm achieves alog ∆ approximation [65, 100, 137] and Feige [40] proved that

the approximation ratio achieved by the greedy algorithm isbest possible, unless NP hasnO(log log n)

time deterministic algorithms.

The problem of finding a minimum dominating set has been shownto be NP-complete even

when restricted to unit disk graphs [27] and, hence, approximation algorithms are of interest. Recent

research focused on developing distributed (rather than centralized) algorithms for finding good

approximations of minimum dominating sets in arbitrary graphs. A simple and elegant distributed

approximation algorithm was proposed by Luby [102].

Distributed algorithms for small size of dominating sets isextensively studied. Liang and Haas

[97] presented distributed implementation of the greedy algorithm. However, the runtime of the

algorithm in [97] can be polynomial in the number of nodes in the network. Jia et al. [63] extended

this algorithm to obtain a local randomized greedy algorithm which works inO(log n log ∆) time.

The algorithm of [63] is also alog ∆ approximation algorithm but the resulting dominating set is
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not guaranteed to be a connected dominating set.

Kuhn and Wattenhofer [84] proposed an algorithm based on LP relaxation techniques which

achievesO(k∆2/k log ∆) approximation inO(k2) time for an arbitrary numberk. Recently, Dub-

hashi et al. [36] presented alog ∆ approximation algorithm for minimum connected dominating

set problem which works in polylogarithmic time. The key observation in [36] is to sparsify a

given graph as the resulting graph has only a linear number ofedges but still stays conected. It was

also shown in [36] that no such distributed algorithm that runs ino(n) rounds exists where as their

randomized algorithm runs inO(log n) time.

Wu and Li [150] presented an algorithm finds an initial connected dominating set and removes

redundant nodes from this set. This algorithm requires two hop information. This algorithm has

time complexityO(∆2) and message complexityO(n∆).

Alzoubi et al. [5] presented the first constant approximation algorithm for the minimum con-

nected dominating set problem in unit-disk graphs withO(n) time andO(n log n) message com-

plexity, respectively. Cheng et al. [23] proposed a polynomial time approximation scheme for the

connected dominating set problem in unit-disk graphs.

Huang et al. [60] formally analyze a popular algorithm used for clustering in ad-hoc mobile

network scenarios. They show that this algorithm actually gives a 7-approximation for the minimum

dominating set problem in unit-disk graphs, while adaptingoptimally to the mobility of the nodes

in the network.

Recently, Kuhn et. al. [83] presented a distributed algorithm that computes a constant factor

approximation of a minimum dominating set inO(log2 n) time without needing any synchroniza-

tion but it requires that nodes know an estimate of the total number of nodes in the network. In

[119], Parthasarathy and Gandhi also present distributed algorithms to compute a constant factor
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approximation to the minimum dominating set. The running time of their algorithm depends on the

amount of information available to the nodes, and nodes haveto know an estimate of the size of the

network. Both papers extend the unit disk model taking into account signal interference.

Spanners

Suppose that we have a set of nodesV that are distributed in an arbitrary way in a Euclidean

space. Forv,w ∈ V , let d(v,w) denote the Euclidean distance betweenv andw. The goal of the

geometric spanner problem is to find a graphG = (V,E) so that for each pair of nodesv,w ∈ V

there is a path inG from v to w whose length is at mostt · d(v,w) for some fixed constantt. In this

case,G is called ageometrict-spannerof G wheret is the stretch factor.

Bose et. al. [16] proposed aO(n log n) time centralized algorithm that constructs a planar

t-spanner, fort ≤ 10.02 , such that the degree of each node is at most 27. This is the first algorithm

that constructs a planar spanner of bounded degree.

For constructing geometric spanners, several structures have been proposed. It is known that

Delaunay triangulation is a planar t-spanner fort ≤ 4
√

3π/9 [73]. Hence constructions based

on the Delaunay triangulation are studied e.g., [47, 93, 147]. While the spanner constructed in

[47, 93] is planar, the node degree is not bounded. Wang and Li[147] proposed an efficient

localized algorithm that constructs a bounded degree planar t-spanner. This spanner has spanning

ratio t = max{π
2 , π sin α

2 + 1} · Cdel and each node has degree at most 25 where0 < α ≤ π/3

whereCdel ≤ 4
√

3π/9 is the spanning ratio of the Delaunay triangulation.

Spanners based on the Yao graph [152] and the Gabriel graph [46] are presented in [94, 148,

138]. Of these, the results of [94, 95] guarantee constant degree and constant spanning ratio but are

not guaranteed to give a planar spanner. Song et. al. [138] construct a planar low degree spanner

combining the constructions of both the Gabriel graph and the Yao graph.
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For topological spanners, Dubhashi et. al. [36] presented aspanner with logarithmic stretch

factor. Alzoubi et. al. [5] presented a spanner with constant stretch factor of 5 where the protocol

is very similar to ours but uses a high-level model for wireless networks. Our protocol for selecting

gateway nodes also has similarities to the protocols presented in [146, 47]. However both these

papers are based on high-level wireless models.

7.6 Overview of spanner protocol

In the following,rt denotes the desired transmission range andGrt represents the graph with

node setV and edge setErt containing all edges{v,w} with c(v,w) ≤ rt.

Our spanner protocol forGrt consists of 3 phases:

• Phase I: The goal of this phase is to construct a constant density dominating set inGrt . This

is achieved by extending Luby’s algorithm [102] to our more complex model. Since the

dominating set resulting from Phase I may not be connected, we need further phases to obtain

a constant density spanner.

• Phase II: The goal of this phase is to organize the nodes of thedominating set of Phase I

into color classes that keep nodes with the same color sufficiently far apart from each other.

Only a constant number of different colors is needed for this, where the constant depends on

δ. Every node organizes its rounds into time frames consisting of as many rounds as there

are colors, and a node in the dominating set only becomes active in Phase III in the round

corresponding to its color.

• Phase III: The goal of this phase is to interconnect every pair of nodes in the dominating set

that is within a hop distance of at most 3 inGrt with the help of at most 2 gateway nodes,
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Round

Figure 7.6: Two consecutive rounds of the spanner protocol.

using the coloring determined in Phase II to minimize interference problems. Constructions

using gateway nodes were also presented in [47, 146] but assuming a higher level model of

wireless networks.

Each phase has a constant number of time slots associated with it, where each time slot represents

a communication step. Phase I consists of 3 time slots, PhaseII consists of 4 time slots, and Phase

III consists of 4 time slots. These 11 time slots together form a roundof the spanner protocol (see

also Figure 7.6). We assume that all the nodes are synchronized in rounds, that is, every node starts

a new round at the same time step. As mentioned earlier, this may be achieved via GPS or beacons.

The spanner protocol establishes a constant density spanner by running sufficiently many

rounds of the three phases. All of the phases are self-stabilizing. More precisely, once Phase I

has self-stabilized, Phase II will self-stabilize, and once Phase II has self-stabilized, Phase III will

self-stabilize. In this way, the entire algorithm can self-stabilize from an arbitrary initial configura-

tion.

It is not difficult to see that our spanner protocol results ina 5-spanner of constant density:

Consider any pair of nodess and t in Grt and letp = (s = v0, v1, . . . , vk = t) be the shortest

path froms to t in Grt . Then we can emulatep via the connected dominating set by first going to a

leaderℓ0 of s, then (possibly via gateway nodes) to a leaderℓ1 of v1, then to a leaderℓ2 of v2, and

so on, until we reach a leaderℓk of t, and finally tot. The length of this path is at most3k + 2 ≤ 5k

for everyk ≥ 1. Combining this with the time bounds shown for the various phases in the sections
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below results in Theorem 7.4.7.

Legend:

Active Node

Inactive node

Gateway node

Other edges 

Gateway 

Figure 7.7: The spanner of the original network.

An important feature of our protocol is that all messages sent are of constant length and the

nodes only have to have a constant amount of storage, irrespective of the density of the network.

We just need the assumption that a storage unit is large enough to store the ID of any node. Hence,

our protocol can be used with very simple devices such as sensors.

7.7 Phase I: dominating set

Let P be some fixed transmission power with transmission rangert and interference rangeri

for which we want to construct a dominating set of constant density. That is, given any set of nodes

V , we want to find a subsetU ⊂ V of nodes so that every nodev ∈ V has at least one nodew ∈ U

with c(v,w) ≤ rt and at most some constant number of nodesw ∈ U with c(v,w) ≤ rt.

As mentioned earlier, if we want to reach the goal above in a sub-linear number of steps without

physical carrier sensing, then a good approximation oflog n is needed, wheren = |V |. Since our

goal is to arrive at a dominating set without using any prior knowledge of the network topology,

physical carrier sensing has to be used, which complicates the design as it has uncertainties (see

our model). To handle these uncertainties, we use a distributed coloring strategy together with two

different sensing ranges.
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In our protocol, nodes can either beactiveor inactive. The active nodes are the candidates for

the dominating set. The nodes use two different sensing thresholds, depending on their state. The

sensing thresholdTa has a CSI range ofrt and the sensing thresholdTi has a CST range ofri. To

distinguish between these ranges, we speak about an aCST/aCSI-range whenever we meanTa and

iCST/iCSI-range whenever we meanTi.

Each node cuts the time intotime framesof k roundseach for some constant numberk that is

the same for every node. The rounds are synchronized among the nodes but we do not require the

frames to be synchronized.

Initially, all nodes are inactive. Afterwards, each node executes the following protocol in each

round. In this protocol, each active node has exactly one, fixed active round in a frame and a signal

is just a very simple message. Each item represents a communication step.

1. If v is active and in its active round, thenv sends out an ACTIVE signal.

If v is inactive andv did not sense any ACTIVE signal for the lastk rounds using a sensing

threshold ofTa, v senses with thresholdTi, and if it does not sense anything, it becomes active

and declares the current round number as its active round. Ifv did sense some ACTIVE signal

in one of the lastk rounds, it just performs sensing with thresholdTa and records the outcome.

2. If v is active and is in its active round, then with some fixed probability p, to be determined

later, v sends out a LEADER message containing its ID. Ifv decides not to send out a

LEADER message but it either senses a LEADER message with thresholdTa or receives

a LEADER message,v becomes inactive.

In the following, letHr,k = (V,E) be an undirected graph that contains an edge between two

nodesv andw if and only if v andw are active and use the same active round (or color)k and

c(v,w) ≤ r. A nodev is called aleader if it is active and there is no other active nodew of the
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same color withc(v,w) ≤ rt. Since inactive nodes sense with an iCST range ofri before they

become active, none of the inactive nodesw with c(v,w) ≤ ri will become active in the active

round ofv. Hence, we get:

Fact 7.7.1 At any time, the set of leader nodes forms an independent set in Hrt,k that is discon-

nected from all other active nodes inHrt,k.

In addition, a leader node uses an aCSI range ofrt and will therefore not be affected by nodes

outside of a range ofrt. Hence, we arrive at the following fact.

Fact 7.7.2 Once a node becomes a leader, it will stay a leader as long as the cost functionc does

not change.

Furthermore, an inactive nodev can only become active if in the previousk rounds there was

no active nodew with c(v,w) ≤ rs, wherers is the CST range for thresholdTa, because otherwise

v would have sensed the ACTIVE signal ofw in one of these rounds. Hence, we also get:

Fact 7.7.3 There cannot be two leadersv andw with c(v,w) ≤ rs.

Sincert/rs is a constant, the facts above and Fact 7.4.4 imply that the leaders must form a set

of constant density inGrt . On the other hand, the following lemma is true.

Lemma 7.7.4 In any situation in which all active nodes are leaders but theleaders do not form a

dominating set with respect toGrt , at least one inactive node will eventually become active.

Proof. From Facts 7.4.4 and 7.7.3 it follows that there can be at mostsome constant numberk′

of leaders within the iCSI range of any node. Hence, ifk > k′ then for every inactive node that

does not yet have a leader within its transmission range there must be at least one rounds in which

there is no leader within its iCSI range. Because the inactive node will continue to explore potential
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active rounds in a round-robin fashion as long as it senses a transmission with thresholdTi, it will

eventually arrive at rounds and become active (unless some other inactive node close to it becomes

active before that). ⊓⊔

On the other hand, the following result is easy to check.

Lemma 7.7.5 Every connected component of active nodes inHrt,k results in at least one leader.

Thus, the algorithm eventually arrives at a situation wherethere is no inactive node that does

not have a leader within its transmission range. At that point, the leaders must form a superset

of a maximal independent set inGrt . Thus, according to Facts 7.4.4, 7.7.3, and 7.7.2 the leaders

eventually form a static dominating set of constant density. It remains to prove how much time is

needed to reach such a state.

Theorem 7.7.6 If all nodes are initially inactive, afterO(log4 n) rounds of the algorithm, with high

probability, the leaders form a static dominating set of constant density with respect toGrt .

Proof. The next two lemmata state important properties of connected components of active nodes

in Hrt,k. Notice that a leader always represents a connected component by itself.

Lemma 7.7.7 At any time stept, Hrt,k consists of connected components of active nodes where all

nodes in a connected component were reactivated at the same round.

Proof. Suppose that there are two adjacent nodes,v andw, in some active, connected component in

Hrt,k that were not reactivated at the same round. W.l.o.g. letv be the first node that became active.

Thenw could not have become active becausev is in its iCST range, leading to a contradiction.⊓⊔

For the next lemma, given an active nodev, we definels(v) as the bit sequence in which theith

bit is 1 if and only ifv sent out a LEADER message in roundi since it joined its current component.

ls(v)i denotes the firsti bits of ls(v).
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Lemma 7.7.8 Every connected component of active nodes inHrt,k needs at mostO(log n) rounds,

w.h.p., until every node in it either becomes inactive or becomes a leader.

Proof. Consider any connected componentC of active nodes inHrt,k at some time pointt0, and

let C ′ be the union of the connected components of active nodes inHrt,k that have at least one node

within the interference range of a node inC.

Whenever a node becomes active aftert0, it cannot interfere with the remaining nodes inC

because it will be guaranteed to be outside of their interference range (and therefore also of their

aCSI range). Hence, we only need to focus on the remaining active nodes inC ∪ C ′.

We prove the lemma in two steps. First, we show that it only takesO(log n) rounds, w.h.p.,

until there are no two active nodesv andw in C ∪C ′ wherew is within the aCST range ofv or vice

versa. Then we show that it only takesO(log n) further rounds, w.h.p., until there are no two active

nodesv andw in C that are within the transmission range of each other.

The probability that for any two fixed, active nodesv andw it holds thatls(v)i = ls(w)i is

equal topi. Hence, ifi = c log1/p n, then the probability that there are two nodesv andw in C ∪C ′

with ls(v)i = ls(w)i that are within their aCST range is at mostn2/pc log1/p n = n2−c. Thus, the

probability that afterc log1/p n rounds there are still two nodes within the aCST range inC ∪ C ′

that are both active is polynomially small inn for c > 2.

Hence, afterO(log n) rounds, there can only be at most some constant numberd of active

nodes within the interference range of any active node inC, whered depends on the ratio between

the interference range and the aCST range. Thus, when choosing p = 1/d, then the probability that

exactly one of the active nodes within the interference range of an active nodev in C is transmitting a

LEADER message in a round isΘ(p). Therefore, it takes at mostO((1/p) log1/p n) = O(d logd n)

rounds until for every nodev in C that is still active there is no other active node in the transmission
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range ofv, with high probability. ⊓⊔

Next we give a lower bound on the number of leaders that emergefrom a connected component

of active nodes inHrt,k. For the rest of the proof, we assume w.l.o.g. thatrt = 1 andri = 1 + α

for some constantα > 0. We define the area covered by an active nodev as the area that is within

the transmission range ofv.

Lemma 7.7.9 For any time step in which the currently existing connected components of active,

non-leading nodes cover an area ofA = Ω(log3 n), the number of leaders emerging from these

components isΩ(A/ log2 n), w.h.p.

Proof. Consider any setC of connected components of active, non-leading nodes that cover an

area ofA. Given any nodev, let Γ(v) denote the set of nodesw ∈ C with c(v,w) ≤ 1 and let

γ(v) = |Γ(v)|. Let H be the directed graph resulting fromC by connecting two active nodesv and

w by an edge(v,w) if and only if c(v,w) ≤ 1 andγ(w) ≥ 2γ(v). A node is called asink if it does

not have any outgoing edges.H has the following important property:

Claim 7.7.10 Every nodev in H has a directed path to a sinks of length at mostlog n.

Proof. First of all, H cannot contain a directed cycle. Thus, every directed path must eventually

end in a sink. Suppose now that some nodev has a directed pathp to a sinks of length more than

log n. Because of the definition of the edges, it follows thatγ(s) ≥ 2k · γ(v) > n · γ(v), which

cannot happen because there are onlyn nodes in the system. ⊓⊔

Recall that our cost function must satisfyc(v,w) ∈ [(1 − δ) d(v,w), (1 + δ)d(v,w)]. Thus, if

we consider disks of radius(1+ log n)/(1− δ), around the sinks ofH, then the complete areaA of

active, non-leading nodes is covered. To extract out of all sinks a set of sinks useful for our analysis
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below, we consider these sinks one by one. For each sinks that has not already been eliminated,

eliminate all sinkss′ that are of distance at most4 from s and adds to a setS. At the end, we arrive

at a setS of sinks of pairwise distance at least4 such that disks of radiusr = (5 + log n)/(1 − δ)

around these sinks cover the entire areaA. Thus, the areaA can be decomposed into areas of size

at mosta = πr2 each containing a sink inS, and therefore|S| ≥ |A|/a. It is not difficult to show

that these sinks have the following property:

Claim 7.7.11 For any sinks ∈ S, the expected number of active nodes inΓ(s) that become a leader

is Θ(1).

For any sinks, let the random variableXs denote the number of active nodes inΓ(s) that

become leaders and letX =
∑

s Xs. From Claim 7.7.11 it follows thatE[X] ≥ α|S| for some

constantα > 0, and because the distance between any two sinks inS is at least4, theXs variables

are independent. Thus, we can use Chernoff bounds to obtain

Pr[X ≤ (1 − ǫ)α|S|] ≤ e−ǫ2α|S|/2

for any ǫ > 0. This is polynomially small ifǫ = 1/2 and |S| = Ω(log n) is sufficiently large.

Hence, in this case,

Pr [X ≤ α|S|/2] = Pr

[

X ≤ α|A|
2πr2

]

is polynomially small, which completes the proof of the lemma. ⊓⊔

Now, let us call a nodeunfinishedif it is active but not a leader or it is inactive and it does

not have a leader within its transmission range. We know thatan unfinished node is either active or

must have at least one node within its iCSI range,rii, that was active within the previousk rounds

(because otherwise it would become active). Hence, when drawing disks of radiusrii/(1 − δ)
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around all nodes that were active in at least one of thek previous rounds, the entire area that the

nodes can transmit messages to is covered.

Let A0 be the area covered by the transmission ranges of all the nodes in the system. If

A0 = Ω(log3 n), then Lemma 7.7.8 and Lemma 7.7.9 imply that afterO(log n) rounds, the area

covered by the unfinished nodes is at most

A0 − c · A0

log2 n
=

(

1 − c

log2 n

)

A0

for some constantc, with high probability. Thus, afterk stages ofO(log n) rounds each, the area

covered by the unfinished nodes is at most

(

1 − c

log2 n

)k

A0 ≤ e(c·k)/ log2 nA0 ,

with high probability. The right hand side is less thanlog3 n if k ≥ (log A0)(log
2 n)/c. Once an

area of sizeO(log3 n) is reached, it follows from Lemma 7.7.5 that it takes onlyO(log3 n) more

stages ofO(log n) rounds each until there are no unfinished nodes any more. Since A0 = O(n), it

follows that the total runtime needed for the set of active nodes to stabilize isO(log4 n). ⊓⊔

The dominating set algorithm can be easily extended so that it self-stabilizes [32] and it is

robust against malicious behavior. Self-stabilization means that it can recover fromany initial con-

figuration.

7.7.1 Self-stabilization

An extra rule is necessary to provide self-stabilization because if the protocol above starts in a

configuration violating Fact 7.7.3, it may not succeed in establishing a dominating set.
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Consider adding a third step to each round of the protocol above. In this step, every active node

sends a leader message with probabilityp and a transmission power so that its transmission range is

only equal to the aCST range. Adding now the rule that whenever an active node receives a leader

message in that step for a round different from its active round, then it becomes inactive, we do not

have to assume anything about how the nodes are initially activated in order to satisfy Fact 7.7.3.

So we get:

Corollary 7.7.12 for any initial situation, the extended protocol needs at mostO(log4 n) rounds to

arrive at a static dominating set of constant density with respect toGrt , w.h.p.

7.7.2 Robustness

Our dominating set algorithm is also highly robust against adversarial nodes. For any nodev,

let ther1⊕r2-range ofv be defined as the union of ther2-ranges of all the nodes within ther1-range

of v. Given any distribution of nodes, letA be the area covered by therii ⊕ rt-ranges of adversarial

nodes, whererii is the iCSI range of a node. Because in our protocol adversarial nodes can directly

influence only nodes within their iCSI range, nodes beyond the rt range of these nodes can only

have leaders outside ofA, and leaders outside ofA will stay leaders forever, one can show:

Corollary 7.7.13 If the honest nodes outsideA are connected inGrt , then afterO(log4 n) rounds,

the active honest nodes outsideA form a dominating set of constant density with respect toGrt ,

w.h.p.

7.8 Constant density spanner

In the next two subsections, we describe Phases II and III in detail. We use the following

notation. The constantd1 refers to the number of active nodes that are within the interference range
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ri of any node. The constantd2 refers to the number of active nodes that are within theri⊕ri-range

of any node, and the constantg refers to the maximum number of required gateway connections for

any active node. Finally,D refers to the density of the network, i.e. the maximum numberof nodes

within the transmission range of a node.

7.8.1 Phase II - Distributed Leader Coloring

Similar to Phase I, each node organizes the time into time frames consisting ofcd1 rounds for

some constantc that is the same for every node. Also here, the rounds are synchronized but frames

do not have to be synchronized among the nodes. We again assign active nodes to distinct rounds

using a coloring mechanism. While the coloring in Phase I wasdone with respect toGrt , we now

need a coloring of the active nodes with respect toGri⊕ri , that is, we need the active nodes to be at

leastri ⊕ ri apart in order to receive the same color.

Every active node from Phase I tries to own one of the rounds. An active nodeu is said toown

a round if no other active node within itsri ⊕ ri range is using that round. Active nodes are in one

of the states{owner, volatile}. An active node is in owner state if it already owns a round andis in

volatile state if it is still trying to own a round. Active nodes in owner state always send their ID in

the first time slot of their round. Initially, every active node is volatile. Active nodes in volatile state

choose an active round from thecd1 possible rounds uniformly at random. Active nodes in owner

state use a sensing thresholdTo with CST rangeri and active nodes in volatile state use a sensing

thresholdTv with a CST range being equal to the CSI range ofTo, rii.

Active nodes do the following repeatedly. Every time a node re-activates, it sets its time stamp

to 0. This time stamp is used by active nodes in Phase III to compare entries. Each item below

represents a communication step.
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1. Every active node in owner state that is in its active roundsends out a LEADER message

containing its ID and its current time stamp and increases its time stamp by one afterwards.

2. Every active node in owner state that is in its active rounddecides with probability1/2 to

send out an OWNER message either in the first or second substepof step 2.

3. Every inactive node that sensed a LEADER message with thresholdTv sends out a BUSY

signal. Every active node in volatile state that senses a BUSY signal in its active round

chooses a new active round uniformly at random.

4. Every inactive node that sensed OWNER messages in both substeps of step 2 with threshold

To sends out a COLLISION signal.

If an active node in owner state senses a COLLISION signal andsent an OWNER message

in the second substep, it changes into volatile state and chooses a new active round uniformly

at random.

If an active node in volatile state did not sense a BUSY or COLLISION signal in its active

round, it becomes an owner.

With the above protocol we can arrive at the following result.

Theorem 7.8.1 Once a stable set of active nodes is available, it holds: Ifc ≥ 4, then all active

nodes will be in owner state afterO(log n) rounds of the protocol, w.h.p.

Proof. We proceed as follows. There are two reasons due to which active nodes have to look

for a new round. First, active nodes in volatile state may encounter collisions because of other

volatile active nodes choosing the same round. This causes them to keep trying for another round.

Secondly, active nodes in owner state may receive or sense a collision due to some volatile active
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node choosing the same round. Here nodeu that owns a round may get a COLLISION signal ifv

chooses the same round andu andv are not within the interference range of each other and chose

to send the OWNER message in the second sub-step. So nodev during its listening period does not

know about nodeu.

We now try to bound the probability that some volatile activenode continues to be in volatile

state afterO(log n) attempts. The probability that two volatile nodes choose the same round is at

most 1
cd1

d1 ≤ 1
c ≤ 1/4 sincec ≥ 4. Thus after2 log n attempts, the probability that there is still

some active node in volatile state is at mostn 1
42 log n = 1/n3.

Similarly, we can compute the probability that an owner active node has to change its round

due to some volatile or owner node. The probability that someowner node has to change its round

due to a volatile node is at most1cd1
d1(1/2) ≤ 1/c ≤ 1/8 if c ≥ 4. In the above calculation, the

owner node will have to change its rounds only if it chose to transmit the OWNER signal in the

second sub-step of the second step. Thus after2 log n attempts, the probability that there is still

some active node in volatile state, that has to still look fora round, is at most1/n4.

We can treat these two types of collisions as failure events and bound the probability of failure

due to any event to be less thanO(1/n3) and hence w.h.p. afterO(log n) attempts, all active nodes

become owners whenc ≥ 4. ⊓⊔

Without the two types of signals BUSY and COLLISION and the two different sensing thresh-

olds the coloring achieved may fail to beri ⊕ ri distinct. For any active nodeℓ in volatile state,

the thresholdTv and the BUSY signal helps to identify the presence of active nodes in owner state

with the same active round so that active nodes in owner statewithout another active node in owner

state within therii ⊕ rii-range will also keep this property in the future and are therefore safe from

becoming volatile again. The COLLISION signal is necessaryto resolve conflicts among close by
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active nodes in owner state with the same active round, whichcan happen if volatile nodes become

an owner in the same round, or this may be part of the initial state when looking at self-stabilization.

In any case, the monotonicity assumption on the sensing in our model is important to make sure that

there will either never be a conflict among owner nodes or immediately a conflict when a collision

is detected.

The theorem implies that afterO(log n) rounds, all active nodes have chosen rounds so that for

any two active nodesℓ andℓ′ with the same round and any inactive nodev within the interference

range ofℓ, ℓ′ is outside of the interference range ofv. Hence,ℓ can transmit messages to nodes

within its transmission range without interference problems, and one these nodes can transmit mes-

sages toℓ without causing interference problems atℓ. Both properties are important for Phase III to

work correctly.

Another implication of the above theorem is that if any inactive node listens to the channel

for a period ofcd1 time steps, then it can gather the ID’s of all the active nodesin its transmission

radius. This follows because once Phase II stabilizes, all the active nodes are in owner state and

hence continue to send their ID messages in the first slot of the round they own. As these messages

are free of any collisions, they can be received by the inactive nodes. This characterization is useful

especially in Phase III where inactive nodes need this information to organize their data structures.

7.8.2 Phase III - Gateway Discovery

In this section we describe the protocol for Phase III. The goal of this phase is for the active

nodes from Phase I to discover gateway connections to other leaders that are within a hop distance

of at most 3 inGrt .

During this phase, the active nodes use an aCST range ofrt. The active nodes use the rounds

reserved in Phase II to achieve interference-free communication with the inactive nodes within
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their transmission range. Each round consists of four time slots for communication in Phase III,

where each time slot represents a communication step as shown in Figure 7.6. In the first time

slot, inactive nodes send CLIENT messages and in the second time slot the active node sends a

response accordingly; in the third and fourth time slots, aninactive nodeu may broadcast to its

(active and inactive) neighbors all the information it has regarding possible gateways between the

leader owning the reserved round and other leader nodes it has heard about. For simplicity, we

assume that all active nodes are reactivated at the same timeand hence that we can directly compare

the time stamps with respect to the different active nodes. In reality, each inactive nodeu would

keep track of the offsets of the (constant number of) time stamps it receives (in the corresponding

slots allocated to the different leaders in Phase II) and usethese offsets when comparing time stamps

from different leaders.

We first describe the data structures that are maintained during this Phase. Each inactive node

u maintains a cache, calledPu, which has entries of the form(ℓ, v, tℓ) whereℓ is an active node,v is

an inactive node (withu = v possibly), andtℓ is the time stamp with respect toℓ at which the entry

(ℓ, v) is added toPu. When comparing entries in the cache, a∗ acts as a wild card that matches any

value. The operationenqueue(ℓ, v, tℓ) onPu is used to add the new entry(ℓ, v, tℓ) to Pu. Enqueue

performs the following checks before actually adding the new entry toPu. When adding a new

entry(ℓ, v, tℓ), any entry of the form(ℓ, ∗, t′) with t′ < tℓ is evicted. If no such entry exists andPu

is full, then the least recently added entry(∗, ∗, t′), that ist′ = min{t|t < tℓ and (∗, ∗, t) ∈ Pu},

is evicted to make room for the new entry. The cachePu has space enough to store a constant,d2,

number of entries. Inactive nodes also maintain a state thatis eitherawakeor asleepwith respect

to each active node that is within their transmission range.Theasleepnodes just listen the channel

and becomesawakewhen they receive a FREE or a ACK message.
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Each active nodeℓ maintains a list, calledGℓ, and each entry inGℓ contains two fields. The

first field has gateways represented as quadruples of the form(ℓ, u, v, ℓ′) whereℓ′ 6= ℓ andu = v

possibly,ℓ′ is an active node andu, v are inactive nodes. The second field contains the time stamp

tℓ at which the entry was added toGℓ. The operationenqueueon Gℓ is used to add a new entry

((ℓ, u, v, ℓ′), tℓ) to Gℓ. Before adding the new entry((ℓ, u, v, ℓ′), t) to Gℓ, any entry of the form

((ℓ, ∗, ∗, ℓ′), t′) is evicted fromGℓ for t′ < t. If the list Gℓ is full, then the entry corresponding tot′

such thatt′ = min{t′′|t′′ < t and ((ℓ, ∗, ∗, ℓ′), t′′) ∈ Gℓ}, that is the entry ofGℓ with smallest time

stamp, is deleted to make room for the new entry. (Similar toenqueueonPu for inactive nodeu).

The listGℓ has space enough to store a constant,g, number of entries.

In the following, ℓ refers to the ID of the active node that owns the current slot and u is an

inactive node that received the ID message fromℓ and the state ofu is with respect toℓ. Each item

below represents a communication step.

1. If u is awake thenu sends out a CLIENT message of the form〈CLIENT, ℓ, u〉 with proba-

bility 1/2.

2. Nodeℓ responds with a reply in the next time slot which can be of three forms. Ifℓ receives a

CLIENT message from nodeu thenℓ addsu to Nℓ by callingenqueue(u) and also sends an

acknowledgment containing the ID ofu as〈ℓ,ACK, u〉. If ℓ only senses a busy channel but

does not receive any message, thenℓ sends a collision message of the form〈ℓ,COLLISION〉.

If ℓ does not receive any message and also does not sense a busy channel, theℓ sends a free

channel message of the form〈ℓ,FREE〉.

If u is awake and decided not to send a CLIENT message in the previous slot and receives a

collision message thenu goes to asleep state. Ifu is asleep and receives a free channel or an

acknowledgement message thenu becomes awake.
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3. If u is awake and receives an acknowledgment containing the ID ofu then u will store

(ℓ, u, tℓ) in Pu, tℓ being the current time stamp associated withℓ, by callingenqueue(ℓ, u, tℓ).

Nodeu also deletes any entries of the form(∗, ℓ) from Pu (sinceℓ is no longer inactive).

Nodeu then broadcasts, in the third time slot, a message〈ADV , ℓ, u, tℓ〉 to its neighbors. The

ADV message is sent with a probabilityp, to be determined later.

4. Nodeu builds one GATEWAY message containing all quintuples of theform ((ℓ, u, vj , ℓj), t)

for eachj such thatℓj 6= ℓ with (ℓj , vj , tj) ∈ Pu, wheret = min{tℓ, tj}, and sends the

message to its neighbors. The GATEWAY message is sent, with probability p, in the fourth

time slot.

If v is not active and received an ADV message〈ADV , ℓ, u, tℓ〉 then it callsenqueue(ℓ, u, tℓ)

onPv. Nodev also deletes any entries of the form(u, ∗) or (∗, ℓ) from Pv (asu is no longer

an active node nor isℓ inactive).

If ℓ is active and receives a GATEWAY message containing((ℓ, u, v, ℓ′), t), then ℓ stores

((ℓ, u, v, ℓ′), t) in Gℓ by callingenqueue((ℓ, u, v, ℓ′), t).

Before we analyze the protocol, we start with the following fact, which follows from the obser-

vation that a necessary condition for an inactive nodeu to transmit in step 3 and step 4 is to receive

an ACK from an active node in step 2.

Fact 7.8.2 During steps 3 and 4 of the protocol there are at most a constant numberd1 of nodes

that are transmitting any message.

Using this fact, we can prove the following theorem.

Theorem 7.8.3 In O(D log2 n) rounds, with high probability, each active node learns about a gate-

way to each of the currently active nodes in its 3-neighborhood with respect toGrt .
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Proof. We prove the convergence of Phase III to a set of valid gatewayconnections inO(D log2 n)

rounds after Phase I and Phase II have reached a stable state.Since, at that point the active nodes

have reserved rounds that are distinct within theri ⊕ ri range, we can treat the actions of active

nodes independent of each other.

Let (v, ℓ) be an inactive node-active node pair such thatv has to send a CLIENT message to

ℓ. Nodev has at mostO(D) inactive nodes in its interference range sending a CLIENT message

to some leader node. If more than one node is in awake state, with respect toℓ, decides to send a

CLIENT message, thenℓ will send a collision message. Since the collision message will be received

by the inactive nodes, withinrt range ofℓ, awake nodes that decided not to send a CLIENT message

to ℓ in the previous slot will go to asleep state.

Consider time to be partitioned into groups of consecutive rounds such that each group ends

with a round where the active nodeℓ sends either an ACK message or a FREE message. (A group

ending with an ACK message signifies a successful group and a group ending with a FREE message

is a failed group). Notice that at the end of every group, whether successful or not, all the inactive

nodes within thert range ofℓ go to awake state (by step 2 of the protocol).

It can be shown that the number of rounds in each group, successful or failed, isO(log n)

and any group is successful with constant probability as follows. Consider any group. Firstly, for

an inactive nodeu in awake state, the probability thatu stays in theawake state in the current

round of the group is1/2, provided the group does not end in this round. Thus, afterr rounds, the

probability that there is still a set ofc ≥ 2 nodes that are still inawake state is at most:

D
∑

j=c

(

D

j

)

(1/2)rj ≤
D
∑

j=c

(eD/j2r)j ≤ 1/n2

whenr = 2 log n + log D = O(log n). We now say that each group consists ofr + 1 = O(log n)
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rounds, with high probability.

Consider the roundr + 1. The probability that the group is successful is at least
∑c

j=2 j(1/2)j

≥ 1/2, as during the(r + 1)st round, if there are onlyj awake nodes then the probability that

only one of them sends a CLIENT message is1/2j . Thus, each group is successful with a constant

probability.

Due to symmetry reasons any inactive node is equally likely to be send a CLIENT message in

a successful group. Thus, during any successful group, for agiven pair(v, ℓ),

Pr[ v sends a CLIENT message successfully toℓ] ≥ 1/2D.

Using Chernoff bounds, for any given pair(v, ℓ) the probability that it takes more thanDk

groups so thatv sends a CLIENT message toℓ successfully will be polynomially small fork =

3 log n. Thus any nodev requires at mostO(D log2 n) rounds to send a CLIENT message toℓ

successfully w.h.p.

To proceed further, letℓ and ℓ′ be active nodes, withd(ℓ, ℓ′) ≤ 3 and let(ℓ, u, v, ℓ′) be a

gateway betweenℓ andℓ′. Notice that onceℓ andℓ′ receive CLIENT messages fromu andv respec-

tively, ℓ andℓ′ can establish a gateway connection between them as successful CLIENT messages

are followed by ADV and GATEWAY messages in the next time slots reserved for this phase. With-

out loss of generality, we assume thatu sends the ADV message which when received byv results

in v adding the entry(ℓ, u, v, ℓ′) to the GATEWAY message thatv sends. Along with Fact 7.8.2 it

holds that during every successful group the probability thatu gets an ACK message and sends the

ADV message is at least1/c′D for a constantc′ = 2ed1 when we setp = 1/d1. And similarly

the probability that in a successful groupv gets an ACK message fromℓ′ and sends a GATEWAY

message is at least1/c′D.
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Thus, in each group,

Pr[ℓ andℓ′ discover a gateway connection] ≥ 1/c′′D

for some constantc′′ wherec′′ depends onc′, andp = 1/d1. Using Chernoff bounds again, it holds

thatℓ andℓ′ can establish a gateway connection in3c′′D log n groups with high probability. Thus,

for ℓ andℓ′ to establish a gateway connectionO(D log2 n) rounds suffice with high probability.

Note that, after Phase II stabilizes and after we let Phase III run for O(D log2 n) rounds, time

stamping will be enough to guarantee that we will always keepinformation received at a leader node

ℓ about a valid gateway connection between leader nodesℓ andℓ′, if at least one such connection

exists (since we have at most a constant number of leader nodes within cost3rt from any given

leader node, and since we have at most a constant number of leader nodes adjacent to any inactive

node, constant sizePu andGℓ lists at inactive nodesu and active nodesℓ respectively will suffice).

⊓⊔

Note that this gateway connection may actually use another nodeu′ adjacent toℓ in Grt , in

caseu received an ADV message fromu′ later than that ofv and before sending the GATEWAY

message toℓ, but that does not affect our calculations in the above proofas they were done for a

generic gateway connection.

7.9 Chapter Summary and Acknowledgements

We have introduced a new and more realistic model for wireless communication in this chapter.

As will be shown in the subsequent chapters, we can develop time- and energy-efficient protocols

for other problems on top of our constant density spanner (e.g. broadcasting and service discov-
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ery). In particular, we address the question of how to designprotocols that can self-stabilize under

adversarial influence using our spanner construction.

A preliminary version of the results in this chapter appear in [75]. This work is done jointly

with Melih Onus and Andrea Richa, from the Department of Computer Science, Arizona State

University.
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Chapter 8

Wireless Ad Hoc Networks:
Broadcasting and Gathering

8.1 Introduction

This chapter considers the problem of broadcasting and information gathering in wireless ad-

hoc networks. Broadcasting is the problem of sending a packet from a source node in the network

to all other nodes in the network. Information gathering is the problem of sending≥ 1 packets from

a subset of the nodes to a single sink node in the network. Broadcasting is one of the most important

primitives in wireless networks and it has therefore been extensively studied both in theory and in

practice. Information gathering is also an important communication primitive for wireless networks

which arises in many contexts such as sensor networks.

Most of the proposed theoretical wireless network models oversimplify wireless communi-

cation properties. Such simple models can have a serious effect on the practical efficacy of the

proposed algorithms. We will use our model from Chapter 7 that takes into account that nodes have

different transmission and interference ranges, and we propose algorithms in this model that achieve

a high time- and work-efficiency. Our algorithms have the advantage that they are very simple and

self-stabilizing, and would therefore even work in a dynamic environment. Also, our algorithms

only require a constant amount of storage at any node. Thus, our algorithms can be used in wireless
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systems with very simple devices, such as sensors.

8.2 Motivation

Broadcasting is a basic communication primitive for wireless networks, and it has therefore

been heavily studied both in the systems and in the theory community. Though broadcasting itself

appears to be an easy problem, it is actually quite hard to realize in an efficient and reliable way

in a mobile ad-hoc network. The main problem concerning theoretical investigations is that mobile

ad-hoc networks have many features that are hard to model in aclean way. So far, people in the

theoretical community have mostly looked at static wireless systems (i.e. the mobile units are always

available and do not move).

Broadcasting in wireless networks has been the study of several papers. Recently, the focus

is on designing algorithms that assume no knowledge of the topology of the network except pos-

sibly the size of the network. Wireless communication is usually modeled using the Packet Radio

Network (PRN) model, described in Section 7.2.2.

The PRN model is a simple and clean model that allows to designand analyze broadcast

algorithms with a reasonable amount of effort. However, since it is a high-level model, it does

have some serious problems with certain scenarios in practice. For example, in reality it is not

true that the transmission range,rt, of a node is the same as its interference range,ri. Instead, the

interference range of a node is usually at least twice as large as its transmission range. Not taking

this into account may result in broadcasting algorithms that cannot handle certain scenarios well,

although efficient on paper.

When both these assumptions are removed, it is quite challenging to design efficient broadcast-

ing algorithms. The problem becomes more acute as it has beenobserved in [112] that uncontrolled
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additional retransmissions of the message by nodes hindersthe actual receipt of message by some

nodes due to interference and excessive channel contention. This phenomena is calledbroadcast

stormproblem in [112].

≤ rt
≤ rt

> rt

≤ ri

s

U

v

t

Figure 8.1: An example network with nodes the source of the broadcast.

Consider a simple broadcast algorithm for wireless networks where every node that received

the message retransmits the message with a probability of1/2 during every time step. Now consider

for example, a network ofn nodes where two nodess andt and a setU of n − 2 nodes. Nodes is

the source of the broadcast message. All nodes inU are within the transmission range ofs but only

nodev ∈ U , is within the transmission range oft as in Figure 8.1. In this situation, when a bigger

interference range is not taken into account, nodet receives the message when nodev transmits

after the source nodes sends the message. Thus, the broadcast algorithm has a runtime ofO(1) in

expectation andO(log n) with high probability.

Let us reconsider the above example when the interference rangeri is bigger than the trans-

mission rangert. Further let all the nodes inU exceptv have the property that nodet is within their

interference range and outside of their transmission rangeas shown in Figure 8.1. Thus, only node

v can successfully deliver the message tot whereas any simultaneous transmission of nodes inU

would just result in interference att. For the above simple broadcast scheme, nodet can receive the
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message precisely when only nodev transmits and rest of then − 3 nodes inU do not transmit in

a given time step. In this scenario,Ω(2n) steps are required in expectation. It could be argued that

the above scheme is very simple and hence has poor performance whenri > rt. However, such

a scheme is typical of many algorithms for broadcasting in wireless networks [90, 81, 30] where

during every time step there is a set ofactivenodes that have the same probability of transmitting

the message. In the aboveactivenodes are those that already received the message. Such protocols

are also calleduniform protocols in [66] and the runtime of such protocols in the above example

would beo(n) when we consider the situation thatri > rt.

The assumption that the size of the network or a linear estimate of the size of the network is

available to the nodes in the network also over-simplifies the problem. Without an estimate of the

size of the network it was shown in [66] that for a single message to be sent successfullyΩ(n) time

units are required in expectation, if physical carrier sensing is not available. The reason for this

simply is that without knowledge of the size and no physical carrier sensing, when using algorithms

that rely on an exponentially decaying transmission probability, nodes do not know when a round

ends.

Thus, it is required that algorithms for broadcasting in wireless networks handle the above

problems. One way to minimize interference problems is to reduce redundant broadcasts. Heuristics

for reducing redundant broadcasts are studied in [112] but arigorous theoretical analysis is not

presented. There is a limited number of papers that use a model that differentiates between the

transmission range and interference range [4, 55, 57], but they assume that nodes are distributed in

an ideal space so that the transmission range and interference range of every node can be specified

in terms of Euclidean distance independent of the position of the node.

We will use our much more general model that is presented in detail in Chapter 7 for designing
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self-stabilizing algorithms for wireless overlay networks for broadcasting and information gather-

ing. In this context, self-stabilization means that the algorithm terminates in a finite amount of time

at the end of which it also produces a valid output. Our algorithms work without knowledge of

size or a linear estimate of size of the network and also can handle interference problems in wire-

less networks. Our algorithms even work under the conditionthat the node labels are only locally

distinct.

8.3 Related work

Broadcasting in wireless ad-hoc networks has been extensively studied in the literature, espe-

cially in the more applied ad-hoc networking community. See[149] for a survey. All of the works

on the broadcast problem cited below assume a static networkscenario where the transmission and

interference ranges of a node are the same and wireless communication is modeled using the PRN

or UDG model.

In an early work, Chlamtac and Weinstein [24] presented a deterministic centralized broad-

cast protocol which assumes complete knowledge of the network topology and which runs in

O(D log2 n) time, wheren is the number of nodes andD is diameter of the network. Bar-Yehuda

et al. [11] were the first to present a distributed algorithm for the broadcasting problem in ad-hoc

wireless networks. In [11] and in all of the follow-up work cited below, no topological knowledge

of the network is assumed. Bar-Yehuda et al. [11] present a randomized protocol, based on a “decay

procedure” that mandates when nodes should attempt to retransmit a broadcast message, which has

expected completion timeO(D log n+log2 n). Later, Kushilevitz and Mansour [90] proved a lower

bound ofΩ(D log (n/D)) on the running time of any randomized broadcast protocol, showing that

the algorithm of Bar-Yehuda et al. is in fact almost optimal.This was later improved for the case of
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symmetric networks (i.e., a nodeu can directly communicate with a nodev if and only if v can also

directly communicate withu) by Kowalski and Pelc [81] to obtain a randomized broadcast algo-

rithm with expected time complexityO(D log (n/D) + log2 n). Czumaj and Rytter [30] extended

the method by Bar-Yehuda et al. [11] to obtain an optimal randomized algorithm that completes

the broadcast inO(D log (n/D) + log2 n) time w.h.p. while not requiring that the network be

symmetric.

Adler and Scheideler [4] present approximation algorithmsfor the unicast problem in wireless

ad-hoc networks under the assumption that the transmissionand interference ranges are not the

same. This model is described in Section 7.2.3. But they still assume a simplified disk model based

on Euclidean distances. Their unicast algorithm also does not translate directly into an efficient

broadcasting algorithm.

The problem of information gathering in wireless networks is studied mostly in the context of

wireless sensor networks. In [61], the authors show a way of constructing a tree on which gathering

and aggregation can be performed. However, they do not deal with the problems specific to wireless

networks such as channel contention and interference and also do not provide theoretical bounds on

time and work. Data gathering in sensor networks where the sensor nodes are placed at the vertices

of a 2-dimensional grid with the sink node at the center of thegrid is studied in [38]. In [78], the

authors study gathering in simple topologies such as the line network and the cycle network. An

online algorithm is presented where the buffer overhead only needs to be by a logarithmic factor

higher than that of an optimal offline algorithm in order to achieve the same throughput. Also in

[35], the authors study the throughput achievable in a wireless sensor network for data gathering.

Information gathering and aggregation has been studied experimentally in [61, 104, 153, 58] but a

rigorous formal analysis for wireless ad hoc networks has not been presented.
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8.4 Our results

We consider two important communication problems in wireless ad hoc networks, namely,

broadcasting and information gathering. In the following,we first formally define the problems

considered in this chapter and then outline some of the key properties that our algorithms achieve.

We also note that our algorithms do not require many of the assumptions that are commonly made

in the existing literature.

Broadcasting

The problem of broadcasting arises in many scenarios where information has to be dissemi-

nated to all the participants. It is thus not surprising thatefficient broadcasting in wireless ad hoc

networks has attracted considerable attention.

Broadcasting: Given a static connected wireless network ofn nodes, minimize the total time and

work to sendm ≥ 1 broadcast messages originating from a source nodes to all the nodes in the

network.

Isolated Broadcasting Given any fixed node distribution with some source nodes and any fixed

transmission rangert, let D(s) denote the maximum distance (in number of hops) of a node froms

with respect to transmission rangert. We achieve the following results with respect to the case of

broadcasting a single message, i.e.,m = 1:

Theorem 8.4.1 Given a constant density spanner as in Chapter 7, the isolated broadcast algorithm

needsO(D(s) + log n) time w.h.p., to send a broadcast message froms to all the nodes in the

network.
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Theorem 8.4.2 Given a constant density spanner as in Chapter 7, the isolated broadcast algorithm

needsO(W (s)) work to send a broadcast message to all nodes in the system, whereW (s) is the

optimal work required to send a broadcast message froms to all the nodes.

Broadcasting multiple messages We also show how to extend the isolated broadcast algorithm

to achieve the following result for the case where the sourcenodes has to broadcastm messages.

Theorem 8.4.3 Given a constant density spanner as in Chapter 7, the concurrent broadcast algo-

rithm needsO(D(s) +m+log n) time steps, with high probability, to deliverm broadcast messages

to all nodes.

Theorem 8.4.4 Given a constant density spanner as in Chapter 7, the multiple broadcast algorithm

needsO(W (s,m)) work, whereW (s,m) is the optimal work required to sendm from s to all the

nodes.

Information Gathering

Information gathering is another important communicationprimitive in wireless networks. The

problem has applications in many scenarios such as data gathering in sensor networks [61, 153,

38] and maintaining connectivity with base stations in a multi-hop wireless network. (The related

problem of how best to aggregate data at intermediate nodes is not discussed in this paper.)

Information Gathering: Given a static connected wireless network ofn nodes among whichm

packets are arbitrarily distributed, and a sink nodes in the network, minimize the total time and

work required for sending them packets to the sink node.

We analyze a simple two-stage strategy that has the following time and work bounds:
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Theorem 8.4.5 Given a constant density spanner as in Chapter 7, the information gathering pro-

tocol needsO(D(s) + log n + m + ∆m log2 n) time steps w.h.p until all the packets are delivered

to the sink nodes. Here,∆m refers to the density of inactive nodes that have a packet to send.

Theorem 8.4.6 Given a constant density spanner as in Chapter 7, the gathering protocol needs

O(W ′(s,m)) work whereW ′(s,m) is the optimal work required to send all them packets to the

sink nodes.

Our algorithms are self-stabilizing (i.e., can start in an arbitrary state) and can therefore adapt

to changes in a wireless ad-hoc network. Our algorithms do not require any knowledge of the

size of the network. For our algorithms to work correctly, itsuffices that the nodes in the network

have identifiers that are locally distinct. We only require that the nodes synchronize up to some

reasonably small time difference, which can be easily accomplished using GPS signals or any form

of beacons. Another important feature of our algorithms is that a constant amount of storage at any

node suffices even in the case of gathering. The above properties make our algorithms applicable to

sensor networks without any modifications.

Our results build on top of the distributed algorithm for organizing the wireless nodes into

a constant density spanner presented in Chapter 7. The remainder of this chapter is organized as

follows. In Section 8.4.1 we introduce the notations used inthe rest of this chapter. The isolated

broadcast algorithm and the proofs of the respective theorems can be found in Section 8.5. The

multiple broadcast case is addressed in Section 8.6. The algorithm and proofs for the information

gathering problem appear in Section 8.7.
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8.4.1 Notation

In this section, we present the notation that is used in the rest of this chapter. LetV be the

set of nodes in the network. For any transmission ranger, let the graphGr = (V,E) denote

the graph containing all edges{v,w} with c(v,w) ≤ r. Throughout,rt denotes the transmission

range andd(u, v) denotes the shortest distance betweenu andv in Grt . Furthermore, given any

nodes ∈ V , D(s) denotes the maximum distance of any node inGrt to the nodes ∈ V , i.e.,

D(s) = maxv∈V d(s, v). We also denote byG′ the constant density spanner obtained using the

protocol presented in Chapter 7. LetU refer to the set of active nodes inG′, andG refer to the set

of gateway nodes. Recall from Chapter 7 that the constantd1 refers to the number of active nodes

that are within the interference range,ri, of any node.

8.5 Isolated Broadcasting

Let nodes be the source of the broadcast message. Sinces has a maximum distance ofD(s) to

any node inGrt , D(s) is a lower bound on the time an optimal offline algorithm needsto broadcast a

message froms to all nodes. Our goal is to come up with a broadcast scheme so that the time needed

by the broadcast message to reach all nodes is as close toD(s) as possible. We use the constant

density spanner construction of Chapter 7 as the basis. Ifs is not an active node, i.e.,s 6∈ U , then

let ℓ be some active node that is within the transmission range ofs. Thens first sends the message

to ℓ. The broadcast scheme then proceeds in rounds that are synchronized among the nodes. In the

broadcast scheme below,ℓ refers to the ID of an active node that owns the current slot. Every item

below is a separate time step.

1. If ℓ received the broadcast message in the previous round and it is the first time it received the

broadcast message,ℓ sends out the broadcast message.

204



2. If v is a gateway node and has already received the broadcast message, thenv sends out an

RTS (Request-To-Send) message with probabilityp.

3. If v is a gateway node and decided not to send out an RTS message orv is an active node, then

v checks if it correctly received an RTS message. If so, andv has not received the broadcast

message yet,v sends out a CTS (Clear-To-Send) message.

4. If v is a gateway node and sent out an RTS message, thenv checks if it sensed a CTS message.

If so, v sends out the broadcast message.

Notice that inactive nodes just need to listen to the wireless channel in order to receive the

broadcast message eventually. This is because our spanner algorithm of Chapter 7 makes sure that

message transmissions of active nodes in step 1 above never interfere at an inactive node. Thus only

nodes inU ∪ G may need to retransmit the message.

The following theorem directly implies Theorem 8.4.1.

Theorem 8.5.1 Given the constant density spanner ofGrt as described in Chapter 7, the broadcast

algorithm with p = 1/d1 needsO(D(s) + log n) rounds, with high probability, to deliver the

broadcast message to all nodes.

Proof. Recall that every message has to traverse a path of length at most5D(s) to reach any node

via the nodes inU ∪ G. Hence, consider any fixed nodev, and letP be any shortest path from

s to v via the dominating set. Letα ≤ 5D(s) be the length ofP . Suppose that it takes at least

α+ δ time steps to send the broadcast message tov. Then there must have been at leastδ time steps

in which a node inP failed to forward the message to the next node inP , and the time steps can

be associated with nodes of monotonically increasing orderin P (by always looking at the node of

maximum distance froms in P that failed to forward the packet at any given time step). Thenumber
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of possibilities to assignδ out of theα + δ time steps to nodes inP in increasing order is
(

α+δ
δ

)

,

which is equal to the number of all binary sequences of lengthα + δ with δ 1’s. A 0 represents the

event “move to the next node inP ” and a 1 represents the event “failed transmission” at the current

node inP . Since the probability of a nodev to fail is equal to

Pr[v did not decide to transmit the message] + Pr[v transmitted the message but failed]

≤ (1 − p) + p(1 − (1 − p)d1−1) = (1 − p) + p(1 − (1 − 1/d1)
d1−1) ≤ 1 − p + p(1 − 1/e)

= 1 − p/e ,

it follows that the probability that the broadcast message needs more thanα+ δ steps withδ = b ·α

is at most

(

α + δ

δ

)

(1 − p/e)δ ≤
(

e(α + δ)

α

)α

· (1 − p/e)δ ≤
(

e(1 + b)e−pb/e
)α

which is polynomially small inn if b = Ω((1 + log n/α)/p). Thus, it takesO(D(s) + log n) time

steps until the broadcast message reaches any particular nodev, w.h.p., which completes the proof

of the theorem. ⊓⊔

8.5.1 Work Efficiency

Next we consider the work efficiency of the broadcast algorithm. We assume that the cost for

sending and sensing the RTS/CTS message is negligible so that we only need to bound the cost for

retransmitting the broadcast message.

Suppose that the area covered by disks of radiusrt around all nodes in the system isA.

Then a lower bound for the number of message transmissions ofan optimal offline algorithm is
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|A|/(4πrt
2). Next we prove an asymptotically matching upper bound for our broadcast algorithm.

We show the following theorem.

Theorem 8.5.2 Given the constant density spanner ofGrt as described in Chapter 7, the broadcast

algorithm needsO(|A|/rt
2) work to send a broadcast message froms to all nodes.

Proof. Due to the constant density of the network of active nodes, weneedΩ(|A|/rt
2) transmis-

sions of the broadcast message in order to reach all active nodes. Each active node has a fixed time

slot, and thus one transmission from each active node is enough for all inactive nodes to receive the

message. Since the spanner construction from Chapter 7 results in a spanner of constant density,

O(|A|/rt
2) messages will suffice to deliver the broadcast message to allinactive nodes.

It remains to show that the work necessary for the active nodes to receive the message (from

gateway nodes) is alsoO(|A|/rt
2). Note that an active or gateway node only sends a CTS message

if a broadcast message can be sent to it without interfering with other transmissions. Since every

active or gateway node sends a CTS at most once, the number of message transmissions necessary

for all active or gateway nodes to receive the message is equal to the total number of active and

gateway nodes, which isO(|A|/rt
2).

Thus, the broadcast algorithm will sendO(|A|/rt
2) messages to send the broadcast message

to all the nodes in the network. ⊓⊔

8.5.2 Self-stabilization

The broadcast algorithm can also provide self-stabilization. We add a fifth step to the broadcast

algorithm in which if a nodev just woke up or moved, thenv sends an AWAKE signal. Furthermore,

we replace the first step with the following step:

• If ℓ is active and received the broadcast message in the previousround and it is the first time
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it received the broadcast message or ifℓ sensed an AWAKE signal in the previous round or if

ℓ just became active in this round,ℓ sends out the broadcast message.

8.6 Broadcasting Multiple Messages

Next we look at the case that the sources wants to send out multiple broadcast messages

instead of just one. Thens attaches continuous sequence numbers to the messages, starting with 1.

The broadcast scheme proceeds in rounds that are synchronized among the nodes. Each active

or gateway nodev keeps track of two numbers,iv andjv . Numberiv denotes the minimum message

numberv has not received so far and numberjv denotes the minimum message number (v knows

about since its last successful transmission attempt) a node of distance at mostrt from v has not

received so far. In the broadcast scheme below,ℓ refers to the ID of an active node that owns the

current slot. Initially, for each gateway and active nodev, iv=jv=1. In each round, every nodev 6= s

does the following. Each item below represents a separate time step.

1. If ℓ received the broadcast message with sequence numberi′ = iℓ in the previous round, then

it setsiℓ = iℓ + 1 and sends out the broadcast message with sequence numberi′.

If v is a gateway node and received a broadcast message with sequence numberi′ = iv, then

it setsiv = iv + 1.

2. If v is an active or gateway node, then it sends out an〈RTR, iv〉 message (RTR means ”Ready-

To-Receive”) with probabilityp. If v decides not to send out an RTR message, it checks

whether it is able to receive an〈RTR, i′〉 message. If so, it setsjv = min{jv , i
′}.

3. If v is a gateway node andiv > jv , then it sends out an〈RTS, jv〉 message with probabilityp.

If v is a gateway node and decided not to send out an RTS message orv is an active node,
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thenv checks if it correctly received an〈RTS, j′〉 message withj′ = iv. If so, v sends out a

CTS message.

4. If v is a gateway node and sent out an〈RTS, jv〉 message, thenv checks if it sensed a CTS

message. If so,v sends out the broadcast message with sequence numberjv . Afterwards,v

setsjv = min{jv +1, iv −1}. If v is a gateway node and did not send a message but received

a broadcast message with sequence numberi′ = iv, then it setsiv = iv + 1.

The source nodes uses the same protocol as above with the only difference thatit only executes

the first step. As in the case of isolated broadcast algorithm, the inactive nodes just need to listen to

the wireless channel in order to receive the broadcast messages eventually. Only active nodes and

gateway nodes may retransmit the messages.

8.6.1 Time Efficiency

The following theorem demonstrates that this protocol has ahigh time efficiency. Recall that

d1 refers to the number of active nodes that are within the interference range,ri, of any node.

Theorem 8.6.1 Given the constant density spanner ofGrt as described in Chapter 7, the multiple

broadcast algorithm withp = 1/d1 needsO(D(s) + m + log n) rounds, with high probability, to

deliverm broadcast messages to all nodes.

Proof. The proof involves substantial extensions to the proof of Theorem 8.4.1. We use a delay

sequence argument to prove the theorem. For simplicity, we assume each round of the algorithm

takes one time unit. Letv be the last node that received all broadcast messages inU ∪ G, let

P = (u0 = s, u1, . . . , ud = v) be any shortest path of active and gateway nodes froms to v, and

let α ≤ 5D(s) be the length ofP . Suppose that it takestm time steps for all broadcast messages
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to reachv. Given a nodew, let m(w) denote the number of messages nodew has already received.

We go backwards in time from the moment the last message reached v and move monotonically

backwards alongP from vm = v so that at any time we stay at a nodeuj with

• m(uj) = m,

• m(w) = m − 1 for some nodew within rangert of uj , and

• m(w) ≥ m − 1 for all nodesw within rangert of uj.

Such a node is calledm-active. This is done until we reach the first time steptm−1 at which

there is a nodeuj′ with j′ ≤ j that is notm-active. We then setuj′ = vm−1. An m-active node

must always exist at any time fromtm−1 + 1 to tm because within these steps, every node froms to

the currentuj must have only neighborsw with m(w) ≥ m − 1, s has allm messages, and at step

tm, ud−1 has initially at least one neighborw with m(w) = m − 1, namelyv.

From steptm−1, we go backwards in time and move monotonically backwards alongP from

vm−1 so that at any time we stay at a nodeuj that is currentlym − 1-active. This is done until we

reach the first time steptm−2 at which there is a nodeuj′ with j′ ≤ j that is onlym− 2-active. We

then set thisuj′ = vm−2. Again, anm−1-active node must always exist at any time fromtm−2 +1

to tm−1 because within these steps, every node froms to the currentuj must have only neighbors

w with m(w) ≥ m − 2, s has allm messages, and at steptm−1, the node beforevm−1 has initially

at least one neighborw with m(w) = m − 2, namelyvm−1.

Continuing with this argument gives us a sequence of nodesv1, . . . , vm of monotonic order

from s to v and a sequence of time steps1 ≤ t1 < t2 < . . . < tm−1 < tm with the property that

betweenti + 1 andti+1 there is a monotonic sequence ofi + 1-active nodes fromvi to vi+1. For

anyi, at mostd1 · li of the time steps fromti + 1 to ti+1 can represent successful transmissions (i.e.
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messagei + 1 was successfully sent fromuj to some active or gateway nodew within rangert of

uj), whereli is the distance alongP from vi to vi+1. This is because every active or gateway node

betweenvi andvi+1 has at mostd1 other active or gateway nodes.

Hence, altogether, there can be at mostd1α successful transmissions. All others must have

failed. All transmissions of active nodes are successful, since they have fixed time slots. For gateway

nodes, the probability of a transmission to fail is at most

Pr[uj did not decide to send a message]+

Pr[uj decided to send a message with an incorrect sequence number]+

Pr[uj decided to send a message but failed]

≤ (1 − p) + p((1 − p) + p(1 − (1 − p)d1−1)) + (p(1 − (1 − p)d1−1))

≤ 1 − (p/9)

Thus, the probability that the broadcast message needs morethanS + δ steps,S = d1α + m with

δ = b · S is at most

(

S + δ

δ

)(

S

α

)

(1 − p/9)δ ≤
(

e(S + δ)

S

)S ( eS

S − α

)S−α

(1 − p/9)b·S ≤ (3e(1 + b)e−pb/9)S

This is polynomially small inn if b = Ω((1 + log n/S)/p). Thus, inO(D(s) + m + log n)

time steps all broadcast messages reach all active and gateway nodes, with high probability. Since

each active node has a fixed time slot,m transmissions from each active node is enough for inactive

nodes to receive all messages. Thus, inO(D(s) + m + log n) time steps, all nodes will receive all

m messages, w.h.p.. ⊓⊔
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8.6.2 Work Efficiency

The following theorem demonstrates that this protocol has ahigh time efficiency.

Theorem 8.6.2 Given a constant density spanner ofGrt as described in Chapter 7, the multiple

broadcast algorithm needsO(m|A|/rt
2) work to send allm broadcast messages to all nodes in the

system.

Proof. The proof is very similar to the proof of Theorem 8.5.2. A lower bound on the number

of message transmissions of an optimal offline algorithm isΩ(m|A|/rt
2). Similarly, O(m|A|/rt

2)

messages will be sufficient to deliverm broadcast messages to all inactive nodes andO(m|A|/rt
2)

messages will be sufficient to deliverm broadcast messages to all active nodes. Thus, the broadcast

algorithm will needO(m|A|/rt
2) messages w.h.p., to sendm broadcast messages to all nodes in

the system. ⊓⊔

8.6.3 Self-stabilization

The multiple broadcast algorithm can also provide self-stabilization. We can add a fifth step

to the broadcast algorithm in which if a nodev just woke up or moved, thenv sends an AWAKE

signal. Each active nodev also keeps track of numberkv, which is initially equal to 1. Numberkv

denotes the minimum message number a newly awake or arrived node of distance at mostrt from v

has not received so far. We replace the first step with the following step:

• If ℓ received the broadcast message with sequence numberi′ = iℓ in the previous round, then

it setsiℓ = iℓ + 1 and sends out the broadcast message with sequence numberi′.

If ℓ sensed an AWAKE signal in the previous round, it setskℓ = 1. If kℓ < iℓ, ℓ sends out the

broadcast message with sequence numberkℓ and setskℓ = kℓ + 1.
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8.7 Information Gathering

In this section we consider the problem of information gathering in ad hoc wireless networks.

Information gathering is an important communication primitive in networks where all the packets

have the same destination called thesink. Thus, one can view the process of information gathering

as the reverse process of broadcasting from the sink node. Weconsider the situation where a total

of m packets distributed in an arbitrary way among the nodes in the wireless network are to be

delivered to a sink nodes in the network. We seek bounds on the time and work required for

all them packets to reach the sink. Firstly, we comment thatΩ(m) is a lower bound in the case of

wireless ad hoc networks since the sink node can accept at most one message during every time step.

Similarly, D(s) is also a lower bound on the number of time steps required. Thus, Ω(m + D(s))

is a lower bound on any solution for the information gathering problem. In the following, we show

how to perform information gathering efficiently.

Our solution has two stages. In stage 1, we first build a tree rooted ats in Grt , called the

gathering tree, T (s), and establish some of the properties ofT (s). In stage 2, we show how to

perform information gathering onT (s) and prove time bounds for delivering them messages tos.

Each stage has 4 time slots reserved. We however note that forstage 1 to work correctly, the active

nodes need not wait for their owned timed slot to transmit ROUTE messages. This is because of the

fact that active nodes that have a ROUTE message to send are always at a distancert ⊕ ri apart and

hence their transmissions do not interfere. By having time slots it is however easy to integrate the

following protocols along with the others.
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8.7.1 Stage 1: Building Gathering TreeT (s)

We first show how to build the gathering tree. The sink nodes, if it is not in U ∪ G, selects an

active nodeℓ such thatd(ℓ, s) = 1 and sends a route packet toℓ with sequence number of0 of the

form 〈ROUTE, s, 0〉. The rest of the nodes do the following. Initially,d′(s, v) = ∞, π(v) = NULL

for all v ∈ U ∪ G whered′(s, v) is an upper bound on the distance ofs to v andπ(v) denotes the

predecessor ofv in a path fromv to s andd′(s, s) = 0 andπ(s) = s.

1. If u ∈ U ∪ G receives a message〈ROUTE, v, d′(s, v)〉 from v with a sequence number of

d′(s, v) and ifd′(s, v)+ 1 < d′(s, u), thenu setsπ(u) = v andd′(s, u) = d′(s, v)+ 1. Node

u also sets flag(u) = 1 in this case, indicating thatu has to send a route message sinceu

updated its predecessor. Ifu is inactive andd′(s, v)+1 < d′(s, u) andv ∈ U , thenu updates

π(u) = v andd′(s, u) = d′(s, v) + 1.

2. If ℓ is active andd′(s, ℓ) 6= ∞ and flag(ℓ) = 1, thenℓ sends a ROUTE message of the form

〈ROUTE, ℓ, d′(s, ℓ)〉 and sets flag(v) = 0 signifying that the update has been notified.

If u ∈ G andd′(s, u) 6= ∞ and flag(u) = 1 thenu sends a RTS message with probabilityp

to be determined later.

3. If u ∈ U ∪ G andu received a RTS message thenu sends a CTS message.

4. If v ∈ G andv sent a RTS message and receives a CTS message thenv sends a route message

〈ROUTE, v, d′(s, v)〉 and sets flag(v) = 0 signifying that the update has been notified.

The above construction has the following properties. LetT ′ = (V ′, E′) be a graph with

V ′ = U ∪ {s} ∪ G andE′ = {(v, π(v))|v ∈ V ′}. Then,T ′ is a shortest path tree rooted ats for the

graphG′′ = (V ′′, E′′) with V ′′ = V ′ andE′′ = E ∩ ((U ∪ {s}) × G). We setT (s) = (VT , ET )

with VT = V andET = {(v, π(v))|v ∈ VT } whereπ(v) is set as in step (1) of the above protocol.
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Since the graphG′ defined in Section 8.4.1 is a 5-spanner of the original network Grt , it also holds

that maxv∈V dT (s)(s, v) ≤ 5 maxv∈V d(s, v). Thus the maximum distance of any node froms in

T (s) is only a constant factor away from the maximum distance of any node froms in G.

Finally, we show the following lemma for the time steps required to constructT (s) using the

above protocol.

Lemma 8.7.1 Given a connected dominating set of active and gateway nodeswith constant density

d1 in Grt , the protocol to construct the gathering treeT (s) given above takes at mostO(log n +

D(s)) time steps w.h.p. when the probabilityp is set to1/d1.

Proof. The proof follows from the following claim.

Claim 8.7.2 After O(d + log n) time steps it holds that w.h.p., all nodesv ∈ U ∪ G that are at

a distanced from s in G′′ have their predecessor pointerπ(v) such that the path fromv to s has

length ofd.

Proof. The proof of the claim follows by induction ond starting fromd = 0. Here onlys is the

node that has a distance0 from s and the claim holds in this case due to the initialization. For the

induction step, assume that all nodes with distanced have their predecessor correctly assigned. For

any nodeu at distanced + 1 from s in G′′ let it take more than(d + 1) + δ time steps to have

π(u) set correctly. Then in a pathP of lengthd + 1 from u to s, we can associateδ nodes that are

monotonic in distance froms that failed to forward a route packet. Using calculations similar to

that of Theorem 8.5.1, then a value ofδ = O(log n) suffices to get the claim hold w.h.p. ⊓⊔

Once we have the above claim, then the lemma follows as the maximum distance of any active or

gateway node froms is D(s). Inactive nodes do not have to send any route messages but canuse

step 1 of the protocol to set their predecessor pointer. ⊓⊔
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8.7.2 Stage 2: Gathering onT (s)

In this section we show how to use the gathering tree constructed in stage 1 to perform in-

formation gathering. InT (s), each node has an unique path to the sink nodes by following the

predecessor pointersπ. Nodes use this path system to eventually deliver packets tos. However, in

our model, complications arise due to the fact that a lot of inactive nodes choose the same active

node as their predecessor. All such nodes transmitting simultaneously will result in interference.

Hence, we proceed as follows.

Of the 4 slots available for this stage, the active node uses the first time slot to deliver packets

and the second and third time slots are used to coordinate theactions of the inactive nodes.

Nodesℓ ∈ U ∪ G have a queue calledQℓ which can hold a constant number of packets. This

queue works as a first-in-first-out list and supports operations enqueueanddequeuewhich add a

packet and return a packet respectively to the queueQℓ.

In the following, we only consider inactive nodes that have apacket. Thus when we refer to

inactive nodes, it is those inactive nodes that have a packetto send. Inactive nodes have a state

among{awake, asleep}. Initially all inactive nodes are in theasleep state.

1. If ℓ is active and has an non-empty queue, thenℓ sends the packetdequeue(Qℓ) during the

time slot owned byℓ. This packet has a destinationπ(ℓ) and nodes other thanπ(ℓ) discard

the packet andπ(ℓ) stores the packet by callingenqueueon Qπ(ℓ). In the second time slot,

the active nodes listen to the channel.

If g is a gateway node and has a non-empty queue theng sends an RTS message containing

the id ofπ(g) with probabilityp, wherep is to be determined later.

2. If u ∈ U ∪ G andQu is not full andu receives an RTS message containing the id ofu thenu

sends a CTS message.
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If u is inactive and has a packet to send andu is awake thenu sends an I-RTS(for Inactive-

RTS)message toπ(u) with a probability1/2.

3. If g is a gateway node and sent an RTS message in the previous time step and receives a

CTS message fromπ(g) theng sends the packetdequeue(Qg) to π(g). This packet has a

destinationπ(g) and other nodes that receive the packet ignore it.

If ℓ is active andℓ receives an I-RTS message from an inactive nodeu thenℓ sends an I-CTS

message. Ifℓ senses a busy channel but does not receive any I-RTS message,thenℓ sends

a collision message of the form〈ℓ,COLLIDE〉. Otherwise ifℓ senses a free channel then

ℓ sends a free message of the form〈ℓ,FREE〉. These messages are sent during the third

reserved time slot.

4. If u is inactive andasleep and receives a free message thenu becomesawake. If u is

inactive and decided not to send an I-RTS message in the previous time step andu is awake

and receives a collision message thenu decides to go toasleep state with probability1/2.

If u is inactive and sent an I-RTS in the earlier step and gets an I-CTS thenu sends the packet

to π(u).

We show in the following that the gathering protocol described above is efficient in terms of

the time and work, and also it suffices for nodes inU ∪ G to have a queue that can store a constant

number of packets in transit. We use the parameter∆m defined to be the density of nodes that have

a packet to send. That is,∆m refers to the maximum number of nodes that are within a disk of

radiusrt around any node that has a packet to send tos.

Lemma 8.7.3 For any inactive nodev, it takesO(∆m log2 n) time steps w.h.p, untilv sends the

packet to an active node that is within the transmission range ofv.
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Proof. The proof is similar to that of the proof of Theorem 7.8.3. Given a stable gathering tree,

the active nodes have reserved rounds that are distinct within the ri ⊕ ri range, we can treat the

actions of active nodes independent of each other. In the following, we can therefore concentrate on

a specific active node, sayℓ.

Consider any inactive node-active node pair,(v, ℓ). Nodev has at mostO(∆m) inactive nodes

in its interference range sending an I-RTS message to some leader node. If more than one node is

in awake state, with respect toℓ, decides to send an I-RTS message, thenℓ will send a COLLIDE

message. Since the COLLIDE message will be received by the inactive nodes withinrt range ofℓ

awake nodes that decided not to send a CLIENT message toℓ in the previous slot will go to asleep

state.

Consider time to be partitioned into groups of consecutive rounds such that each group ends

with a round where the active nodeℓ sends either a COLLIDE message or an I-CTS message. A

group ending with a COLLIDE message signifies a failed group and a group ending with an I-CTS

message is a successful group. Notice that at the end of everygroup, whether successful or not, all

the inactive nodes within thert range ofℓ go to awake state (by step 3 of the protocol).

It is not difficult to show that the expected number of rounds in each group, successful or

failed, isO(log n) and any group is successful with constant probability. Due to symmetry reasons

any inactive node is equally likely to be send an I-RTS message in a successful group. Thus, during

any successful group, for a given pair(v, ℓ) ,

Pr[ v sends an I-RTS message successfully toℓ] ≥ 1/c∆m

for some constantc > 1.

There are∆m inactive nodes that compete to send a packet, and due to symmetry reasons,
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it then follows that there is a constant probability that inO(∆m log n) time steps any particular

inactive node can send the packet to the corresponding active node. Using Chernoff bounds the

stated claim follows. ⊓⊔

For the queue size, nodeu ∈ U ∪ G can associate slots in the queue with distinct nodes in

U ∪ G that are its neighbors inT (s). Since there are onlyO(d1) such neighbors and nodes have a

constant probability of forwarding a packet during each time step, it suffices to have a queue of size

O(d2
1) so that w.h.p. all packets in transit can be accommodated.

We can show the following time bound for any packet to reachs.

Lemma 8.7.4 Given a connected dominating set of active nodes with constant density at mostd1

in Grt and a gathering treeT (s) with sink nodes, the information gathering algorithm presented

above withp = 1/d1 needs at mostO(m + ∆m log2 n + D(s) + log n) time steps w.h.p so that all

them packets reach the sinks.

Proof. We use a technique that is similar to the proof of Theorem 8.6.1. Also, once a packet that is

at an inactive node reaches an active node, then it stays in the queue of nodes inU ∪G only before it

reachess. Thus we can consider the time required for any packet as the sum of the time required to

reach a nearest active node and the time required to reachs through nodes inU ∪ G. The former is

bounded by Lemma 8.7.3 for those packets that start from an inactive node. Thus it is left to bound

the latter.

For the latter, we proceed as follows. Using the gathering tree, every packet that has to reach

s has to travel a distance of at most5D(s). Let the last packetP to reachs arrive at timeT0 and

let u0 = s. The packetP then must have reached some node inu1 ∈ U ∪ G at timeT1 and is still

at nodeu1 during all the time steps betweenT1 andT0 − 1. Continuing the history ofP further,

it must have reached some nodeu2 ∈ U ∪ G at timeT2 and during the time steps betweenT2 and
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T1 − 1 is at nodeu2. We can similarly follow the history ofP till it reached a node inU ∪ G for

the first time. (It could be that the packet is initially at some node inU ∪ G or it has reached a node

in U ∪ G from an inactive node.) This means that all the attempts to forward the packet fromui to

ui−1 in the above sequence failed between time stepsTi andTi−1 − 1.

Since the active nodes use reserved time slots, the transmissions of active nodes cannot fail.

For a gateway nodeg, the probability that a transmission fails is at most:

Pr[g did not decide to transmit the message] + Pr[g transmitted the message but failed]

≤ (1 − p) + p(1 − (1 − p)d1−1) = (1 − p) + p(1 − (1 − 1/d1)
d1−1) ≤ 1 − p + p(1 − 1/e)

= 1 − p/e ,

for the chosen value ofp = 1/d1. Now assume that it took more thanS + δ time steps for

the last packet to reachs for some value ofδ = bS with S = 5d1D(s) + m. Out of these, at most

S attempts must have been successful and all theδ attempts have failed. The probability of this

happening is at most:

(

S + δ

δ

)

(1 − (p/e))δ ≤
(

e(S + δ)

S

)S

· (1 − (p/e))δ ≤
(

e(1 + b)e−pb/e
)S

The above probability is polynomially small ifb = Ω((1 + log n/S)1/p). Hence, for the

packets to reachs, it takes at mostO(D(s) + m + log n) time steps once the packets have reached

some node inU ∪ G.

Now add both the time bounds, we get the final bound as stated. ⊓⊔

Finally, ignoring the work performed while sending the RTS/CTS message and the I-RTS/I-
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CTS message, since we use paths that are only a constant factor away from the shortest paths tos,

we get the following result with respect to work.

Theorem 8.7.5 Once a stable gathering tree has been constructed, the gathering protocol de-

scribed above needsO(W ′(s,m)) work to send all them messages to the sink nodes where

W ′(s,m) denotes the optimal work required to send them packets to the sink nodes.

Proof. Ignoring the work done to send I-RTS message, it holds that any inactive nodeu performs

optimal work to forward a packet toπ(u).

For nodesU ∪ G we proceed as follows. We ignore the work done to send/receive RTS/CTS

message. Each active node has a fixed time slot, and thus one transmission from each active node

is enough to forward the message from the active nodeℓ to π(ℓ) in the gathering tree. It remains to

show that the work necessary for the gateway nodes to forwardthe message (from gateway nodes)

in the gathering tree. Note that an active or gateway node only sends a CTS message if a message

can be sent to it without interfering with other transmissions. Since every active or gateway node

sends a CTS at most once, the number of message transmissionsnecessary for all active or gateway

nodes to receive the message is optimal.

Thus, there are no unsuccessful packet transmissions in thenetwork when using the gathering

protocol. Since the paths to the sink nodes in the gathering tree are only 5 times longer than the

shortest paths, any packet is forwarded along a path of length that is a constant factor away from the

shortest paths tos.

Hence, it holds that the gathering protocol is work-optimal, up to constant factors, to send all

the packets to the sink nodes. ⊓⊔

221



8.7.3 Self-stabilization

The algorithms presented for both the stages can be made self-stabilizing as follows. For stage

1, we require that nodesv ∈ U keep sending the current value ofd′(s, v) as ROUTE messages

during the time slot owned byv. When a nodew just wakes up, it first setsd′(s,w) = −∞ and

π(w) = NULL and listens to the channel for a period ofcd1 time steps for a constantc ≥ 3. During

this period, since other active nodes send their current distance estimate, nodew can update its

distance estimate and parent pointer accordingly. If additionally w ∈ U ∪ G thenw can participate

in sending ROUTE messages after the initial listening period. This would also imply that also stage

2 can recover from any initial configuration if every node that has a packet and continues to retain

the packet in case the predecessor pointer is undefined, (NULL). Ignoring those packets in transit

that were lost by nodes that have moved or been powered off, all the other packets can indeed reach

the sink node once the system recovers till stage 1.

8.8 Chapter Summary and Acknowledgements

Using our model presented in Chapter 7, we designed algorithms for broadcasting and gath-

ering in wireless ad hoc networks. All our algorithms are efficient and self-stabilizing which is

an important property for distributed systems. The algorithms are simple enough so that they not

only look appealing in theory but may also work well in practice. Further, our algorithms only re-

quire a constant amount of storage at any node which make the algorithms highly useful in practical

situations.

A preliminary version of the results in this chapter appeared in [76]. This work is done jointly

with Melih Onus and Andrea Richa from the Department of Computer Science at the Arizona State

University.
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Chapter 9

Conclusions

In this thesis we argued that formal study of overlay networks is important to understand their

various aspects and properties. We have looked specificallyat two different classes of overlay

networks namely, peer-to-peer networks and wireless ad hocnetworks. Our focus was in two direc-

tions: how to arrive at good topologies and how to design efficient routing strategies.

The results presented in this thesis improve the state-of-the-art in many cases. For example,

our construction from Chapter 5 is the first known construction to handle heterogeneity in a fair

generality while still being efficient. The time and work required for join/leave operations also

match those of most known randomized constructions. The results of Chapter 6 present a unified

scheme to arrive at P2P topologies that can guarantee good properties.

In Part III we started by providing a new model for wireless communication which takes into

account many of the limitations of existing models that are used in the theoretical community. Using

this model, we presented self-stabilizing protocols for arriving at a sparse backbone. The backbone

is then used to support higher order communication primitives.

While in this thesis we have studied aspects of topology and routing in overlay networks,
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the taxonomy of algorithms for overlay networks is much broader. In the context of peer-to-peer

networks, areas such as security issues, trust and reputation among peers, and accounting models

are gaining a lot of attention in recent years.

Building overlay networks that are robust against malicious behavior is still an open problem.

The first such construction emerged recently [132] but the results hold only for maintaining a cycle

network. Similarly, peers require mechanisms so that they can trust the decisions of other peers even

when operating under the influence of malicious peers with disruptive tendencies. This is essential

so that peers can successfully delegate tasks or cooperate with other peers. File sharing systems

need some accounting mechanisms so as to minimize free-riding where a set of users behave in a

non-cooperative way and try to only benefit from others’ resources while not contributing to the

overall (social) benefit of the system. The decentralized nature of operation of overlay networks

certainly makes these problems much more difficult.

Thus, the area of overlay networks still has important problems that arise in many practical

settings. It it thus important to study analytical guarantees apart form suggesting heuristics. For

this, it is required that such problems be formulated clearly, and justifiable assumptions be made to

analyze solutions.

Finally, while there exist several solution methodologiesthat researchers have found useful, as

the field matures itself it is worth-while to focus on developing general tools and techniques that

could prove useful in multiple settings. We anticipate thatin the coming years, such generalization

would yield fruitful results. These take the flavor of witness tree mechanisms [107, 130], network

flow based parameters such as the routing number [130] and theflow number [74], which have

found wide applicability apart from their suggested application.
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