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Abstract

In this age of information, new models of information exchamethodologies based
on overlay networks are gaining popular attention. Overlayworks provide a logical
interconnection topology over an existing physical nekwv@verlay networks offer bene-
fits such as ease of implementation, flexibility, adaptghi@ind incremental deployability.
Due to the wide range of applications and advantages, fastudly of overlay networks is
required to understand the various research challengéssicdntext.

In this thesis, we study two classes of overlay networks mapeer-to-peer networks
and wireless ad hoc networks. Our focus will be along two reégsues in overlay net-
works: how to arrive at efficient topologies and how to prevefficient routing strategies.

Peer-to-peer networks have gained a lot of research aiteintrecent years for various
reasons. Despite many advances however, fundamentaiapgestich as how to design
deterministic constructions, and how to organize peersami-umiform bandwidth have
remained open. In this thesis, we answer these questionsadwdimg a deterministic
overlay topology,Pagoda that can be used for efficient routing, data management and
multicasting. Given the difficulty of arriving at good detgnistic topologies in a purely

decentralized manner, we also propose a unified methoddtogyeate a large class of



overlay topologies via an approach called supervised overlay network8Ve show that
this approach also has other advantages such as suppapidipeer join/leave and rapid
repair.

For the case of wireless ad hoc networks, we start by progidimodel for wireless
communication that is much more realistic than the modelsdhre being used in the theo-
retical community. Using this model, we show how to arrivgparse spanner construction
based on dominating sets. We then use the spanner constrtfprovide efficient algo-
rithms for broadcasting and information gathering in weisd ad hoc networks. All our
algorithms are simple, self-stabilizing and require ongoastant amount of storage at any
node. Thus, our algorithms are also applicable in a wideetsanf scenarios such as simple

sensor devices.
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Chapter 1

Introduction

As the age of information has dawned upon us, it has becomeratiye that efficient informa-
tion exchange methodologies be studied. While traditioefivork models certainly broadened the
knowledge and understanding of information exchange, meheanerging paradigms require a dif-
ferent approach. Overlay networks, which are logical nekaover an existing network, are becom-
ing more common. Overlay networks supporting a range oftfanality such as grid computing,
file sharing, sensor networks, and wireless ad hoc netwaekbeing studied heavily. Evidenced by
the success of early applications using overlay networkf s Gnutella [50], and distributed.net
[33] the research community has been quick to react and aieeelast array of applications, tools,
and techniques to study problems in the area of overlay mksyoFigure 1.1 shows an overlay
network of six nodes with the bold edges representing theections in thdogical network.

Before we proceed further, it is important to understandothsic ideas behind various comput-
ing models so that one can appreciate the contribution afapveetworks. Below we first provide

a concise review of known models of computing and why new rsogl@ gaining attention.
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Figure 1.1: A logical (overlay) network.

1.1 Models of Computing

1.1.1 Desktop computing

During the early days of personal computers (PCs), the dpskias seen as the central com-
puting tool. All the applications required by the user arevisled in the desktop and when new
applications are needed they have to be installed on hisgmaputer. Clearly, this model of com-
puting becomes expensive and infeasible as the number bEajigns needed by the user grows.
More importantly, this model does not allow any resourceigigébetween the users. These disad-

vantages meant that new models had to be designed.



1.1.2 Client-server computing

Client-server computing is a distributed model where twities, the client and the server,
communicate with each other according to some establist@dqwl! to perform certain tasks. Ex-
amples include (browser, web-server) where using the HTiBRpol the browser sends requests
to a web-server and later displays the results, the X Windgate®n (commonly known as X11)
where typically a user’s local display acts a server, andikiee Figure 1.2(a) shows an example of
a client-server computing system.

While this model has better resource utilization compaceddsktop computing, the clients
are not left with too much of freedom. In most cases, thestesysdo not allow any interactions
between the clients. Moreover, in this model the server mighoverburdened as it has to serve
multiple clients. Though there exist solutions to deal vgtith problems, these require providing
special purpose costly hardware. Other problems such amgke gioint-of-failure at the server also

exist. What is needed is a model which allows resource shauial also cost sharing.

1.1.3 Peer-to-peer computing

The recent trend has been towards a model of computing whiclsaefficient sharing of
resources. Also, there is a need to move away from clienesdrased computing and allow the
clients to make some application-level decisions whicly #re best capable of. This is where the
peer-to-peer model of computing enters the picture. Torgitea definition of peer-to-peer, Oram

et. al [114] defines peer-to-peer broadly as follows:

A peer-too-peer system is a self-organizing system of gguinomous entities (peers)
which aims for the shared usage of distributed resourcesnetavorked environment
avoiding central services.
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Figure 1.2: Figure (a) shows a client-server model of compguivhere the server handles all the
requests of the clients. Figure (b) shows a supervised tpegeer system where the server has
certain limited functionality and clients (peers) are a#a to communicate with each other. The
bold lines indicate the client-client communication link&igure (c) shows a pure peer-to-peer
system where there is no central server. The figure is bas&tgone 2.1 from [140].

As is common in literature, we do not distinguish betweentdmmns peer-to-peer computing
and peer-to-peer systems/networks and use them interellalyg One can classify these further
as supervisedpeer-to-peer systems amdire peer-to-peer systems. In supervised systems, there
is a limited degree of centralization that drives the operabf the system whereas pure peer-to-
peer systems are entirely decentralized. Figure 1.2(éhdwy sin example of a supervised and pure
peer-to-peer system. File sharing application such as teapgrid computing projects such as
distributed.net [33] are examples of supervised peerEr-gystems, as both these systems involve
certain degree of centralization. Later generations of-pe@eer systems such as Chord [142] are
examples of pure peer-to-peer systems. These provide aresffisharing of resources and cost
among the various participants. We shall have more to saytlgnthese systems are popular and
the reasons that make them exciting in Section 1.2 by stgdysuperclass of peer-to-peer systems

namely overlay networks.

This thesis deals with not just peer-to-peer networks betlay networks in general. When
we speak about overlay networks in this thesis, some of tinares are equally applicable to peer-

to-peer networks and in some cases we specifically make #%s distinction clear. In the next

4



section, we provide more reasons why overlay networks greamg.

1.2 Why Logical Networks?

In this section, we state the reasons that make overlay miefvanitable for many application
scenarios. Some of the benefits of using logical networkghaethey provide flexibility, ease of
implementation, easy customizability and adaptability] encremental deployability. These advan-
tages make logical networks a good choice for a lot of apfitina. To provide further justification,
we look at examples such as provisioning special featuretyaV Private Networks (VPN's), and
grid computing, that benefit from the above features. In @flewing discussion we view the Inter-

net as the underlying network unless explicitly mentioned.

1.2.1 Provisioning Special Features

For many applications, designing logical networks has reé\avantages compared to rely-
ing on the underlying network. A logical network provideseatain degree of flexibility and ease
of implementation that is not achievable relying on the ulyiteg network. Consider providing
Quiality-of-Service (QoS) guarantees to Internet traffidgalihmay be demanded by certain appli-
cations such as multimedia, or real time industrial apgilices. In the current Internet, there is
no standard way to pass QoS information across routers., Alginsically any solution to guar-
anteeing service quality would be a case of weak-link pheammn where the quality guaranteed
will be as weak as the guarantee of the worst link in a path. ddegr, various applications have
different QoS requirements which make it difficult to capgtum any single solution. Thus, there
are serious obstacles to providing end-to-end QoS guasni@hether to let the underlying net-

work, the Internet, to allow applications to demand QoS gntmes or to have the end-hosts deal



with QoS guarantees is a hotly debated topic in Internetarebeforums such as the IETF (Internet
Engineering Task Force). In this scenario, logical netwarier a solution as proposed in [96]. For
example, sites requiring certain guarantees can form adbgetwork to sustain those guarantees
without requiring any changes in the underlying network athinight be prohibitively difficult for
technical or economic reasons.

IPv6 is a classic example of the difficulties involved in chisug the underlying network op-
eration. IPv6 (IP Version 6) is the new generation Internetqxol that is designed to address
the limitations such as a small address space, lack of umifdpS capabilities, and to increase
efficiency and flexibility in the current version of the protad IPv4. The deployment of IPv6 has
encountered huge delays as it involves development andyapht of new software on devices
that are connected to the network, and upgrading millionsoafers on the Internet to use IPv6
instead of IPv4.

When using logical networks such special protocols, orqumols implementing special fea-
tures that depend on application specific knowledge, campémented without in any way bur-
dening the underlying network. This approach also gives dditianal ease of maintenance as

updates or fixes to the protocols can be carried over withd#est.

1.2.2 Virtual Private Networks (VPNSs)

Logical networks can also be used to augment the functignpitovided by the underlying
network to support additional features such as authemditagnonymity, and security. Consider
the scenario where a company has offices at several geogadiptdispersed locations and wants
to offer interconnectivity between these various locaiowhile using a public network such as the
Internet would solve the problem it might introduce segurigks which are potentially damaging to

the company. Another solution is to use separate leasesl timmterconnect the various locations.



But this becomes costly as the lines are billed not only basedsage but also based on fixed
monthly fees. Even otherwise, having leased lines to interect does not solve the problem in
its entirety. Consider the scenario where a traveling eggdowishes to access the office private
network while having access to only a public network. It i$ easy unless the employee is based
at one of the company locations.

The common solution these days to these problems is to ma/iMPN. A VPN is a private
network created on top of a public network such as the Intewith features such as security,
service guarantees, reliability, and privacy [134]. Thened'virtual” comes due to the fact that
the private network is simulated on top of a public networkGhsas the Internet, using temporary,
logical connections that have no physical presence. Uldiieed lines, the cost is based on usage

time rather than fixed costs.

1.2.3 Grid Computing

Logical networks also allow efficient sharing of resourceshsas storage, and processing
power that may otherwise sit idle on individual hosts. Cdasifor example, the grid comput-
ing system distributed.net [33] which was introduced abf98. Individual users can download
software from distributed.net which runs on the individbakts when the hosts are idle. Upon pro-
cessing the the current work unit, the software reports ¢salts back to a server at distributed.net
and downloads a new work unit. Alike distributed.net there rmow several distributed comput-
ing projects for applications from areas such as geneties (gtp://boinc.bakerlab.org/rosetta/),
climate prediction modeling (see http://climateapps@sonx.ac.uk/cpdnboinc/), medicinal applica-
tions (see http://www.d2ol.com/), and for detecting slgrdd intelligent life outside the Earth (see
http://setiathome.com).

The success of projects such as distributed.net can be djdnygeoking at some of their re-



cent breakthroughs. In 2002, after working for 50 months0@,300 user base had tested about
15 x 10' keys to solve the RC5-64 bit secret key challenge. The RC8hadlenge is one of a
series of contests held to understand the difficulty of figdagnsymmetric encryption key by ex-
haustive search. The computational power utilized for tkEb#4 project alone was estimated to
be the equivalent of nearly half a million Pentium PCs. WAhti# not being entirely decentralized,
these projects show a way of amassing the computational rpeguevalent to that of modern day
supercomputers at a fraction of the cost. Recent resul giibw how to achieve a greater degree

of decentralization.

1.2.4 Internet Transparency and Symmetry

Overlay networks also are said to have the potential to fnetbe Internet to its founding
principles” according to [114] by restoring its transpargand symmetric operation. This statement
needs some justification.

In the early years of the Internet, hosts acted as peersghagiual responsibilities. But with
the rapid growth of the Internet around 19929] it has met with new challenges and also under-
went a shift in the way the hosts behave.

The rise in the number of hosts on the Internet gave rise tdlectigges such as scaling up
the address space, scaling up the Domain Name System (Dd#ipgsof capacity, and scaling
of protocols and algorithms. It is widely estimated that 8#bit address space currently used
in the Internet would run of addresses in a few years timeJ[1T® alleviate the address space
exhaustion still using the IPv4 protocols, solutions sushNatwork Address Translator (NAT)
devices, Dynamic Host Configuration Protocol (DHCP) areppeised. NAT devices sit between

a private network and a network connected directly to theipdhternet. NATs enable a set of

1The number of Internet hosts in 1994 is estimated to be 2anillvhich reached 72 million by 2000 and is estimated
to be 394 million in 2005.



hosts in a private network to share a small set of globallyjuaiaddresses. Hosts using DHCP
are assigned a unique address when they are connected tagheet and the address is reclaimed
when the hosts is no longer connected to the Internet.

These technologies resulted in the Internet losing itsimaigtransparency. When NAT is
deployed hosts are no longer uniquely addressable in tleenktt which is an important design
attribute of the original Internet. Moreover, NAT deploymeéntroduces two addresses for a host
- a local address that it knows and a global address that iasvk by in the Internet. Similarly
when using DHCP, applications cannot rely on IP addressasitpely distinguish hosts as the IP
address may be in use by different hosts at various pointsief But new applications based on the
peer-to-peer paradigm challenge this lack of transparehtyact, many applications have found
ways to work around the problems introduced by NATs, DHCP faesvalls. As the popularity
of the new paradigm growsit is imperative that these technologies be updated. Soemasos
studying the problems posed by the current lack of end-tbteansparency are presented in RFC
27753,

With the expanding civilian usage of the Internet, many fast the Internet have largely
become consumers of information with only a few hosts s@ritre information. This asymmetry
has in fact meant that Internet Service Providers’ (ISP hailt their systems and practices around
the idea that most of the end users spend most of their timaldeding data from a few central
servers. In fact, ISPs using cable technologies and ADSlyrthsetric Digital Subscriber Line)
provide lower upstream bandwidth than download bandwidith this is fine as long as the users
do not upload too much data. With the emergence of peer¢o-petworks it is hoped that this

asymmetry in the current Internet, where a majority of thethare only consumers of information,

2t was reported in a study http://www.sandvine.com/sohgi p2ppolicy_mngmt.asp, that up to 50% of the Internet
traffic is due to file sharing applications.
3See http://www.rfc-archive.org/getrfc.php?rfc=2775



can be reduced. As applications such as file-sharing, angptgubscribe boards become popular,
hosts can also become content-providers rather than basgjve consumers of information.
Indeed the emergence of peer-to-peer applications thathudistinction between providers
and consumers of information has already started to shotaineside effects. For example, in the
days of the Napster, an ISP company in San Diego notified éssus stop running the Napster

application as Napster is consuming too much of bandwidth

1.3 Overlay Networks - A Brief History

Due to their growing importance as outlined above, the stfdgverlay networks is being
treated as an independent area of research since the lastedeln this thesis, we focus on two
classes of overlay networks namely, peer-to-peer overays overlays for wireless ad hoc net-

works. We now provide a brief introduction to these two osssf overlay networks.

1.3.1 Peer-to-Peer Networks

Peer-to-peer overlay networks have attracted a lot of rekesttention in the past few years
due to the enormous advantages offered by them. Peer-tddp2e) networks allow improve the
efficacy of resources such as computation and storage bylessagharing of resources. Also, the
fact that peer-to-peer systems do not need a central sersansrthat individuals can search for

information or cooperate without fees or an investment iditawhal high-performance hardware.

Peer-to-peer Systems in the Internet

While the term “peer-to-peer” has recent denomination) sigce the emergence of the In-

ternet many applications that are implicitly guided by thimgiples of peer-to-peer networks are

1See http://wired.com/news/technology/0,1282,35528tffl for this news article.

10



known. One example is the File Transfer Protocol (FTP) wiih be used to transfer files between
hosts in the Internet. Each host can act as a peer that hostsddes and other peers can establish
a connection to initiate file transfer. Each host can actthgea server of information or a client of
information depending on the context.

Other examples include the Usenet, and the Internet BGIhgpgtheme. Usenet can be
thought of as a publish-subscribe service where users cstnapa read messages under different
topics. Usenet originally relied on UUCP (Unix-to-Unix-@p Protocol) which provides mecha-
nism for a Unix machine to establish a connection to anothak thachine, exchange files, and
terminate the connection. Currently, Usenet uses the Nktiwews Transfer Protocol (NNTP) for
exchanging the messages. Usenet has no centralized aytiharti creates or deletes the topics.
The Border Gateway Protocol (BGP) is the routing protocaduto exchange routing informa-
tion across the Internet. In BGP, the routers have a pediaeship between themselves and send

periodic route updates amongst themselves.

Recent P2P Networks

Following the evolution of the peer-to-peer networks, thhars in [145] have categorized
them into 3 generations. The first generation of peer-ta-ggstems are pioneered by the file
sharing application Napster. Napster had a centralizeztwtiry of files and their owners but once
a owner of a file is found the download can happen without thellement of the server. This
of course has several disadvantages as the central sec@nbs a bottleneck for a system point
of view. Also, Napster itself ran into legal battles over goght issues and was shutdown after a
protracted court battle. Gnutella [50] is also categoriasdirst generation P2P system and has a
similar functionality as that of Napster but without any tratized directory. The authors of [145]

cite the ease of deployment as the reason for this catetjorizand these early networks do not
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have provably low lookup time which is important for file simay applications.

Gnutella places filemyr objects at random locations and hence has to use naive flooding based
methods to locate objects. In the second-generation P2Bnsysthis was addressed by placing
objects at specified locations so that locating objects eaddme faster. Systems that are placed
in this category include, e.g., Tapestry [155], Pastry [1®®th use a scheme similar to that of
Plaxton-Rajaraman-Richa [121]), Chord [142] based onister® hashing [69] and, CAN [125]
based on hierarchical decomposition. Most of the systentkdarsecond generation category are
based on structured overlays where the nodes in the netwerknapped into a virtual address
space and each node is given a label from this address sphedaljel of a node also dictates its
neighbors in the logical network by using mathematical folations. The labels are given in a
manner that the logical network has certain structuredlagosuch as the hypercube, de Bruijn,
butterfly ®. This allows one to show that lookup time, query path leng#er join/leave time are
logarithmic (or poly-logarithmic) in the current size oftimetwork.

These second generation systems can be used as a “Distrittash Table” (DHT) which takes
the following form. A set of data items from an ordered spaeeta be mapped to a set of storage
units so that the fraction of the data items at any unit iselwsthe best possible, i.e., all units
store an equal proportion of the total data, while suppgrtiperations such dsookup andput .
Structured P2P overlays acting as DHT'’s are also proposedsasution for a future generation
Internet DNS [123].

Concepts for third generation systems addressing the vesakof the second generation sys-
tems include fault-tolerance, security, anonymity, rabess, providing incentives for cooperation,
and the like. Some proposals that are provably fault-tokerander various attack models are

[42, 6, 132].

5A formal definition of these network topologies is providedGhapter 2.
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For a more detailed introduction to the above systems andn@anson, we refer the reader to
[101, 145]. P2P networks can also be used as routing ovadagrshance certain network function-
ality such as security and authentication by provisioningtaal private network. The local-control
nature of the P2P systems means that single point of fajlgeserally associated with traditional
client-server systems, can also be mitigated.

Peer-to-peer networks have also found applications inrsiivareas such as grid computing,
online gaming, databases, web-caching, informationes&tj web crawling, and in many such
related and emerging areas. The rapid growth of interest@n-f-peer networks can be judged by
the fact that every year there are several conferencesrmatgecifically to topics in peer-to-peer

networks.

1.3.2 Wireless Ad Hoc Networks

A wireless ad hoc network comprises of a set of nodes that camunicate over a wireless
medium. Initial applications of wireless networks are fdun the military domain. A classic ex-
ample is that of war fighters equipped with wireless devidesg them access to information such
as the terrain, location, and strategic documents. HoweRerrecent advent of numerous elec-
tronic devices that are capable of communicating over alegeemedium has meant that networks
composed of wireless devices are becoming more commonratbe icivilian and the commercial
domain. Examples include campus wide wireless LAN’s, hoeterarking, and wireless hot-spots.
Recently, some cities such as Philadelphia have alsotattiefforts to provide a city wide wireless
network that every citizen can use to access the Intémafireless networks consisting of devices
that cooperate with each other, without the presence of aag btation, to forward packets to each

other are becoming feasible and widespread. For instarogps networks comprising millions of

5See http://www.phila.gov/wireless
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tiny low-cost, low-power, wireless sensor devices are fpeised in a wide variety of applications

such as disaster recovery, warehouse management, ancersureeillance. In the case of sensor
networks, when used for gathering information, there ismaily a single observer where all the
messages are delivered to, but this observer does not rgrpravide the functionality of a base

station.

One of the important problems for wireless ad hoc networks @ganize the wireless devices,
nodes into a logical network that acts as a backbone for commtioica The quality of the over-
lay network, the backbone structure, can be judged basedwana criteria such as connectivity,
energy-efficiency, and adaptability to mobile hosts.

Proposals or approaches to arrive at overlay networks ieless ad hoc networks can be
classified into 3 generations as follows. The first genemaipproaches use one or more base
stations (or access points) and the wireless nodes alwpays maintain contact with at least one
base station. The cell-based approaches, and wirelesspbts-fit this approach. The presence
of centralized infrastructure in the form of base statiopgainly simplifies the problem and the
overlay topology obtained is a star topology with the acpedst at the center of the star as normally
each node is connected to a single access point.

The second generation systems are characterized by hauvingltehop approach. In this
approach, not all nodes may be communicating directly uaiogntralized base station. Nodes can
communicate by using other nodes in the ad hoc network agsrétereach the base station. More
precisely, wireless stations that can reach a base statisetlg communicate directly with the base
station. Other wireless nodes communicate with a bas@statiing multiple hops to forward their
traffic. Proposals for arriving at overlay network or comroation protocols in wireless ad hoc

networks in this scenario include those put forward by th€HBVlanet working group, and the
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Archipelago project [1, 7].

The third generation approaches aim at constructing oyedworks for wireless ad hoc net-
works in the absence of any centralized infrastructure. hla $cenario, the ad hoc network can
be seen as a peer-to-peer network formed by a set of wirdlagtisns, which organize themselves
into a temporary network. The lack of any centralized inftasture and mobility of nodes pose
heavy challenges for designing overlay networks for wselad hoc networks. Some of the recent
proposals include e.qg., [36, 84, 5, 47]. There are two ambres to arriving at overlay networks for
wireless ad hoc networks, nametgpological overlaysandgeometric overlaysin the following,
we briefly describe each of these approaches.

In topological overlays, the overlay network is constrddy choosing cluster heads and gate-
way edges that interconnect some of the cluster heads. Eadh is either a cluster head or a
member of some clusters. Gateway edges allow communichtéitmeen clusters. Geometric over-
lay networks use the relative position of the nodes in thevadt in arriving at the construction.
Several constructions based on geometric position of thiesisuch as the Gabriel graph [46], the
Yao graph [152], Voronoi diagrams are studied for their eefSmplementation. The geometric po-
sition of the nodes dictates the structure and hence théyjoathe resulting overlay network. For
example, when using the Gabriel graph or the Yao graph, ibgsible to create situations where
the degree of some node in the overlay networl®is:). Variants of these graphs, such as the
symmetric Yao graph, the Relative Neighborhood Graph (RM@) are also studied. Some of the
above constructions arrive at a planar overlay topologyckvis known to be useful in the context
of unicasting algorithms such as face routing [86] and iteynariants [85, 47, 17, 18, 19].

Higher order communication primitives such as broadcgstgossiping, unicasting are then

supported on top of the overlay network. For example, thei é¢lass of routing protocols called
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thegeometric routingprotocols [86] which use a planar overlay network to perfooute discovery.

1.4 Research Challenges

Till now we have aimed to provide an introduction to the aréawerlay networks. We now
aim to understand some of the research challenges thatratise area of overlay networks.

This thesis deals mainly with two classes of overlay netwogeer-to-peer overlays and over-
lays for wireless ad hoc networks. When we look at these tpegyof networks, to design overlay
networks one encounters the following challenges. In thigisn, by the ternoverlay networkwe
mean peer-to-peer overlay networks or overlays for wisebgthoc networks.

Recall the early P2P system Napster which introduced theegirof peer-to-peer file sharing.
Napster had a central server that is used to store a direofdiles and where they are available
so that once a user having a particular file is located, théeobrran be served independent of the
central server. But storing the directory at a central semveant that all lookup operations had to
go through the central server creating a potential bottkrad also making it a central point of
failure. While Gnutella [50] did away with central indexinig uses flooding based techniques to
query for content. As the number of participants in Gnutiltaeases, the load on each peer grows
proportionately as a result. Such a solution is not easéyedde. Thus, designing overlay networks
having desirable properties deserves serious thought.

The topology of the overlay network specifies how the pastiting entities (peers) can com-
municate with each other in the overlay network. As overlajworks are being deployed or pro-
posed for a variety of applications, one primary requiretmainthe overlay network is that the
topology should allow for efficient operation. Consideredli-server topologies that are known

since a long time where there is a central server entity thigt@n the requests of the clients. This
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can be seen as forming a star topology with the server at thierceThis approach hardly meets
the efficiency criteria as such a topology does not allow fieeriaction between the various clients
without involving the server thereby overburdening thesser

One can certainly interconnect all the peers resulting iticue topology. This solution cer-
tainly improves the efficiency as all the peers are intereoted and can exchange information
quickly. But this approach does not scale well even for a ngtwf relatively moderate size. Over-
lay networks, however, should be able to operate at a mudtehgrale. For example, Gnutella [50]
on a typical day has reported 2 million users. Operating e sun enormous scale requires that the
topology of the network has to be designed carefully to aghsealability.

Also, the topology should be robust enough so that it cantfomainder difficult or adverse
circumstances. While the client-server topology can beemabtlust by providing special purpose
hardware, the topology itself would still be inefficient foany applications.

Thus, devising strategies to satisfy the afore-mentiorédria is an extremely challenging
problem. While efficiency, scalability and robustness angght after, overlay networks have other
equally important challenges. Another important differernn these classes of overlay networks is
that the peers are dynamic in nature and hence overlay rietvgbiould allow for the participants
to join or leave the network and at a rapid rate. To quotesiiedil observations for Kazaa [72], it
is reported in [54] that 50% of the users in Kazaa have a sesisie of the order of minutes. This
requires that the network should be able to efficiently pssaejoin or leave operation, without any
centralized control.

Moreover, overlay networks typically are composed of @githat differ significantly in their
characteristics, i.e., the participants may introducefogteneity in the network. For example, nodes

in a peer-to-peer network differ significantly in the amoahavailable bandwidth or the bandwidth
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they can contribute to the P2P network. This requires trattBP network be flexible enough so
as to accommodate nodes of varying bandwidth. Also, futereetation P2P systems should allow
the users to control or limit the amount of bandwidth theytdbate to a particular application as

each user may be running several P2P applications togdthisrmeans that suitable topologies for
overlay networks that operate efficiently in an heterogesemmvironment have to be designed.

Further, when considering overlay networks for wirelesdex) for example, resources such as
power is highly expensive. In some cases such as wirelessiseatworks, it may in fact be difficult
if not impossible to recharge the sensors once they are yisghldience the overlay network should
ideally support mechanisms to minimize the usage of suchresipe resources so as to increase the
lifetime and availability of the individual devices.

Thus, there are a lot of challenges that one has to take imtmuat when designing overlay
networks. The initial works such as Napster, and distrithutet have showed the remarkable power
of peer-to-peer systems. Based on these successes, tieendcadmmunity has reacted quickly to
bring this line of work into the research mainstream so asetal®em on a formal footing where
they can be studied rigorously. Over the last decade, relséamverlay networks has produced a
vast amount of literature leading to various insights, teghes, and solutions.

In this thesis, we undertake a formal study of overlay nek&o address the above challenges
with focus on peer-to-peer networks and wireless ad hoc avksy We address how to design
efficient topologies for overlay networks and how to provédticient routing strategies for various
routing problems that arise in the context of overlay neksoFor example, we show how to design
a peer-to-peer network that can operate efficiently in arrbgeneous environment which solves
an open problem in that area. Similarly, we show how to prevdgarse backbone structures for

wireless ad hoc networks that can then be used to performdbasting and information gathering
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efficiently. (For a summary of contributions made in thissiseand their technical significance we

refer the reader to Chapter 3).

1.5 Relation to other areas

In this section we discuss briefly other recent and emergisgarch areas in Computer Science
that have some relation to overlay networks. We look at exeasnguch as (traditional) distributed

systems, and content distribution networks.

1.5.1 Distributed Systems

Distributed systems with no global memory involve a set aghpating entities interconnected
via a certain topology and computation is done by the estiéechanging information through
messages. As communication is treated as an expensivergesone of the goals in distributed
computing is to use as little communication as possible.r@l@pears to be a lot of commonal-
ity in the solution techniques employed in distributed sps$ and overlay networks. In fact, the
idea of self-stabilization [32] has its roots in distribditeystems. Also, the theoretical limitations
of computation in distributed systems carry over to overi@yworks also. But certain important
differences exist.

In traditional distributed systems, while the entities tieated as being autonomous, in most
cases they are homogeneous in nature. We have seen thatathéhdand overlay networks tend
to be rather heterogeneous. Also, distributed systemslyrarst not dynamic in nature and in many
cases do not have to deal with issues such as power consamftiese, and other differences,
make it important to treat the study of overlay networks gmsate from that of distributed systems.

Models with shared memory, for example the parallel conmguthodels, were also studied
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during the previous decades. In this model, there is a setamfegsors that have a globally ac-
cessible shared memory. Based on the model of memory acmasal variations exist such as
the Concurrent Read Exclusive Write (CREW) and the weakercGuent Read Concurrent Write
(CRCW), and the Exclusive Read Exclusive Write (EREW) modéiese are generally referred
to as the Parallel Random Access Machines (PRAMSs). But dtleettack of realization of such

models, these gradually disappeared from research cyrrenc

1.5.2 Content Distribution Network (CDN)

Content distribution networks have become popular withgtwvth of the WWW and offer
several advantages. Imagine a web server that has to seftiplentequests to the same popular
object, such as a web page containing a news flash of widecpubdirest. It is very likely that the
server is overburdened quickly to keep up with the pace ofd¢fjaests. Also, letting only one server
handle all the requests becomes inefficient and expensitexrims of network usage as the server
may have to serve requests from clients spread across sdB®s. In this case it might be efficient
if the object is cached at various places in the network, fangple at ISP boundaries, so that future
requests can be handled from the cache without even ingph¥ia server. Such caches are also
referred to assurrogate servers Presently, many popular web sites make use of such suerogat
servers provided by popular CDNs such as Akamai and Digifahtd. Having surrogate servers
itself does not solve the problem unless there is a way to ms&ef them. For this purpose, CDNs
also provideredirectorsthat forward client requests to a surrogate server baseewaral criteria
such as geographic proximity, server throughput, lateimog.t and client locatiorf. The entire
scheme can be picturized as shown in Figure 1.3.

The relation they have with overlay networks is that likergda an overlay network, the redi-

"Notice that this is not the same as geographic proximity.
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Figure 1.3: A CDN in operation. The figure is based on [120uFa.27].

rectors make an application-level routing decision. Asejeral problems such as which surrogate
server to redirect, how to choose surrogate servers, hairedhuivalents in overlay networks so

that solutions and techniques developed for one may prole teseful in the other.

1.6 Organization of the thesis

The rest of the thesis is organized as follows. In Chaptere2inivoduce most of the terminol-
ogy and notation that is common throughout the thesis. Tdriges as a background on the various
technical terms used in the rest of the thesis. In Chaptere3provide a technical summary and
significance of the results contained in this thesis.

In Part |, we look at vertex coloring algorithms. In Chapterwk present and analyze our

distributed vertex coloring algorithm for oriented graphs
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Chapters 5-6 form Part Il of the thesis dealing with peepder overlay networks. In Chapter
5 we describe our deterministic construction of overlay R2&vorks and analyze concurrent multi-
casting in the overlay network. In Chapter 6 we argue the frassupervised P2P overlay networks
and provide a unified framework to create such a system. Videshlsw how to provide robustness
guarantees under a very powerful adversarial model.

Part 11l of the thesis focuses on overlay networks for wisslad hoc networks. In Chapter 7
we describe our new model for wireless communication andg®d to show how to construct a
constant density spanner. In Chapter 8 we show how to deffigielt algorithms for broadcasting
and information gathering in wireless networks.

The thesis ends with some concluding remarks and potentifiifther work in Chapter 9.
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Chapter 2

Terminology and Notation

In this chapter we introduce the notation that is common sxctbe rest of the thesis. We
start by stating well known inequalities from algebra argbglrobability. We then provide a basic
introduction to graph theory and will then introduce someudar families of networks and their

structural properties. Finally, a short introduction toitiag theory and terminology is presented.

2.1 Basic Notation

We denote byN the set of natural numbefd, 2,3, ...} and bylN, the set of natural numbers
including0, i.e. the sef0, 1,2, ...}. By IR we denote the set of real numbers andy we denote
the set of non-negative real numbers. For any INy, we denote byz| the set of natural numbers
{0,1,...2 — 1}. If z € IRT, then[z] would be the se{1,2,...,[z]}. By “log” we mean the
logarithm to base 2 unless specified otherwise. For strings {0, 1}* we denote by:/2 as the
string obtained by shifting: to the right by one position.

We use standard notation concerning the asymptotic behaf/fanctions. Consider any two

functions f, g with domain from the set of natural numbdis We write f(n) = O(g(n)) if there
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exist positive constanis ng such that/n > ng, 0 < f(n) < c¢- g(n). We write f(n) = Q(g(n))
if there exist positive constantsn such that'n > ng, f(n) > c-g(n) > 0. If f(n) = O(g(n))
andf(n) = Q(g(n)) then we writef (n) = ©(g(n)). We sometimes use the smalleg, ), and the

small-omegayw(.), notation defined as follows. We wrifn) = o(g(n)) if lim ,,—.~ % = 0 and

—

write f(n) = w(g(n)) if lim .o 2% = oo, if the above limits exist.

We often use the following inequalities.
Proposition 2.1.1
e Forall x € IR, 1 + z < €%, with equality occurring at: = 0.

e Foralln,k € INandk <n, (1) < ().

2.2 Basic Probability

We start by defining probability and then introduce someketwn inequalities that we often
use.
Let Q be an arbitrary set, called the sample space. We start byintpfwr—field, also some-

times called ar—algebra.

Definition 2.2.1 (o—field) A collectionF of subsets of? is called ac—field if it satisfies:
1.QeF
2. A e FimpliesA¢ € F, and
3. For any countable sequene, A,, ..., if A1, As,... € FthenA; U AU ... € F.

Definition 2.2.2 A set functiorPr on ac—field F of subsets df? such that’r : 7 — [0, 1] is called

a probability measure if it satisfies:
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1.0<Pr(4) <1, VAe F.
2. Pr(2) =1, and

3. If Ay, Ao, ... is adisjoint sequence of setsnthen
=1 i=1

The triad (€2, F, Pr) is often called a probability space. For equivalent andradtie defini-
tions, examples, and a more complete introduction, we tbfereader to standard textbooks on
probability [15]. In the following, if no probability spade mentioned then any spa¢@, 7, Pr)
can be taken.

We often use the following inequality called “Boole’s inedjty” which is part of a general
Boole-Bonferroni inequalities [109] and this is also somets referred to as the “union bound” as
it provides a bound on the probability of a union of eventsisTihequality is also referred to as the

(finite) sub-additivity property of the probability measur

Proposition 2.2.3 (Boole’s inequality) For any arbitrary eventsi, As, ... A,,

i=1 =1

The notion of independence is an important concept in thaystfiprobability.

Definition 2.2.4 (Independence)A collection of event$ A; : i € I} is said to beindependentf

forall S C I, Pr(ﬁiegAi) = Iljcg PT(AZ').

We now define random variable, which is amgasurabldunction from¢2 to IR. Let R denote

the standard Boret—field associated withR, which is theo—field generated by left-open intervals
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of IR [15].

Definition 2.2.5 (Random Variable) Given a probability spacé(?, 7, Pr), a mappingX : Q —

IR is called a random variable if it satisfies the condition tdat!(R) € F for everyR € R.

We represent a§X < z} as the sefw € Q| X (w) < z} for z € IR and also writePr(X < z)
as the probability of the above event. Similar definition barmade for representing the det €
QX (w==x}as{X ==z}.

The notion of independence also extends to random variables random variableX andY
are said to béndependenif the events{ X < z} and{Y < y} are independent for,y € R. The
definition extends to multiple random variables just as ififdgon 2.2.4.

Associated with any random variable is a distribution fimtidefined as follows.

Definition 2.2.6 (Distribution function) The distribution function¥' : IR — [0, 1] for a random

variable X is defined ad'x (z) = Pr(X < x).

A random variableX is said to be aiscreterandom variable if the range of is a finite
or countably infinite subset dR. For discrete random variables, the following definitiom dze

provided for thedensityof a random variable.

Definition 2.2.7 (Density) Given a random variableX, the density functiorfy : IR — [0, 1] of X

is defined ag'x (z) = Pr(X = x).

The above definition can be extended to all types of randoliablas also with proper care.
In the rest of this section, we focus on discrete random kbegaonly and hence the definitions are
made for the case of discrete random variables. With propes, ¢he definitions however can be

extended [15].

An important quantity of interest of a random variable isdkpectation.
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Definition 2.2.8 (Expectation) Given a probability spacé(2, 7, Pr) and a random variableX,

the expectation ok, denotedE[X], is defined as

with the convention thai- co = 0o - 0 = 0.

We now state tail inequalities of random variables. Thesecalied tail inequalities since they

provide a bound on the probability that a random variabldéates from its expectation.

Proposition 2.2.9 (Markov Inequality) Given a non-negative-valued random variableand any
t € IRT\ {0},

Pr(X > tE[X]) < 1/t

Random variableX is said to have Bernoulli distribution with parametewherep € [0, 1], if

X has the following density function.

1—p fz=0
fx(z) = P ifz=1
0 otherwise.

Using Proposition 2.2.9, the following famous inequalignde shown. For a proof, we refer

the reader to standard text books such as [109].

Proposition 2.2.10 (Chernoff Bounds)Let X, X, ..., X, ben independent Bernoulli random

variables withPr(X; = 1) = pforall 1 <i <n, and let



andy := E[X] = np. Then for any > 0,

66 a
Pr(X > (1+)u) < <W>

and given0 < § < 1,

e ? g
Pr(X <(1-6)u) < <m>

There exist several simplifications of the above propasitod the following form is often
useful as it allows to bound the deviatienrequired so that the tail probability is polynomially

small, i.e., of the ordet /n° for a constant > 0.

Proposition 2.2.11 Under the definitions of Proposition 2.2.10,

e h?/3if s < 1
Pr(X > (1+6)u) <

e~H0logd  otherwise
and similarly,

Pr(X <(1-9d)p) < eH*/2

More generally, the upper tail inequalities f&r hold if we do not knowu but have an upper
bound ofyu so thatu < p* and the lower tail inequalities hold if we have a lower boundgiso that
u > p~. Forthese and other forms, we refer the reader to [108]. $aitmequalities are known
for sums of independent random variables that are disgtbgeometrically, hyper-geometrically,
and other distributions. We refer the reader to [108] fosthimequalities.

By the phrase “with high probability” (or w.h.p. for short)eamean a probability of at least
1 — (1/n*) for some constank > 0, wheren is the number of elementary events (usually the

number of messages) in a random experiment.
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2.3 Basic Graph Theory

A graph G = (V, E) consists of a set afiodes(or verticeg V' and a set oedges(or arcs)

E CV x V. The nodes represent the processing units and the edgeseapthe communication
links between the units. Often, we will set:= |V| (the size ofV) andm := |E|. Thesize
of G is defined as the number of nodes it contains. Fovalt € V, (v,w) denotes alirected
edge fromw to w, and{v, w} denotes amndirectededge fromv to w. G is calledundirectedif
E C {{v,w} | v,w € V} anddirectedif E C {(v,w) | v,w € V}. Unless explicitly mentioned,
in the following we assume thét is undirected.

A sequence of contiguous edgeddns called apath Thelengthof the path is defined as the
number of edges it contains. A graphis said to beconnectedf there exists a path between every
pair of verticesu,v € V. A sequence of contiguous eddes, us), (uz,us), ..., (up—1,u,) forms
acycleif u,, = uy. G is called areeif it is connected and contains no cycle. A grdph= (V', E')
is called aspanning treeof G if V/ =V, £’ C E, andT is a tree.G is calledbipartite if its node
set can be partitioned into two node séisandV; such thate C {{v,w} | v € V}, w € V5}.

For any pair of nodes,w € V, letd(v,w) denote thalistancebetweenv andw in G, that
is, the length of a shortest path fromto w. ThediameterD of G is defined asnax{d(v,w) |
v,w € V}. If the graphG is not connected, then we say that the diameter of the graipffirigte.

If {v,w} € E thenv is called aneighborof w. For any subset/ C V, theneighborhoodof U is
defined as

NU)={veV\U|Juel, {uv} e E}.

The number of neighbors af is called thedegreeof v and denoted byl,. The degree of7 is
defined a\ = max{d, | v € V'}.

A family of graphsG = {G,, | n € IN} has degreeé(n) if for all n € IN the degree ot7,, is
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d(n). If itis clear to which family a is considered to belong, we #aat this graph has constant (or
bounded) degree if its family has constant (or bounded)esegr
A networkis specified by a graptiy = (V, E) with edge capacities given by a functien:

E — IR™. Given a graplG with capacities:, let the capacity of a node € V be defined as

and the capacity of any node $étC V' be defined ag(U) = >_, .y ¢(u). Given a subsel/ C V/,
(U,U) denotes the set of all edgés,v} € F (or (u,v) € E if G is directed) withu € U and
v € U. Soc(U,U) is the sum of the capacities of all edges(iA U). Theedge expansion of a
network G with capacities: is defined as

« = min o0, U)
~ vcv min{c(U), c¢(U)}

In the above definitionJ or U cannot be taken to b@ or V. For every networkG = (V, E)
with non-negative edge capacities, the edge expansioneahinost 1. Theode expansionf a
network G is defined as the ratio migy, g<|vj/2 I'(S)/[S]. In the definition of node expansion,

the setS cannot be taken to be empty. The node expansion can also lsaim

2.4 Basic Network Topologies

Unless explicitly mentioned, we will treat all edges in tleidwing to be of capacity 1. The
most basic network topologies used in practice are treedegyand meshes. Many other popu-
lar networks can be seen as either combinations or extensibthese. We start by recalling the

definition of a tree.
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Definition 2.4.1 (Tree) A graphG = (V, E) is called atreeif it is connected and contains no cycle.
Definition 2.4.2 (Mesh) Letm,d € IN. The(m, d)-meshM (m, d) is a graph with node sét =

[m]? and edge set

d—1
E = {{(ad_l,... ,ao),(bd_l,... ,bo)}’ai,bi S [m], Z ]a,- — bz’ = 1} .
=0

The(m, d)-torusT (m, d) is a graph that consists of an, d)-mesh and additionally wrap-around
edges from(ag—1...aj+1(m — 1) a;j—1...a9) 10 (ag—1...a;4+1 0 a;—1...ap) forall i € [d] and

all aj € [m] with j # 1.

M (m,1) is also called dine or path, 7'(m, 1) acycle andM (2,d) = T'(2, d) ad-dimensional

hypercube Figure 2.1 presents a tree and Figure 2.2 presents a linejg &ind a hypercube.

Figure 2.1: The structure of a tree.

111

Figure 2.2: The structure a¥/(m, 1), T'(4,2), andM (2, 3).

The hypercube is a very important class of networks, and nmaogifications, the so-called
hypercubic networkshave been suggested for it. Prominent among these are tigeflyuand de

Bruijn graph. We start with the butterfly.
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Definition 2.4.3 (Butterfly) Letd € IN. Thed-dimensional butterflyBF'(d) is a graph with node

setV = [d + 1] x [2]? and edge seE = F; U F» with

E, = {{(i,a), (Z + 170‘)} ‘ IS [d]v ac [z]d}

and

Ey = {{G,0),(i+1,08)}|ield, a,p c[2]¢ aandg differ

precisely at theth position} .

The node sef(i, a) | a € [2]} representsevel i of the butterfly.

Figure 2.3 shows the 3-dimensional buttey"(3). The BF(d) has(d + 1)2¢ nodes2d - 2¢
edges and degree 4. Contracting the node §gtev) | ¢ € [d]} into a single node results in the

hypercube. Thus, the butterfly graph can be seen as a ralliedecsion of a hypercube.

Definition 2.4.4 (de Bruijn) Theb-ary de Bruijn graph of dimensiod D B(b, d) is an undirected
graphG = (V, E) with node se¥’ = {v € [b]?} and edge seF that contains all edge$v, w} with

the property thatv € {(z,v4_1,...,v1) : = € [b]}, wherev = (v4_1,...,v0).

Two examples of a de Bruijn graph can be found in Figure 2.4.
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Figure 2.4: The structure dDB(2,2) andDB(2, 3).

For the classes of graphs we presented above the expansjaitdcomplicated to compute.
Therefore, we just state that thiedimensional hypercube, butterfly, and de Bruijn graph witi

form edge capacities all have an expansio®¢f /d).

2.5 Basic Routing Theory

In this section we provide definitions for the various rogtproblems that arise in communi-
cation networks and also some parameters to measure tlogedffess of routing strategies. In a
graphG = (V, E) let the nodes be numbered distinctly frgnj.

Given a networkz, some of the well known routing paradigms that are studiedisare:

e Gathering: In this mode, also called information-gathering, all thekss have the same

destination inG. The destination is sometimes referred to assing

Unicasting: In this mode, each packet has a single destinati@s.in

Permutation Routing: In this model, letr : [n] — [n] be any permutation. The problem is

then to send one packet from node numberexinode numbered (i) for eachi € [n].

Multicasting: In multicasting each packet has a$eC V' of destinations and the packet has

to be delivered to all the nodesin

Broadcasting: Here, each packet has to be delivered to all the nodés in
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Two important parameters that are widely used to measurguéalkty of a routing strategy are
congestioranddilation. To define these terms we need some more notation.

Given a networkGG = (V, E') with an assignment of non-negative capacity to edgesy —
IR™, amulti-commodity flowinstance orG is a set of ordered paif1,t1), (s2,t2), - - , (5k, k).
Each pair(s;, t;) denotes a commodity with soureg and target;. The task is to maximize the
amount of flow traveling from the sources to the correspogdargets subject to the capacity con-
straints. The problem is studied in two variations, calleglnhaximum throughput multi-commodity
flow problemand themaximum concurrent flow problerm the former, one is interested in finding
a feasible solutiors that maximizes the total flow over all commodities. In thédaeach(s;, ;)
has an associated demafydand the objective is to maximize the fraction of the demaiadl ¢an be
shipped simultaneously for all commodities. Given a fdassibplutionS to a maximum concurrent
flow problem, theconcurrent flow valués the minimum over all commodities of the fraction of the
demand met bys.

Thecongestiorof S, denoted”'(S), is defined as the reciprocal of the concurrent flow value of
the solutionS. Intuitively, the congestion specifies by what factor thgeedapacities would have
to be increased in order to satisfy the demands of all the coalitias when using the solutiofi.
Thedilation of S, denotedD(S), is the length of the longest flow path & For a good solution,

the congestion and the dilation should be small.
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Chapter 3

Our Contributions

In this chapter, we provide a technical overview of the rsscbntained in this thesis. We first
show the common thread that brings together the questisweaaad in this thesis before showcas-

ing the contributions of the thesis and their technical ificgmnce.

3.1 Key Questions

Several projects involving overlay networks for file shgridata management, grid computing,
etc. have been initiated in the recent past both inside atgideuof the research community. We
argue that, as a common theme in the study of overlay netwtiredollowing three questions are

of central interest.

1. Connectivity: How to ensure that the overlay network has a single connextegbonent?
2. Maintenance: How to maintain the overlay network as nodes join and leagenttwork?

3. Routing: How to solve routing problems in the overlay network effitigh
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Why are the above mentioned questions important and naial#iAs can be observed, for the
overlay network to be useful for routing, it is crucial thhetoverlay network has at least one path
for each pair of nodes in the network. This means that thelayaeretwork should have a single
connected component. In the case of randomized constngctime also states this requirement as
the overlay network being connected with high probabilibhaving a giant connected component.
A giant connected component means that there exist a catheomponent whose size is of the
ordern(1 — o(1)) when there are nodes in the network.

One of the features of overlay networks that sets them apart fraditional networks is that
overlay networks are not static and change over time. Fomel& in a peer-to-peer network
with peers connected via the Internet, nodes may join/Itlaeaetwork at a rapid rate. Similarly,
having mobile nodes as in the case of a wireless ad hoc netesuks in changes to the underlying
topology over time. In such cases, it is important that therlay network adapts to changes in an
efficient manner and also preserve connectivity in the imgstetwork. By efficiency, we mean that
the network be able to perform few local-control operatiangl minimal amount of work to return
to a valid state as the network changes over time.

Routing in overlay networks requires careful selectionathg so that the routing problem can
be solved efficiently. Depending on the nature of the routiriblem and the nature of the network
additional challenges arise. Some of the parameters webwilhterested in are, the congestion
caused by the routing strategy, the time taken for packetsach their destination, and the buffer
overhead needed at the nodes in the network.

In this thesis, we study the above issues in detail with $igdocus on two classes of overlay
networks. In Part | of the thesis we look at vertex coloringagithms when the overlay network

is modeled as a graph. Vertex coloring algorithms find apgibmis in other problems such as
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scheduling and routing. In Part 1l of the thesis, we look arge-peer overlay networks for load
balancing, concurrent multicasting and robustness isauseer-to-peer networks. Our construction
has been designed to handle heterogeneous peers in ameffiaigand an additional focus will be
on deterministic constructions so that one can provideajaes on the properties of the network
such as the diameter and the degree and also have the advahtif-stabilization. In Part Il of
the thesis, we consider overlay networks for wireless adiatworks. In wireless ad hoc networks,
the lack of centralized infrastructure and mobility posexhechallenges on the design of efficient
overlay networks. Also, routing in wireless networks is mpedo interference problems and hence

the overlay network has to handle such problems to be ablerform efficient routing.

3.2 \Vertex Coloring

In the first part of the thesis, we focus on vertex coloringoathms. Vertex coloring is a
fundamental problem in graph theory and has applicationsaay problems such as scheduling
and clustering. Since vertex coloring is used as a subsetti many higher-order communication
and computation tasks in algorithms for overlay networkstdr, efficient and local-control vertex
coloring algorithms are of interest. For example, consievireless ad hoc network where the
topology may undergo changes over time. In this case, whiaig asloring for scheduling tasks,
one has to recompute the coloring so as to arrive at a new glehegflecting the changes in the
topology. We treat the vertex coloring problem in the disited setting where we are given a
certain graph and has to arrive at a coloring in a local-admtranner.

Given a graphz with maximum degree\ it is easy to see tha¥ can be vertex colored us-
ing A + 1 colors. Distributed vertex coloring algorithms that cobographG of n vertices with

maximum degreé\ in a logarithmic number of communication rounds are knowtsimore than
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a decade [102]. We first show that this is the best possilde any distributed coloring algorithm
in which every node has the same initial state and initialily &knows its own neighbors requires
Q(log n) rounds, with high probability, to arrive at a proper colgrinWe show the following the-
orem. By a Las Vegas algorithm, it is meant that the algoritiiways produces a correct output

while the time required for the algorithm is a random varabl

Theorem 3.2.1 For every Las Vegas algorithm there is an infinite family of non-oriented graphs
G s.t. A has a bit complexity of at least(logn) on G, with high probability, to compute a proper

vertex coloring.

But, what if the edges in the graph are oriented, i.e., thepmidts of an edge agree on its
orientation while bits can still flow in both directions? Waosv that in this new model, 3-coloring
an oriented cycle graph of nodes can be done by exchanging,/Tog n) bits. We also show that
this result is best possible by proving a lower boun@¢{/log n) on the number of bits exchanged
by any distributed algorithm to arrive a proper coloring af@iented cycle, for any finite number
of colors. We then extend our analysis (& + 1)—color graphs of degre@ provided thatG
has no oriented cycle of length less thaflog n and A is bounded by a constant. Using more
techniques, we then provide a distributed algorithm foaobihg an(1 + €¢) A—coloring of a graph
of n nodes with degred using onlyO(+/Iog n) bit exchanges, with high probability, provided that
the graph does not have any oriented cycle of length less {flagn. By g(n) = O(f(n)) we

meang(n) = O(f(n)polylog(f(n))). We show the following theorem:

Theorem 3.2.2 Given a./log n—acyclic oriented graplG = (V, E) of maximum degreé\, for
any constant > 0, a (1 4+ ¢)A—vertex coloring of7 can be obtained by exchange®flog A) +

O(+v/1og n) bits, with high probability.
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To the best of our knowledge, this is the first sub-logarith@gorithms for vertex coloring.
By sub-logarithmic we mean that algorithms that requirey@uib-logarithmic number of bits to be
exchanged during the algorithm. The result is possible batiause we consider the case where the

edges are oriented.

3.3 Peer-to-peer networks

The second part of the thesis deals with P2P overlay networks

3.3.1 Deterministic Construction for Heterogeneous Peers

While topologies for peer-to-peer overlay have been stidegavily in the theoretical commu-
nity, see [142, 125, 6] for example, two fundamental questi@mained. One question is whether
it is possible to arrive at deterministic constructionst timatch the performance of the randomized
constructions. Deterministic constructions are sougietr &fs it is easy to provide guarantees about
their properties and can be made to self-stabilize [32]ctvlig an important property for overlay
networks. The second question asks whether nodes of néorunbandwidth can be integrated
into the network efficiently so as to take advantage of theristlg constructions treat the situa-
tion where all the nodes have the same bandwidth and henbeimbiasic form fail to utilize the
presence of nodes with significantly high bandwidth. Initgahowever, peers have connections to
the Internet using different mechanisms that differ in theant of bandwidth available to the peer.
Moreover, even if all peers have sufficient bandwidth, astioead in Chapter 1, future generation
P2P systems have to allow for peers to contribute bandwid#iedb on their needs and be able to
operate efficiently under this form of heterogeneity. Hertopologies that take into account the

fact that the peers may differ in their bandwidth by ordersnaignitude are of interest.
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In Chapter 5, we propose a deterministic topology that asfdbeth of the above questions in
a satisfactory manner. Our construction calRajodahas the following properties.

Pagoda network for nodes of uniform bandwidth

For the uniform case, i.e., where all the nodes have the saméwidth, the Pagoda network

of n nodes can:
e Maintenance: perform an isolated peer insertion or removal wilflog n) time and work.
e Routing: route arbitrary permutation of sizein O(log n) steps, with high probability, and
e Data Management: distribute data among nodes in the network so that no nodsvest

more than an expected(1/n) fraction of the data, provided there are at leastata items.

Pagoda network for nodes of non-uniform bandwidth

For the case of the non-uniform peers, the Pagoda networkrmdes can:

 Maintenance: perform an isolated peer insertion or removal witklog® ») time and work,

and

e Multicasting: route arbitrary concurrent multicast requests with a cetiga that is only by
anO(A +log n) factor larger than the congestion created in an optimal oktwf degreeA

for the particular problem

We also provide strategies for admission control and alsarghat the existential routing strat-
egy for the case of concurrent multicasting can be turneal lottal-control strategies for building

and maintaining multicast trees.
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All the above properties make our solution highly attraetivOur construction shows that
efficient peer-to-peer networks that operate under hesgregus environments can be designed.
An additional advantage of our construction is that it ised@iinistic in nature and matches the
properties of most known randomized constructions for/jeave operations. Thus, we solve two

open problems in this area.

3.3.2 Supervised Peer-to-peer Systems

Another direction that was pursued in P2P networks is theystii supervised P2P networks.
For purposes of brevity, here we let the supervisor be a apeode in the network which is respon-
sible for guiding the peers during a join or leave operatidmrere as the rest of the operations in
the peer-to-peer network do not involve the supervisor. Weein Chapter 6 that supervised peer-
to-peer systems offer the benefits of both traditional gepesed systems and those of peer-to-peer
systems without inheriting their disadvantages.

Supervised overlay networks with specific topologies suxh &ree, and the de Bruijn graph
have been studied recently by Riley and Scheideler [128]. M@ present a unified methodology
that allows one to build a large class of supervised P2P nksnoy combining techniques such
as the hierarchical decomposition technique [125], the¢icoaus-discrete approach [110] and the
recursive labeling technique. We also show how to extendotsic scheme so as to allow for
concurrent operations, and also rapid repair.

We show that such supervised overlay networks have apiplicato many areas such as grid
computing and multi-player online gaming. We also show howrovide robustness guarantees

under a strong adaptive adversarial model [132].
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3.4 Wireless Ad Hoc Networks

In the third part of the thesis, we consider overlay netwddeswireless ad hoc networks.
Overlay networks for wireless ad hoc networks have beernedugostly in the packet radio model
or the even simpler unit disk model. These models have sigmifidrawbacks and fail to model
the realities of wireless networks in many situations. Hewe propose a new model for wireless
networks that tackles the limitations of the existing madéh our model, the non-uniformity in the
environment is addressed by having a cost function modeéfdinemission and interference ranges.
Additionally, we are the first to introduce a model for phydicarrier sensing in wireless networks.
Without physical carrier sensing, it was shown in [66] tratinn—node network§2(n) time steps
are required even to transmit one message successfully tidassumption that nodes do not have
any knowledge of the network.

Using our model of wireless ad hoc networks, in Chapter 7, vapgse local-control algo-

rithms that build a constant density spanner of the origiedvork. A constant density spanner for
a graphG can be defined as follows. Given an undirected graph- (V, E), a subseU C V
is called adominating seff all nodesv € V are either inU or have an edge to a node ih A
dominating set’ is calledconnectedf U forms a connected component@ The densityof a
dominating set is the maximum over all nodes U of the number of neighbors thathas inU.
In our context,constant density spanné a connected dominating sEtof constant density with
the property that for any two nodesw € V there are two nodes’, v’ € U with {v,v'} € E,
{w,w'} € E, and a pathp from v’ tow’ along nodes ifV' so that the length qf is at most a constant
factor larger than the distance betweeandw in G.

Our algorithms are self-stabilizing and require only canststorage at any node and do not

require that nodes have globally unique labels. Thus owriitgns are applicable to a wide range
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of situations such as simple wireless sensor networks. éMhdtributed algorithms to construct
topological spanners are known, (see e.g., [36, 84]), ibistnivial to arrive at such a construction
using our model of wireless communication.

Let us denote byG = (V, E) the graph representing the topology of the wireless ad hoc
network wherg/ denotes the set of wireless stations @d- V' x V' denotes the set of edges with
edge(u,v) € E if and only if w andv can communicate directly with each other. Notice that this
definition does not specify the condition when nodeandv can communicate directly as that can

be influenced by the model for wireless communication. Weeat the following.

Theorem 3.4.1 For any initial situation, given the grapt¥, the dominating set protocol generates

a constant density dominating set@fin O(log* n) communication rounds, with high probability.

Using the above dominating set and additional techniqueshew how to arrive at a constant

density spanner. We show the following theorem in Chapter 7.

Theorem 3.4.2 For any initial situation, given the grapt¥, the spanner protocol generates a con-
stant density spanner @f in O(D log? n + log* n) communication rounds, with high probability,

whereD is the maximum number of nodes that are within the transarigsinge of a node.

Subsequently in Chapter 8, we show how to support higher a@munication primitives
such as broadcasting, and information gathering in a timd-+veork efficient manner.

While broadcasting itself appears to be an easy problem sahdavily studied analytically
and empirically, realizing it in an efficient and reliable wis very difficult. Often, the over-
simplification introduced in the model render many algarighinefficient in some situations. We
construct such situations explicitly in Chapter 8. Our allfpms build on top of the constant density
spanner and are also self-stabilizing. For broadcasting 1 messages from a source nogeve

show the following theorems concerning the time and workiiement.
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Theorem 3.4.3 Given the constant density spannerfthe broadcast algorithm need¥7'(s, m)
+logn) rounds, with high probability, wher&'(s, m) is the optimal amount of time required to

deliverm broadcast message to all nodes.

Theorem 3.4.4 Given a constant density spanner@fthe broadcast algorithm needy W (s, m))
work wherelV (s, m) is the optimal work required to send broadcast messages to all nodes in the

system.

We then consider the situation wherepackets distributed arbitrarily in the network are to be
delivered to a special sink node, We provide a two stage protocol for this problem that acksev
the following time and work bounds. Lét,,, be the maximum density of nodes having at least one

packet to send te. We show the following results in Chapter 8.

Theorem 3.4.5 Given a constant density spanner@f the information gathering protocol needs
O(T'(s,m) + A, log? n) time steps w.h.p. whef€ (s, m) is the optimal time required for all the

packets to be delivered to the sink nade

Theorem 3.4.6 Given a constant density spanner®fthe gathering protocol need3(W’ (s, m))

work wherelW’(s, m) is the optimal work required to send all the packets to the sink node
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Vertex Coloring
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Chapter 4

Vertex Coloring

We consider the well-known vertex coloring problem: givegraph@, find a coloring of its
vertices so that no two neighbors 1 have the same color. It is trivial to see that every graph of
maximum degreé\ can be colored wit + 1 colors, and distributed algorithms that finda+1)-
coloring in a logarithmic number of communication round#fwvhigh probability, are known since
more than a decade. This is in general the best possibleyifeorbnstant number of bits can be sent
along every edge in each round. In fact, we show that fontmede cycle thdit complexityof the
coloring problem i2(log n). More precisely, if only one bit can be sent along each edge@und,
theneverydistributed coloring algorithm (i.e., algorithms in whieleery node has the same initial
state and initially only knows its own edges) needs at |1@4kig n) rounds, with high probability,
to color then—node cycle, foanyfinite number of colors. But what if the edges have orientetjo
i.e., the endpoints of an edge agree on its orientation éaltits may still flow in both directions)?
Edge orientations naturally occur in dynamic networks eheew nodes establish connections to
old nodes. Does this allow one to provide faster coloringalgms?

Interestingly, for then—node cycle in which all edges have the same orientation, hoe s
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that a simple randomized algorithm can achieve a 3-colowity only O(+/log n) rounds of bit
transmissions, with high probability (w.h.p.). This rdssltight because we also show that the bit
complexity of coloring am—node oriented cycle &(1/Tog n), with high probability, no matter how
many colors are allowed. The 3-coloring algorithm can belyeastended to provide 8A + 1)-
coloring for all graphs of maximum degre® in O(+/Iog n) rounds of bit transmissions, w.h.p., if
A is a constant, the edges are oriented, and the graph doeentatrcan oriented cycle of length
less thany/Tog n. Using more complex algorithms, we show how to obtainC¥m\ )-coloring for
arbitrary oriented graphs of maximum degr&aising essentially) (log A + +/log n) rounds of bit

transmissions, w.h.p., provided that the graph does ndagoan oriented cycle of length less than

vlogn.

4.1 Introduction

A fundamental problem in distributed systems is to compupgaper vertex coloring. The
importance of vertex coloring can be seen by observing ttzatyndistributed algorithms use such a
coloring as a sub-routine in higher-order communicatiod emmputation tasks. Examples include
scheduling [88], resource allocation [26], and synchratan. Vertex coloring has applications also
in wireless networks to determine cluster heads, (see famgie [75] and the references therein),
routing in wireless networks [88], and in many parallel altfons [68, 70]. Thus, itis not surprising
that this problem has been heavily studied not only in theildiged setting but also in the PRAM
model of computation starting with Karp and Wigderson [7@d &uby [102].

We consider distributed systems that can be modeled as & gfap- (V, E) with nodes
representing the processors and the edges representirmriimaunication links. Given a graph

G = (V, E) with maximum degree\, the vertex coloring problem is to find a color assignment
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for the vertices of7 so that no two adjacent vertices are given the same colormihienum num-
ber of colors required to properly color a graph is calledciigomatic numberand is denoted by
x(G). While it is easy to see that a graph with maximum degkeean be colored using at most
A+ 1 colors, computing the chromatic number of a graph is NP—#8H Further,x(G) cannot be
approximated to any reasonable bound in general [41]. Téitisient algorithms that color using
A + 1 colors are of interest.

In the distributed model of computing, communication is apemsive resource and distributed
algorithms therefore aim at using as litle communicatisrpassible. Distributed algorithms for
vertex coloring take the approach of minimizing the numblecammunication rounds assuming
that in each round a reasonable number of bits can be comatedic Deterministic distributed
algorithms for(A + 1)-coloring that run in a polylogarithmic number of rounds ag¢ known. The
best known deterministic algorithm [117] require§ (1/v1°s™) rounds wherer is the number of
vertices. However, randomization can improve the runtisoeaentially and in some special cases,
such as highly dense graphs, even double exponentially [88hdomized distributed algorithms
that compute 4A + 1)—coloring inO(log n) rounds, with high probability; are known since more
than a decade [103, 64]. In this work we show that, interghtjnf the underlying graph is
provided with an orientation on its edges such that the tat@n does not induce oriented cycles
of length at mosty/log n, then vertex coloring witH1 + €)A colors for a constan¢ > 0, can
be obtained by exchanging essentiallylog A + /logn) bits, with high probability. Thus, we
show that having orientations on the edges significantlyravgs the performance of distributed
vertex coloring algorithms. We refer the reader to Sectidn3ifor precise statements regarding our
results.

We also note that providing an orientation is not cumbersdiritbe nodes have unique labels

tWith high probability (w.h.p.) means a probability that id@astl — (1/n°) for ¢ > 1.
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Figure 4.1: Figure shows that edge orientations can be gedwaturally in many scenarios.

that are taken from a set with a total order then the labelsidada natural acyclic orientation
on the edges. Edge = (u,v) is oriented fromu — v if label(u) > label(v) and vice-versa
as shown in Figure 4.1(a). Another natural orientation carptovided as follows, for example
in sensor networks. Information gathering is an importasmunication primitive for sensor
networks where all the packets have to be forwarded to aesioginmon destination called the
observer[61, 78]. Many protocols for information gathering in sensetworks [61, 78] assume
that the direction to the observer is available. In such aade, an orientation for the edges can be
provided according to the distance of the endpoints to tlsemer. Ties between nodes with equal
distance to the observer can be broken arbitrarily and thealtieg orientation will be free of cycles
as shown in Figure 4.1(b). Edge orientations naturally oetsop in dynamic networks where new
nodes establish connections to old nodes. Here, édge) may be oriented as — w if w is an

existing node in the network andis a new node joining the network as shown in Figure 4.1(c).

4.1.1 Model and Definitions

We model the distributed system as a grépk- (V, E) with V representing the set of comput-
ing entities, or processors, atdC V' x V representing all the available communication links. We

assume that all the communication links are undirected anddnbidirectional. All the processors
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start at the same time and time proceeds in synchronizedisouVe letn = |V'|. The degree of
nodeu is denoted/,, and byA we denote the maximum degree@fi.e.,A = max,cy d,. When
there is no confusiond, will also be used to refer to the number of uncolored neigblwdmode

u. By N, we denote the set of neighbors of nod@nd when there is no confusion, we usg

to refer to the set of uncolored neighborswofWe do not require that the nodeslihhave unique
labels of any kind. For our algorithms to work, it is enoughtteach node knows a constant factor
estimate of the logarithm of the size of the network apamfits own degree and neighbors. When
we consider graphs of constant degree,global knowledge is required for our algorithm and it
suffices that each node knows its own degree.

Given a graplG = (V, E)) a vertex coloring is a mapping: V — [C] such that if{u,v} € E
thenc(u) # c(v), i.e., no two adjacent vertices receive the same color. Hedenotes the number
of colors used in the coloring. We say that a coloring iscal coloringif every nodeu with degree
d,, has a color ifed,,] when the coloring usesA colors. The interest in local coloring arises from
the fact that a local coloring has nice implications whemgshe coloring in scheduling and routing
problems [88].

In our model, the measure of efficiency is the number of bitharged. We also refer to this
as thebit complexity We view each round of the algorithm as consisting of 1 or niitreounds In
each bit round each node can send/receive at most 1 bit fromafats neighbors. We assume that
the rounds of the algorithm are synchronized. The bit corifyi®f algorithm A is then defined as
the number of bit rounds required by algorith#n We note that, since the nodes are synchronized,
each round of the algorithm requires as many bit rounds asndsdmum number of bit rounds
needed by any node in this round. In our model, we do not caaal computation performed by

the nodes. This is reasonable as in our algorithms nodesrpednly simple local computation.
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Figure 4.2: Orientation helps in symmetry breaking. In Fé&gg(a) bothv andw choose the same

color. In (b), for existing algorithms both remain uncoldrehereas in (c), when using orientation,
nodev may get colored.

In our model, we assume that the edge<imave an orientation associated with them. That
is, for any two neighbors, w exactly one of the following holds for the edde, w}: {v,w} is
oriented eithew — w or asw — v. In the former we also catl superiorto w and vice-versa in the
latter. Having orientation on the edges is a property thatiwd been studied in the context of vertex
coloring though it is a natural property since networks Uliguevolve and for every connection there
is usually a node that initiated it. We show that algorithmsdymmetry breaking can be greatly
improved provided that the underlying graph is orientede €kact way in which orientation is used
for symmetry breaking is explained in Figure 4.2. As shownpidesv andw choose the same color
during any round of the algorithm, in the existing algoritnboth nodes remain uncolored as in
Figure 4.2(b) and have to try in a later round. With oriematiif the edge{v, w} is oriented as
v — w as shown in Figure 4.2(c), then nodean retain its choice provided that there is no edge
{u,v} orientedu — v andu also chooses the same color.

Even though the graphs is equipped with orientation on tlyeeadve still allow that on any
edge bits can still flow in both the directions. Thus we coasithdirected graphs but with the edge
orientations.

One parameter that will be important for our investigatiomhe length of the shortest cycle

in the orientation. We formalize this notion in the followidefinition.

Definition 4.1.1 ({—acyclic Orientation) An orientation of the edges of a graph is said to be

acyclic if the minimum length of any directed cycle inducgdHhz orientation is at least. Note

51



that this is not the girth of the given graph.

We always assume that the input graph is provided wiffi@ n—acyclic orientation.

4.1.2 Related Work

The problem of vertex coloring in distributed systems hasngland rich history. Itis an open
problem whether deterministic poly-logarithmic time distited algorithms exist for the problem of
(A +1)-vertex coloring [117]. The best known deterministic alon to date is presented in [117]
and requiresno(l/\/@) rounds. Following considerations known from the radio bigasting
model [12] the problem cannot be solved at all in a deterimi®und model without the use of
unique identification numbers. Hence, most of the algoritipnesented are randomized algorithms.

Karp and Widgerson [70] have shown that a MIS can be foun@(ilvg® n) rounds w.h.p.
and Luby [102] presents algorithms to find MIS in arbitranapns inO(log n) round with high
probability. Luby [103] and Johansson [64] present paralgorithms that can be interpreted as
distributed algorithms that provide @ + 1)—coloring of a graphG in O(logn) rounds, with
high probability. In the algorithm presented in [103], ineey round each node that is not yet
colored has a probability of choosing a color which is set 2. Luby’s algorithm requires only
pairwise independence and a derandomization was also simoj@3] for the PRAM (Parallel
Random Access Machine) model of computation. Without suakemp Johansson [64] presents
an algorithm forA + 1 distributed coloring. Recent empirical studies [43] hatieven that the
constant factors involved are small and also that a wakeapatility of 1 as in the algorithm of
[64] reduces the number of rounds required. However, théyaca reason for this behavior is
not known. Algorithms for vertex coloring are also presehnie [51, 68] in the PRAM model of

computation.
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All of the above cited algorithms can be implemented asibigied algorithms in the message
passing model and run in poly-logarithmic rounds with bitngdexity O(log nlog A), with high
probability. Cole and Vishkin [28] and Goldberg et. al. [3Hve shown that éA + 1)—coloring of
the cycle graph on nodes can be achieveddnlog* n) communication rounds. This was shown to
be optimal in Linial [98] by establishing that 3-coloring arnode cycle graph cannot be achieved
in less thar(log™ n— 1) /2 rounds. When unlimited local computation is available &irf98] shows
how to obtain arO(A?) coloring inO(log* n) rounds. This was later improved by De Marco and
Pelc [106] to show that a@(A) coloring can be achieved iB(log*(n/A)) rounds.

In a related work, Grable and Panconesi [53] present a lolig&dl algorithm in the message
passing model for edge coloring that rungif(1 +a~1) log log n) rounds provided that the degree
of any node in the graph iQ(na/ loglogny for any o > 0. Our analysis of Phase | for arbitrary
graphs follows the analysis of Phase Il in [53].

Distributed algorithms with the underlying graph equippeith sense of direction have been
studied in [136, 44]. Sense of direction is a similar notiorthat of orientation on edges. Singh
[136] shows that leader election in amnode complete graph equipped with sense of direction can
be performed in a distributed setting via exchangeof,) messages. In [44], the authors show
that having sense of direction reduces the communicatiomptaxity of several distributed graph

algorithms such as leader election, spanning tree cotistny@nd depth-first traversal.

4.1.3 Our Results

We start by investigating the bit complexity of distributeeitex coloring algorithms. We first
show that the bit complexity of the coloring problemtiglog n) for an non-orientech-node cycle
graph. That is, any distributed algorithm in which all thedae start in the same state and know

only aboutr, andA apart from their neighbors neefilog n) rounds with high probability to arrive
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at a proper coloring using any finite number of colors. We thkaw that when the edges in the
cycle graph are provided with an orientation, then the bmpkexity of distributed vertex coloring
algorithms isQ2(y/log n), with high probability, when using any finite number of calofhis leads
us to the question whether matching upper bounds can be dioowaloring oriented graphs.

We start with the case of constant degkgleg n—acyclic oriented graphs and present an algo-
rithm to obtain a A + 1)—coloring with a bit complexity 0O (+/log n) with high probability. Thus,

we show the following theorem.

Theorem 4.1.2 Given a+/log n—acyclic oriented graptG = (V, E)) of maximum degred, if A
is a constant, dA + 1)—vertex coloring of7 can be obtained i (/log n) bit rounds, with high

probability.

The above theorem directly implies that oriented cycle ysagan be 3—colored i@ (1/Tog n)
bit rounds. Additionally, for the case of constant degrespfs we can also arrive at a local coloring
where the color of every nodeis in [d,, + 1]. In our algorithm for constant degree oriented graphs,
it suffices that nodes know only their local degree.

We then extend our algorithm and analysis to the case ofrarpit/log n—acyclic oriented
graphs with maximum degreA. Our main result is a distribute@ + ¢) A—coloring algorithm
for arbitrary /Tog n—acyclic oriented graphs of maximum dege&e Our algorithm has a bit com-
plexity of O(log A) + O(y/Iogn). By g(n) = O(f(n)) we meang(n) = O(f(n)polylog(f(n))).

Specifically, we prove the following theorem.

Theorem 4.1.3 Given a+/log n—acyclic oriented graphG = (V, E) of maximum degred\, a
(1 + €)A—vertex coloring of7, for any constant > 0, can be obtained i®(log A) + O(y/Tog n)

bit rounds, with high probability.
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By further tightening the analysis, we show that the bit ctaxity can be reduced t0(log A+
V1ognloglogn), with high probability, for\/log n—acyclic oriented graphs with > logn. For
the case of arbitrary/log n—acyclic oriented graphs, our algorithm and analysis cambdified

easily to get a local coloring such that every nadgets a color if(1 + €)d,].

4.1.4 Summary of our approach

We now provide a brief summary of our basic approach. Our@ggr has the same flavor
as existing distributed vertex coloring algorithms [103].6 Given any+/log n—acyclic oriented
graphG = (V, E) of constant degred,, the algorithm for(A + 1)—coloring proceeds as follows.
Communication proceeds in rounds and in each round eachngetared nodey chooses a color
¢, among the available colors i\ + 1] independently and uniformly at random. Nodehen
communicates this color choice to all of its uncolored nbigs,. If a node chooses a color that is in
conflict with any of the choices of its neighbors, the confiatolution rule specifies the course of
action. In the algorithm of Luby[103], Johansson[64], anastother works, the conflict resolution
rule is that uncolored nodes in conflict remain uncoloredlzngk to try again in subsequent rounds.
The conflict resolution rule we use is based on the oriematinthe edges as explained in Section
4.1.1. Our algorithm is thus similar to the existing distiided vertex coloring algorithms [103, 64]
except for the conflict resolution rule.

In our analysis, afte®(/log n) rounds we arrive at the situation where connected compsnent
of uncolored nodes only have simple oriented paths of lelegththan,/log n, with high probability.
Coupled with the,/Tog n—acyclic orientation, it can be shown that the nodes in each sonnected
component can be organized into less thdng n layers. The layering has the property that all the
oriented edges are from a node in a lower-numbered layerade im a higher numbered layer. This

property of the layering guarantees a successful colorfragl @emaining uncolored nodes in less
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than+/logn rounds. This gives us the result for constant degree odegitephs. (Theorem 4.1.2).
To arrive at the bit complexity for arbitrary graphs, (Thenr 4.1.3) we need a few additional tricks

as our analysis shows.

4.1.5 Organization of the Chapter

The rest of the chapter is organized as follows. In Secti@wk establish the lower bound
results. In Section 4.3, we present and analyze our algoritht (A + 1)—coloring constant degree
oriented graphs. This will serve as a base for(the- ¢) A—coloring algorithm for arbitrary oriented

graphs of maximum degre& for any constant > 0, in Section 4.4.

4.2 Lower Bounds

In this section we establish lower bounds on the bit compleaf finding a proper vertex
coloring. Recall that a Las Vegas algorithm is a randomizigdrihm that always produces a
correct result, with the only variation being its runtimeirsk, we prove a lower bound for non-
oriented graphs, and then we prove a lower bound for oriegitephs. Notice that both bounds hold

for any finite number of colors.

Theorem 4.2.1 For every Las Vegas algorithm there is an infinite family of non-oriented graphs
G s.t. A has a bit complexity of at least(logn) on G, with high probability, to compute a proper

vertex coloring.

Proof. Consider the cycle of nodes, and le$, = (uy, ..., u1,v1,...,vy) be the set of nodes along
a path of length2¢ of the cycle. Initially, every node i%, is in the same state,, with the only
difference that for every € {1,...,¢ — 1}, u; considers its left connection to go tQ,; whereas

v; considers its left connection to go i9,;. (Notice that the cycle is non-oriented, so we can
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choose any orientation we want for the individual nodes.g3oktated withsg is a fixed probability
distribution P. = (p.)ze{— 0,1} for sending bitz along the right edge, where-" represents the case
that no bit is sent and represents the empty history. SinEe has only three probability values,
there must be amg with p; > 1/3. Let E; be the event that nodes andv; choose that option.
Thenu, andv; receive the same information from their right neighbor. Bgt= (p%),c(— 0,1} be

the probability distribution for sending hit along the right edge in the second round given that bit
y was received from the right edge in the first round. Tligp applies tou; andv;. SinceP,, has
only three probability values, there must beaanwith p7° > 1/3. Let E» be the event that nodes
u1 andwv; choose that option. Them, andwv; again receive the same information from their right
neighbor.

Continuing with this argumentation, it follows that there aventsty, . .., E, with E; having
a probability of at least /3 for all 7 so thatu; andv; have received the same information from their
right neighbors. AlgorithmA cannot terminate in this case because in this case the salvayiity
distribution for choosing a color applies tg andwv;, and hence, the probability that andv;
choose the same color is non-zero.

When choosing = log;(n,/2log? n), the probability for the event®,, ..., E, to occur is at
Ieast(%)log?’(”/2 log?n) _ %. Moreover, notice thaf’;, ..., E, only depend on the nodes in
Sy because information can only travel a distancé eflges ir¢ rounds. Hence, we can partition
the n-node cycle inton/2¢ many sequenceS where each sequence has a probability of at least
@ of running into the event#&, ..., E, that is independent of the other sequences. Thus, the
probability that all node sequences can avoid the eventesegF, . .., E,, which is necessary
for A to terminate, is at mos@l — %)n/% < 1/n, which implies thatd needs2(log n) bit-

rounds, with high probability, to finish. O
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Theorem 4.2.2 For every Las Vegas algorithm there is an infinite family of oriented graplis
s.t. A has a bit complexity of at least(/logn) on G, with high probability, to compute a proper

vertex coloring.

Proof. Consider the cycle af nodes in which all the edges are oriented in the same diredtiet
Sy = (ug,...,uy,v1,...,v0) be the set of nodes along a path of lengthof the cycle. Initially,
every node inS; is in the same state,. Associated withsg is a fixed probability distribution
Py = (p27y)m7y€{_70,1} for sending bitr along the left edge and bit along the right edge, where
“—" represents the case that no bit is sent. SiRgéas only nine probability values, there must be
anz andyg with pgwo > 1/9. Let E; be the event that all nodes {2 choose that option. Then alll
nodes inSy_y = (ug—1,...,u1,v1,...,v,—1) receive the same information and must therefore be
in the same state, . Associated withs, is a fixed probability distributionP?, = (piy):c,ye{—,o,l} for
sending bitz along the left edge and hitalong the right edge. Sinc®, has only nine probability
values, there must be an andy; with p;hyl > 1/9. Let E, be the event that all nodes By_;
choose that option. Then all nodesdn_, receive the same information and must therefore be in
the same state,.

Continuing with this argumentation, it follows that there aventsFy, ..., E, with E; having
a probability of at least1,/9)2(“~+1) for all i so that all nodes ir,_; are in the same stats.
Since these nodes are neighbors, algorithiwannot terminate withid bit exchanges iy, ..., E,
are true because whatever probability distributibichooses on the colors, the probability that two
neighboring nodes choose the same color is non-zero, whicihdwiolate the assumption thatis
a Las Vegas algorithm.

¢ .
The probability thatF,, ..., E, are true is at leastl)>=1 > > (%)ZQ/2 and when

choosingl = \/2 logg(n/21log? n), this results in a probability of at lea&log? n)/n. Moreover,
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notice thatt, . . . , B, only depend on the nodes $a because information can only travel a distance
of ¢ edges in/ rounds. Hence, we can patrtition thenode cycle inton/2¢ many sequenceS

o 2 . .
where each sequence has a probability of at I%B%I—” of running into the event&’, ..., E, that

is independent of the other sequences. Hence, the prdiahiit all node sequences can avoid the

. . : n/2¢
event sequencen, ..., E,, which is necessary fad to terminate, is at mos(tl — %) <
1/n , which implies that4d need<(+/log n) bit-rounds, with high probability, to finish. O

Thus, oriented graphs appear to be easier to color than riented graphs. In the next section
we show that this is indeed the case by providing a matchimemupound for constant-degree

graphs.

4.3 Upper Bound for Constant Degree Oriented Graphs

In this section we present and analyze the algorithn{£or- 1)—coloring constant degree ori-
ented graphs. This demonstrates the efficacy of using atientin vertex coloring algorithms. We
defer the case of arbitrary oriented graphs to Section 4idraquires more complicated arguments
than for constant degree graphs.

The algorithm for vertex coloring constant degree oriergeaphs is given in Figure 4.3. In the
algorithm, the parametet, refers to the number of colors used in the coloring by naddzach
node executes the algorithm Color-Random until it getsrealo

We analyze algorithm Color-Random for constant degreentetk graphs with a/log n—
acyclic orientation and show that algorithm Color-Rand@mn be used to obtain(& + 1)—coloring
with a bit complexity ofO(y/log ). The reduction in the bit complexity frofd(log n) (due to The-
orem 4.2.1) ta)(y/log n) comes from the fact that once every simple oriented pathngftte,/log n

has at least one colored node, tilbg n—acyclic orientation guarantees us connected components
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Algorithm Color-RandortC, )
While « is not colored do

1. Nodeu chooses a colat, from the available colors ifC,,] uniformly at random.
2. Nodeu communicates its choicg,, from step 1, to all of its uncolored neighbors
that have a lower priority over, i.e. to nodes such that, — v.
3. If nodeu does not receive a message from any of its neighbonsth w — « and
cw = ¢y, then nodeu gets colored with coloe,,. Otherwise node: remains uncolored
4. If u is colored during step 3 of the current round, theimforms all of its uncolored
neighbors about the color af
5. Nodeu updates the list of available colors according to coloretaltp byu’s
neighbors.

Figure 4.3: Coloring constant degree oriented graphs bgamnchoices.

of uncolored nodes where each such component only has soriplgted paths of length less than

v/1og n. They/log n-acyclicity of the orientation allows us to finish in a furthg¢log n rounds.

Theorem 4.3.1 Given a+/log n—acyclic oriented graptG = (V, E) of maximum degred, if A
is a constant, 4 A + 1)—vertex coloring of> can be obtained 0 (+/log n) bit rounds, with high

probability.

Proof. The analysis below cuts the time into two phases. Phase I@mmsevery simple oriented
path of length = /logn has at least one colored node, and phase Il ends once all acgles
colored. We show that phase | takes at most 4./log n rounds, with high probability. For Phase
1, the proof uses the/log n—acyclic orientation to argue that a furtheflog n rounds suffice to
color all nodes. For simplicity, we sé&t, = 2A for every nodeu, but the analysis works, with
minor modifications, foC;, = A + 1, as long as\ is a constant.

Consider any simple oriented pakhof length/. For any node: € P with C!, remaining colors
andd,, remaining uncolored neighbors, the probability that itabes a color that is identical to the
choice of any of its uncolored neighbors is at m@j’; 1/Cl <d,/(2A — (d, — d},)) < 1/2as
Cl =2A — (d, — d},) andd], < d,,.

For any: > 1, denote byEp; the event that all nodes iR have a color conflict in round
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Since each node chooses the color independently and utyfatmandom, andP is oriented, one
can identify a distinct witness for each color conflict so@sipper boundr[Ep; | ﬂ;;%EP’j] as
Pr[Ep; | Mj5Ep ] < (1/2)".

Denote byEp the event that the eveiltp; occurs forr consecutive rounds. Then,
r .
Pr[Ep] = Pr[(] Epi] =1, Pr[Ep; | NZ|Ep,] < (1/2)7.
=1

Let £ denote the event that for some simple oriented pathe eventt/p occurs. The number
of simple oriented paths of lengthis at mostnA‘ by choosing the first vertex from available

choices and choosing each of the néxertices from the at moghk available choices. Thus,

Pr[E] = Pr(|_J Ep] < nA'Pr[Ep] < 1/n”.
P

for the above value of sinceA = O(1). This completes Phase | of the analysis.

Consider connected components of uncolored nodes. At thefRhase I, since any simple
oriented path of lengtlf has at least one colored node, each such component only rhate si
oriented paths of length less thénwith high probability. Moreover, the input graph does navé
oriented cycles of length less thgflog n which implies that each such component can be organized
into less than/log n layers with oriented edges going only from a node in a lowenbered layer
to a node in a higher numbered layer. This layering can beegeliby the following process.
Nodes with no superiors are assigned to layer 0. After remgpthese nodes, nodes in the rest of
the component with no superiors are assigned to layer 1, amohsuntil there are no nodes left.
Such a procedure terminates in less thdlog n rounds, implying that the layer number of any

node is less thar/logn. Otherwise, there must exist either a simple oriented péatlermth at
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Legend:

® Colored node

O Uncolored node

Figure 4.4: Connected component of uncolored nodes. Thédeuat the uncolored nodes within
the connected component gives the layer number they betong t

least+/log n or an oriented cycle of length less thgflogn. Both of these conditions result in a
contradiction and hence the layering process must termindess than/log n rounds. Figure 4.4
shows an example along with the assignment of nodes to layers

Now, in Phase II, during every round the uncolored nodegassli to the lowest layer number
presently get colored as the nodes assigned to the lowestday always retain their color choice
from Step 1. This implies that Phase Il can finish in less th@wg » rounds.

Since in each round each uncolored node has to exchargeg A) = O(1) bits, the bit

complexity of the algorithm Color-Random 3(+/log n). O

We note that the same proof also holds3ecoloring cycle graphs, with any orientation, with
minimal changes. Coupled with the lower bound result in Tego4.2.2, our analysis for the case
of constant degree graphs is tight with respect to the bitgterity, up to constant factors. The

algorithm and the analysis can be modified easily to achideead coloring also.
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4.4 Upper Bound for Arbitrary Oriented Graphs

In this section we describe and analyze our algorithm forexecoloring an arbitrary/log n—
acyclic oriented graplir using(1 + €)A colors for any constant > 0.

Our algorithm and the analysis in this case requires moris than that for constant degree
graphs while having the same flavor. Theorem 4.3.1 fails td ince the degree of the input graph
is bounded away from any constant. Graphs below logaritttagree, but bounded away from a
constant, pose additional problems as graphs with degiee lzecertain threshold are not easily
amenable to nice probabilistic bounds. In many papers ample [53, 116, 37], this problem was
overcome by assuming that the number of colors availabteais{(1 + ¢)A,logn} so that sub-
logarithmic degree graphs are colored wlitlg . colors. We instead take the approach of coloring
with (1 + €)A colors as coloring with few colors is more appealing wheresecoloring is used as
a sub-routine in other higher order tasks.

To arrive at our result, we proceed in stages. Based on tggbsifrom [53], we first show
how to arrive at a bit complexity ab (log A + v/Iog n2). Later, using advanced techniques, we show
how to arrive at a bit complexity ad(log A) + O(y/Iogn). Finally, for graphs withA > log n, we
show how to arrive at a bit complexity 6¥(log A + /log nlog log n).

Our algorithm for any node is presented in Figure 4.5. The parameigrdenotes the number
of colors each vertex can choose from. Each node runs the algorithm in Figure 4ilewhemains
uncolored.

We now provide a summary of our analysis of algorithm Colaur @nalysis cuts time into two
phases. In the first phase we show that for any vertex the nuathacolored neighbors reduces
to at mostcy log n for a constantsy, in O(loglogn) rounds, with high probability. In the second

phase we first show that the graph can be decomposed into @edneomponents of uncolored
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Algorithm Color(C,,)

Phase |

1. SetC,, := ¢; A for a constant; > 3.

2. Whiled,, > ¢, logn for a constant, do
3. Use Algorithm Color-Randofd,).

Phase Il

4. SetCy, := min{2cs logn, 2d, }.

5. Use Algorithm Color-Randofd,).

Figure 4.5: Algorithm for any node.

nodes such that each such connected component only ha singited paths of length less than
Vlog n, with high probability. The analysis then proceeds to shaat &ll the nodes can be colored
in a furthery/log n rounds.

In the algorithm and the analysis we alsoGgt= c; A for a constant; > 3, for every nodex,
for the sake of simplicity. Using techniques from [53], ipiessible to extend the following analysis

to use only(1 + €)A colors, for any constart > 0.

4.4.1 Analysis for Phase |

In this phase, we show that the number of uncolored neighbbemy nodew reduces in
a double-exponential fashion, (i.e., @(loglogn) rounds) tocy logn. This analysis has strong
connections to occupancy problems [109, Problem 3.4],[a88 the edge coloring algorithm of
[53].

Letd, (i), Ny(i), Cy(7) refer to the number of uncolored neighbors, the set of umedloeigh-
bors, and the size of the color palette of nadeespectively, at the beginning of roundAlso, let

d(1) = maxy, dy (7).

Lemma 4.4.11f d,(1) > cologn thend, (¢ loglogn) < ¢y logn, with high probability for some

constante’ > 1.
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Proof. The intuition behind the proof is that at the end of every dhuhe number of remaining
uncolored neighbors decreases double-exponentially.

During round: the probability that an uncolored noddails to get colored can be computed as:

P,(i) := Pr[u does not get colored during roungd < E;.li(f) Cul(i) < %, as, fore; sufficiently

large, it holds that”, (i) > aA fora = ¢; — 1.
The expected number of neighborsuothat are still uncolored after rounds, E[d, (i + 1)] =
Y ven (i) Poli) < d(i)?/aA.

Consider the following recurrence relation betwekn+ 1) andd(:) for a constant””.

d(i+1) < d;x) +1/¢"d (i) log n. (4.1)

Using a large deviation bound [52, 53], it can be shown that + 1) exceeds its expected
value by more than/c”ci(z‘) log n with probability less tham 2 for some constant”. Thus, it
holds thaid, (i + 1) < d(i + 1) w.h.p., for all nodes..

The recurrence relation in Equation (4.1) can be solved ksne (cf. [53]). Letdz(z')/aA
dominate the second term foy rounds. The value of; then satisfieg?(i)/aA < 2/¢’d(i) log n.
For this we require thad®(r;) < 4¢"a2A?log n.

So forr; rounds, we have:

d(i +1) < 3d*(i) Jar (4.2)

Using Equation (4.2), it follows that

d(r)) < (3/a)?" A
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Hence, we require that:
2m1—1 3 12 A2
((3/04) A) <4d"a”A%logn

which results in a value aof; = O(loglogn).

From this point on, it holds that

d(i +1) < 5v/¢"d(i) log n (4.3)

Solving Equation (4.3) for a value of so thath(m) < cologn results inrg = O(loglogn).
Thus afteri* = r; + r, = O(loglogn) rounds, we have for any nodg d, (i*) < d(i*) <

co logn. O

Thus, at the end aP(log log n) rounds of the algorithm, the number of uncolored neighbors

for every node is at most, log n. This completes Phase | of the analysis.

4.4.2 Analysis for Phase Il

The analysis in this phase consists of two sub-phases. hplsade 11(a), we argue that along
any simple oriented path of lengtfilog n there exists at least one colored node, with high probabil-
ity. In the second sub-phase we show that all the remainioglared nodes successfully get colored
within v/log n rounds. Notice that since the number of uncolored neighbbasy node at the be-
ginning of this phase is at most log n, nodes can use a color palette of sigen{2cs logn, 2d, }

for this phase as shown in the algorithm in Figure 4.5.
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Analysis for Phase li(a)

We now establish the following lemma which shows that evanpte oriented path of length
Vlog n has at least one colored node aft¥/log n) rounds, with high probability. Lef\, denote
the maximum number of uncolored neighbors for any nadéAfter phase |, it holds thaf\, <

co logn.

Lemma 4.4.2 For arbitrary \/log n—acyclic oriented graphg&: at the end ofO(y/logn) rounds,
any simple oriented path of length= /logn will have at least one colored node, with high

probability. Further, the bit complexity of this phased$./log n log log n).

Proof. The proof of this lemma is similar to the proof of Phase | of ditean 4.3.1. Consider any
simple oriented pattP of length¢ = \/logn. Let Ep; denote the event that all the nodesZin
are in a color conflict during a given rourid Then, along the lines of Phase | of Theorem 4.3.1, it
holds thatPr[Ep; | N'_} Ep;] < (1/2)*. Define Ep to be the event that the eveh; occurs for

r = 4co+/log n consecutive rounds. Then, it holds that
Pr[Ep] = Pr[Nj_, Ep;] = IIj_; Pr[Ep; | N"_{Ep;] < (1/2)".

Let F denote the event that there exists a pBtlor which the eventE/p occurs. Since the

number of simple oriented paths of lengthis at mostn A’

Pr{E] < Y PrlEp] < nAl (%)é

P

Asr = 4co4/logn andl = /logn andA, < ¢ log n, the above probability is polynomially small.
The bit complexity of this phase i9(/log nloglogn) as in each round each uncolored ex-

changeg)(log log n) bits. O
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Analysis for Phase lI(b)

Consider connected components of uncolored nodes. At tHeoEPPhase Ii(a), since any
simple oriented path of lengt{Ylog n has at least one colored node, w.h.p., it holds that each such
component has only simple oriented paths of length less {iap n with high probability. Also,
the input graphG does not have oriented cycles of length less thdog n. For Phase li(b), we

show the following lemma.

Lemma 4.4.3 In Phase lI(b), after less thaxylog n rounds, all nodes irG are colored properly.

Further, the bit complexity of Phase Il(b) (3(+/log n log log n).

Proof. The proof of this lemma is similar to that of the proof of Phéisem Theorem 4.3.1. It
can be shown that any connected component of uncolored modiesas simple oriented paths of
length less thar, with high probability. Moreover, the input graph does navé oriented cycles
of length less thar/log n which implies that each such component can be organizedeissathan
Vlog n layers with the oriented edges going only from a node in a tewenbered layer to a node
in a higher numbered layer.

Using the layering, then it can be shown that during eacthéurtound, at least one node
gets colored successfully. Thus, this phase requires hess\tlog n rounds and each node ex-

changes)(log log n) bits during every round of this phase. Thus the bit compyeadtthis phase is

O(v/1ognloglogn). O
From the above discussion, the following theorem holds.

Theorem 4.4.4 Given a\/log n—acyclic oriented grapli = (V, E) of maximum degred, for any
constante > 0, a (1 + ¢) A—vertex coloring of can be obtained i®(log A + v/Tog n) bit rounds,
with high probability.
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Proof. Phase | has a bit complexity 6f(log A loglogn) as forO(log logn) rounds, each node
exchange®)(log A) bits. For Phase Il, the bit complexity 3(+/log nloglogn). Adding the bit

complexity of both the phases, we arrive at the theorem. O

4.4.3 Further Improvements

In this section, we show that the bit complexity of Phase | barreduced ta(log A +
log log n) thereby reducing the bit complexity of the algorithm forigndry \/Tog n—acyclic oriented
graphs taD(log A) 4+ O(y/Tog ). We then show a tighter analysis fioigh degree graphs to arrive
at a bit complexity ofO(log A + v/lognloglog n). By high degree graphs, we mean graphs with

A > logn.

Improvements to the Analysis of Phase |

The tightness of the analysis stems from a gradual reduatiéhe number of colors during
Phase I. This results in savings in the bit complexity of BHaEor this purpose, Phase | is divided
into sub-phases as follows. Fpr> 1, sub-phasg starts when the number of uncolored neighbors
of u is at mosthLj), whereD&j) acts a threshold on the number of uncolored neighbors of node
fo) is defined asD&l) =d, andeLj) =1/ fo_l) for j > 2. Let Cﬁj) denote the size of the color
palette of node: during sub-phasg. At the beginning of sub-phagenodeu reduces the size of its
color palette so thaﬂﬁj) = C&j_l) with C&l) = c1 A.

This effectively reduces the number of bits required to b seeach sub-phase by a factor of
2 but the proof of Lemma 4.4.1 holds with minimal changes. Thu$hase I, it can be seen that

over theO(log log n) sub-phases the number of bits each nodends is at most

O(loglogn) ' O(loglogn) '
Z log CY) < Z 2logci + ((log A)/2?) = O(loglogn + log A).
j=1 Jj=1

69



Algorithm Phasel
1. D, :=+/d,,Cy := c1A.
2. Whiled,, > ¢ologn do
3. Run Algorithm Color-Randofd, ).
4. 1fd, < D, then
5. Dy = \/D_U7 Cy = Cl\/C_u

end-while.

Figure 4.6: Improved algorithm for Phase I.

Thus, the bit complexity for Phase | reducesifoglogn + log A).
The modified algorithm for Phase | for nodeis described in Figure 4.6. Using the tighter

analysis for Phase | and Lemmata 4.4.2-4.4.3, we arriveedbtiowing theorem.

Theorem 4.4.5Given a+/log n—acyclic oriented graptG = (V, E) of maximum degreé\, a
(1 + €)A-vertex coloring of7 for any constant > 0, can be obtained i (log A) + O(v/Tog )

bit rounds, with high probability.

Improvements to Phase Il

For the case of high degree graphs, we now show how to rededattbomplexity of Phase Il
to O(y/lognloglogn). The algorithm for Phase Il remains the same as shown in Eiguf. The
analysis of Phase Il now consists of 3 sub-phases.

In sub-phase lI(a), we show that the number of uncoloredhteis of any node decreases to
O(+/Tog nlog log n) afterO(y/log n/ log log n) rounds with high probability. In sub-phase II(b) we
then show that every simple oriented path of lengflog ./ log log n has at least one colored node,
with high probability, aftetO(,/log n/loglogn) rounds. Finally, in sub-phase II(c), we show that
every node can be colored after a furtt@f,/log n/loglogn) rounds. In this phase, every node

can use a color palette of si2e; log n.
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Analysis for Phase li(a)

For sub-phase ll(a), we show the following lemma.

Lemma 4.4.6 In Phase li(a), irO(lOVgli’fg"n) rounds, the number of uncolored neighbors of any node

decreases tq/log n log log n, with high probability. Further, the bit complexity of tresib-phase is

O(v1logn).

Proof. Consider any node. Atthe end of phase |, it holds thdf < c; log n, with high probability.

Since the number of colors used bys 2¢, log n, it also holds that
Pr[nodeu fails to get colored in a given rouhet 1/2.

Consider any subset of the uncolored neighbors af. Let F4 denote the event that all the

nodes inA remain uncolored after = 41002? Vlgfgb consecutive rounds. Then, it holds that

Pr[E4] < (1/2)71A10-1/Viogn)

using the orientation and the witnessing scheme of Theor8rt.ANotice that as we are guaranteed
of v/log n—acyclicity we can find a set of at ledst|(1 — 1/1/log n) nodes in conflict with a distinct
witness for each color conflict.

Let E, s denote the event that for nodgthere exists a set afuncolored neighbors at the end

of r rounds. Then,

pig -l U Bds U edmd- (7) <1)M(HN@’.

s 2
ACNy,|Al=s ACNy,|Al=s
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Denote byF,, the event that for node there exist more thatylog n log log n uncolored neigh-

bors. Using Boole’s inequality,

d, d
u u 5 1
Pr[E,] < E Pr[E%S] < E Ci) . (1/2)7‘8(1—1/\/logn) < =
s=+/lognloglogn s=+/lognloglogn

asrs > 4ep logn andd,, < cologn. Now, denote byl the event that for some node the event

E, occurs. ThenPr[E]| = Pr[J E,] < 1/n. Thus, the number of uncolored neighbors of any

ueV
node decreases tglog n log log n with high probability aftert\/Tog n/ log log n rounds.
During this phase, each uncolored node exchaoyés log n) bits in each round as the palette

size is2¢g log n. Thus, the bit complexity of this sub-phaseié/log n). O

Analysis for Phase lI(b)

At the end of sub-phase llI(a), it holds that the number of lored neighbors of any node

u is at mosty/lognloglogn. Recall thatA, = max,d,. After sub-phase ll(a), it holds that

A, < +/lognloglogn.

Lemma 4.4.7 In Phase llI(b), in16+/logn/loglogn rounds, in every simple oriented path of

length \/log n/log log n there is at least one node that gets colored, with high prdthab Fur-

ther, the bit complexity of this sub-phas&’i$,/log nloglogn).

Proof. Consider any simple oriented pathof uncolored nodes of length= +/log n/ log log n.
Denote byEp the event that no node iR gets colored in6+/log n/ loglogn rounds. Since’ is
oriented and the choices of each node are independent, aigiitgessing scheme similar to that in

the proof of Theorem 4.3.1, it holds that:

-16 16 logn
P [E ] < \/@log logn £16/logn/loglogn < log logn logloggn < 1
T ;T2 2T _loglogmn 1
P| = 2¢co logn =\ 2c2v/Togn S o
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if n is sufficiently large. In the above, the first inequality tolsince the number of uncolored
neighbors is,/log n log log n and the number of colors thatcan choose from i8¢, log n.

Let £/ denote the event that there exists a simple oriented Baihlength¢ such that for path
P, the eventtp occurs. The number of simple oriented paths of lertgth | /log ./ log log n is at

mostn - AL, Thus,

nAf
Pr[E] = Pr| ] Ep] <Y 1/n* < Al/nd.
P j=1

The above probability is polynomially small singe, < /lognloglogn. Thus, along any

simple oriented path of lengt{ylog n/ log log n, at least one node gets colored with high probabil-

ity at the end ofi6/log n/ log log n rounds.

The bit complexity of this sub-phase is easily seen t®b¢log n log log n) as in each round,

each uncolored node exchange8og log n) bits. O

This completes the analysis for Phase Il(b). In Phase &g arguments similar to that of
Lemma 4.4.3, it can be shown that in a furthgtog n/ log log n rounds, every node gets colored,
with high probability. The bit complexity of Phase 1l(c) @3(1/log nloglogn). Putting together

everything, we arrive at the following theorem.

Theorem 4.4.8 Given a+/log n—acyclic oriented grapiG = (V, E) of maximum degreé\ >

log n, for any constant > 0, a (1 + ¢)A—vertex coloring ofG can be obtained irO(log A +

V1og nloglogn) bit rounds, with high probability.

Notice that for Theorem 4.4.8 to hold, the input graph onlgdgto be,/logn/loglog n—
acyclic, but we stated the theorem with ttydog n—acyclicity assumption for the sake of consis-

tency.
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The following corollary can be easily obtained showing tfmtthe case of densg/log n—

acyclic oriented graphs, our result on the bit complexitgltse to the worst-case optimal.

Corollary 4.4.9 Given an arbitrary/log n—acyclic oriented graphG = (V, E) with maximum
degreeA = Q(2vlognlogloen) for anye > 0, a (1 + ¢)A-vertex coloring can be obtained in

O(log A) bit rounds, with high probability.

4.5 Chapter Summary and Acknowledgements

We presented algorithms for distributed vertex coloriningsa simple and natural model.
While our results are tight in general, a related questioasio is whether any further conditions
on the orientation would result in better bounds or whethertain orientations outperform other
orientations. For example, if the orientation or the grapkriown to be acyclic, would it be possible
to color in fewer bit rounds?

A preliminary version of the results contained in this Clesi@ppear in [77]. This work was
done with Melih Onus, Department of Computer Science, Arz8tate University and Christian

Schindelhauer, Computer Science Deparmtment, Unives§iBaderborn.
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Part Il

Peer-to-peer Overlay Networks
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Chapter 5

P2P Networks: Deterministic

Constructions

5.1 Introduction

In recent years, peer-to-peer overlay networks have be@tremely popular for a variety
of reasons. For example, the fact that peer-to-peer systtm®ot need a central server means
that individuals can search for information or cooperatthwiit fees or an investment in additional
high-performance hardware. Also, peer-to-peer systemmipéhe sharing of resources (such as
computation and storage) that otherwise may sit idle orviddal computers. Therefore, it is not
surprising that peer-to-peer systems have inspired ameng amount of research. Despite many

advances, fundamental problems have remained open, such as

1. Is it possible to design deterministic peer-to-peer layenetworks with properties compara-

ble to randomized peer-to-peer systems?

2. How can peers of non-uniform bandwidth be organized inweemlay network?
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Why are these problems important and non-trivial? An obsiadvantage of a deterministic over
a randomized solution is the ability tocally self-correctthe overlay network so that it not only
fulfills the given connectivity rules but also retains certdesirable topological properties such
as a high expansion. The property sdlf-stabilizationwas introduced by Dijkstra in his 1974
paper [32] and is considered an important property in existieer-to-peer systems [142, 125, 129].
By definition, (pseudo-)random constructions cannot becgetecting with regard to expansion
because the systems can be in a state with a poor expandimugtit all connectivity rules are
fulfilled. Although this may be unlikely to happen if all nad@are honest, adaptive adversarial
attacks can make such a situation very likely (see also [3BBsigning scalable, deterministic
overlay networks with a high expansion is a highly non-&iyproblem. The first such construction
just recently emerged, and the construction and its arslysjuite involved [8].

Also, organizing peers of non-uniform bandwidth in a sckdakay is an important and non-
trivial problem. It is important because in reality, peeevé different connections to the Internet
with bandwidths that may be several orders of magnitudetapdso, future peer-to-peer systems
will have to allow peers to adjust the bandwidth they wantdotgbute to it to be acceptable since
many peer-to-peer applications may run in a peer at the sam& tThus, a system is needed
that can organize peers of non-uniform bandwidth and thatackapt to changing bandwidths in
a scalable way. DHT-based peer-to-peer approaches inliheic form cannot take advantage of
high bandwidth peers, because their approach of givingygveer the same degree and randomly
distributing peers in the system will isolate high bandWwiglieers, making them ineffective. A
straight-forward solution would be to simply include mplé virtual peersfor each high-bandwidth
peer into the system. This approach, however, does not wetkinvgeneral, because allowing a

peer to have multiple virtual peers in the system reduces@kability and increases its vulnerability.
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It reduces its scalability because frequent bandwidth geamay create a high update cost when
using virtual peers, and it increases its vulnerability daese when a high-bandwidth peer leaves,
many virtual peers will leave with it, potentially creatidgsruption of service and high repair costs
for the overlay network. It would therefore be much bettegitee every peer just single, bounded
degreenode in the network while retaining the property that higimtbwidth peers can be utilized
well. This is exactly what we solve with the overlay networoposed in this chapter. Before we

present our network, we review previous work.

5.1.1 Overlay networks for uniform peers

A large collection of scalable peer-to-peer overlay neksdras been proposed in recent years.
Among them are Tapestry [155], Chord [142], Pastry [129],NCA25], Viceroy [105], Koorde
[67], and DH graphs [110]. Also generic approaches haventBcbeen presented that allow one to
turn general families of static graphs into dynamic gragbee, for example, [110] and [2]. All of
these constructions crucially depend on the fact that nadegiven random IDs (which may either
be obtained by a random number generator or with the help aeagn-random hash function).
Hence, they canna@uaranteea good expansion or diameter.

Recently, a number of constructions for overlay networkergad that allow good topological
properties foarbitrary node IDs. Among them are skip graphs [6], skip nets [59], ArdHyperring
[8]. Whereas skip graphs and skip nets still need a randombeumenerator for the topology,
the Hyperring is purely deterministic and the only dynamieray network to date that has a
guaranteed low diameter and high expansion. However, \elhdrethe randomized constructions
the work for a node insertion and deletion can be made as la@w(kg n), w.h.p., the work for a
node insertion and deletion in the Hyperringdglog® n), wheren is the current number of nodes

in the system. So an open question has been whether this cartibeed toO (log? n) or even
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O(logn). Also, the Hyperring is rather complicated to maintain ameféfore an open question has
also been whether simpler approaches exist for organizeegsan a deterministic way. The results

of this chapter answers both of these questions in the afiirea

5.1.2 Overlay networks for non-uniform peers

Peers of high bandwidth are often more reliable and pasdteipn the network for a longer
time than low bandwidth peers. Though it uses an unstrugtapproach, Gnutella has a tendency
to integrate long-living peers more tightly into the netlwdhan short-living peers and therefore
can be seen as a heuristic to take advantage of high bandpédils. A more structured approach
is the super-peer architecture of Kazaa [72]. It classifEsrpinto two classes: the strong (high
bandwidth) peers and the weak (low bandwidth) peers, anerihjis a weak peer to be connected
to exactly one strong peer. All queries are routed througingt peers, which are also called super-
peers. Super-peer networks are also part of IXTA 2.0 [143].

Publications on various super-peer networks can be fourjdlih, 151, 156]. Also multi-
tier topologies (i.e. topologies with more than two claseépeers) have been proposed (e.g.,
[139]), where each level consists of peers with approxilgate same capabilities. None of these
publications have studied in a formal way how well their tlogies can handle arbitrary unicast or

multicast problems.

5.1.3 Overlay networks for multicasting

There are a number of results on overlay networks for mudting. Overlay based approaches
that just create a network for a single multicast group cafobed in [9, 31, 62, 128]. For example,
in [62] the authors show how to construct an overlay netwdrkeae topology rooted at the source

of the multicast. In [9], the authors create a hierarchiopbtogy based on clustering. In [128], the
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authors show how to create a tree topology that can be usethieva reliable broadcasting.
Approaches that allow multiple multicast groups to be fadmoger the same overlay network
are usually implemented on top of DHT-based systems sucthasdCCAN, Tapestry, or Pastry
[20, 22, 91, 126, 141, 157]. The works [141, 91] are based erCthord [142] overlay network.
The scheme of [126] use the CAN proposed in [125] so as toe@aub-CAN consisting of the
nodes forming a multicast group. Multicasting in the grosihien realized by flooding the sub-CAN
with additional rules to minimize duplicates. The work ofy@ax [157] is based on the Tapestry
network proposed in [155] and the approach of Scribe [20]isell on the Pastry network [129].
For an evaluation of several of these protocols see [22]example. All of these approaches are
scalable, but they only work well for uniform peers becausssages for these multicast groups

will be routed through the underlying DHT-based networks.

5.1.4 Our results

We propose a dynamic overlay network, calleagoda that can handle routing, data man-
agement, multicasting, and node insertions and deletiorss Scalable and efficient way. In the
following, n always denotes the current number of peers or nodes in thensys

Uniform overlay networks, routing, and data management

For the uniform case, i.e. all nodes have the same bandwidtls@rage, our main results for

the Pagoda network are:

e Maintenance: Any isolated node insertion or deletion can be executed(llog n) time and

work.
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e Routing: There is a local, randomized routing strategy that routgssahof packets in which
each node has at most one packet and every packet has a raeskimatibn inO(log ) time,

w.h.p.

e DHT: There is a distributed hash table method that can keep dsttébdied among nodes so

that every node is responsible for an expectdd /n) fraction of the data.

Non-uniform overlay networks and multicasting
Our main results for the non-uniform case are:

 Maintenance: Any isolated node insertion or deletion can be executed(iog? n) time and

work.

e Muliticasting: The Pagoda network for non-uniform nodes creates a congefstr routing
arbitrary concurrent multicast requests that is only by((m\ + logn) factor larger than
the congestion achievable bybast possibl@verlay network of maximum degre® for that

particular problem

Apart from proving existential results, we also providedbcontrol strategies for building and
maintaining multicast trees so that a performance as pestlioy the competitive bound can be
achieved. We also show that under certain local admissiotraoscenarios, our network can

guarantee that rate reservation requests for multicastiaguccessful with high probability.

5.1.5 Rest of the Chapter

We start in Section 5.2 with the description of the perfetatis form of the Pagoda, and
we prove some basic properties. In Section 5.3 we show howriothe Pagoda into a dynamic

overlay network for the case that all nodes have the samenidtid We describe how to efficiently
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insert a node into or delete a node from the Pagoda, and we lstmvio perform routing and data
management in an efficient and robust manner. In Sectionmie4extend the Pagoda network to
the case that we have arbitrary non-uniform node bandwidthg in Section 5.5 we show how this

network can be used for efficient multicasting.

5.2 The static Pagoda network

Our overlay network is basically a combination of a compleieary tree and a family of
leveled graphs that are similar to the well-known Omega ogt92], together with some short-
cut edges to keep the diameter low. It is callmjoda We first define a perfect, static form of
the network before describing dynamic constructions. ®ele recall the definition of—ary de

Bruijn graph (see also Definition 2.4.4).

Definition 5.2.1 Letd € INy. Thed-dimensional de Bruijgraph, denoted)B(d), is an undirected
graph with node se¥’ = [2]¢ and an edge sef = {{z,y} | =,y € [2]¢ and there are, q € {0, 1}

so thatr = (bl,bg, .. .,bd_l,p) andy = (q, bi,bs,... ,bd—l)}-

001 011

000 010 10 111

100 110

Figure 5.1: The structure dPB(3)

Figure 5.1 presents the 3-dimensional de Bruiji3(3). It can be seen thabB(d) has2?
nodes, a maximum degree of 4 and diameteiBased on the de Bruijn graph, we now define a

network called the de Bruijn exchange network (DXN) below.
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Definition 5.2.2 (de Bruijn Exchange Network (DXN)) For d € INg, thed-dimensional de Bruijn
exchange networkDXN (d), is an undirected graph with node sét = [d + 1] x [2]? and the

following edge set:

E = {{(,x),G+1Ly)}|jeld],

T,y € [2]d, {z,y} € E(DB(d)) or x = y}

Thus, DXN (d) can be viewed a8 + 1 copies ofD B(d) combined together to form a leveled
network with edges in the de Bruijn network now going acragiseent levels and each node being

connected to its copy in an adjacent level.

Figure 5.2: The structure d?G(2) consisting ofDXN (0), DXN (1) and DXN(2). The tree edges
are shown in dashed lines and the shortcut edges are showttéal dines.

Definition 5.2.3 Let d € INy. Thed-dimensional PagodaPG(d), is an undirected graph that
consists ofl + 1 de Bruijn exchange network® XN (0),..., DXN(d), where each nodé, z) €
[i+1]x[2]* of DXN (i) has an edge to the nodé z:0) and (0, z1) in DXN (i+1) and, additionally,
to all nodes(0,y) in DXN (i + 1) that have an edge t@l, z0) or (1, z1).
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In addition to this, for every andj € {0,...,i}, every nod€j, z) in DXN (i) has short-cut

edges to nodegj, z0), (j,z1), (j + 1,20), and(j + 1,z1) in DXN (i + 1).

Ignoring the short-cut edges, the Pagoda is a leveled nketwith the root being at level 0.
Levels are consecutively numbered from 0 throm@@fzo(i + 1)) — 1. Given a node at levé], the
nodes it is connected to in levél- 1 are called itparents and the nodes it is connected to in level
¢+ 1 are called ithildren

The Pagoda network consists of the following types of edges:
e column edgepining node(j, z) to node(j + 1,z) in a DXN,
e tree edgegoining node(i, x) in DXN (i) to nodeg0, z0) and(0,z1) in DXN (i + 1),

e short-cut edgegoining node(j,z) in DXN (i) to nodes(j, z0), (j,x1), (7 + 1,20), and

(j+1,21) in DXN(i + 1),

e de Bruijn edgesepresenting edges of the forf, ) in DXN (i) to (j + 1,y) in DXN (i)

with (z,y) € E(DB(i)), and
e balancing edgegepresenting all the remaining edges.

We also denote nodé$, j) in DXN (i) of PG(d) with j € [2]° and0 < i < d astop nodes
and similarly nodesi, j) in DXN (i) of PG(d) with j € [2]* and0 < i < d asbottomnodes and
the rest asntermediatenodes.

Each of the above types of edges are important for our prigdcowork. Column edges
and tree edges allow to keep our protocols simple and efficiEnBruijn edges allow to perform
efficient routing (and deterministic level balancing in tthgnamic Pagoda), and short-cut edges
keep the diameter and congestion low. The balancing edgassad to minimize congestion during

concurrent join/leave operations.
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5.2.1 Basic properties

Figure 5.2 shows the 2-dimensional Pagdtia(2). PG(d) hasy % (i +1)2" ~ (d+1)2%+!

nodes and maximum degree 20. We start with the following lemm
Lemma 5.2.4 PG(d) hasO(d?) levels and a diameter @ (d).

Proof. The number of levels ilPG(d) is Zfzo(z‘ + 1) = O(d?) as PG(d) consists ofd + 1
DXN networks,DXN (0), DXN (1), ---, DXN(d). The claim about the diameter follows easily as
DX N (i) has diametei and distance between nodeandv in DXN (i) and DXN (j) respectively

is thus at mostnax{i, j} + d, using the de Bruijn and shortcut edges. O

The following lemma shows thaPG(d) also has a good expansion. Recall that the node

expansion is defined as= ming. ;< |v|2 |V (U)|/|U| whereN (U) is the neighbor set df .
Lemma 5.2.5 PG(d) has an expansion 6i(1/d).

Proof. We prove the lemma by showing that every permutation roytiadplem in the Pagoda can
be routed with an expected congestior(il).

Consider any permutation routing probleme [n]. In the following we analyze the expected
congestion at any nodewhen using the routing strategy in section 5.3.37for

We start with stage 1. Consider any nodéliA N (i). Since there arénodes in the column af
that may send their packet throughu is passed by at mospackets. Any bottom node iRXN (7)
then get2(i + 1) packets from the nodes in its 2 child columns/MX' N (i + 1). Since all packets
in the bottom nodes IMXN (i) are sent to top nodes IBXN (i) chosen uniformly at random, each
node inDXN (i) has an expected congestion2¢f + 1). These packets are then forwarded to the
bottom nodes of the next higher exchange network, causieggected congestion dfi+2) at the

bottom nodes oDXN (7). Thus, during stage 1, each nodeMX N (i) has an expected congestion
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ofatmosti +2(i + 1) +4(i +2) < 7(i + 2). In stage 2, the maximum number of packets that have
to be shipped acrosBXN (i) is at most the number of nodes InXN (i — 1) and above, which can
be easily seen to be at ma&DXN (i)|. Thus, each node receives on expectation at most 2 packets
during stage 2. Stage 3 is symmetric to stage 1 and therefeates the same expected congestion
as stage 1. Thus, the total expected congestion at any not@)s

Suppose now that the node expansior($/d). In this case there must be a détwith
IN(U)| = o(|U|/d) and|U| < n/2. Then consider the permutationthat requires to send all
packets in nodes ity to U whereU = V \ U with V denoting the set of nodes G(d). In this
case, the expected congestion mustbé), contradicting our bound above. Thus, the expansion of

PG(d) is Q(1/d). 0

5.2.2 Pagoda vs. existing approaches

Our overlay network construction is closest to the line ggra following the CAN approach
[125]. The basic idea behind CAN is to combine an infinite clatgbinary treel” with a family
of graphsG = {G, | £ € INo} with |V (G,)| = 2 so that for every > 0 the nodes in level
are interconnected according . Initially, a peer is just stored at the root of the tree. hises
and deletions of peers are handled so that the invariantiistai@ed that every path down the tree
starting with the root contains exactly one peer. Peersraegdonnected according to the edges in
G where a peer inherits all edges to its descendants. To keelewbl distribution of the nodes in
balance, and therefore their degree low, it was suggesteiihter use deterministic load balancing
along the edges i@ or to choose random positions for newly inserted nodes [228]. However,
for any familyG of bounded degree graphs such a deterministic load balastiategy can result in
a very poor expansion (as low é81/n°) for some constart > 0), so the CAN approach crucially

depends on randomness to be well-connected. In contrdssi@tr way of combining a tree with a
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family of graphs allows local, deterministic updates wigilearanteeing an expansion{®f1/ log n)
at any time.

This result is possible because the way we use the Pagodarkéivwa dynamic setting differs
from the CAN approach in two fundamental ways. First of althe dynamic Pagoda the invariant
is preserved that all parent positions of an occupied noditipo are occupied, whereas in CAN
the invariant is maintained that every path down the CAN frem the root contains exactly one
occupied position, and therefore peers are only at the efitfe €CAN tree. Secondly, the Pagoda
network uses a DXN network with multiple levels at each timeel and not just single-level con-
nections. If one just used a single de Bruijn graph at eaah lereel as this was suggested, for
example, in [99], then deterministic balancing stratedteskeep nodes with missing children at
approximately the same level) would perform poorly (i.ee #xpansion can be as low @$1/n°)
for some constant > 0). This would not only be the case in the CAN approach but aisouir
approach of having all parent positions occupied.

Also the way the Pagoda network handles non-uniform pedtsidamentally different from
previous approaches. Instead of using many virtual nodes raulti-tier network to incorporate
peers of non-uniform bandwidth, every peer is just assediatith a single node, and a simple heap
property is used to organize the peers in the system: eveenpaf a peer must have a bandwidth
that is at least as large as the bandwidth of that peer. Tocal, Irelative rules are used to organize
peers instead of the rather global nature of the rules usigaV nodes or multi-tier networks (since

an agreement on the minimum bandwidth and bandwidth-t@atisignments is necessary there).
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5.3 The dynamic Pagoda network for uniform nodes

Our basic approach for the dynamic Pagoda network is to Keepades interconnected in a
network that represents a subnetwork of the static Pagotteorie of infinite dimension. In this
section, we assume that all nodes have a bandwidth of 1. Aliraey the dynamic Pagoda network

has to fulfill the following invariant:

Invariant 5.3.1
(a) Position: For any node in the dynamic Pagoda, all of its parent pos#iare occupied.

(b) Consistency:For any pair of nodes andw in the dynamic Pagoda; andw are connected

in the dynamic Pagoda if and only«#fandw are connected in the static Pagoda.

We start with some facts about the dynamic Pagoda networladé is calledieficientif it has
a missing child along a column or tree edge (i.e. we do notidensnissing children reachable via

de Bruijn edges).

Lemma 5.3.2 If Invariant 5.3.1 is true, then in the dynamic Pagoda netwaiith n nodes, the

difference between the largest level and the smallest {eileldeficient nodes is at masig n.

Proof. Letwv be any node of largest level in the Pagoda. Notice that suddea must be deficient.
Suppose that is at position(j, z) in someDXN (d). The fact that every node must have all of its
parent positions occupied and the way €N is constructed ensure thais connected to at least
27 nodes at position§), y) in DXN (d), wherey is either the result of a right shift of by at most

j positions or a left shift of: by at mostj positions, padded with arbitrary 0-1 combinations. Thus,
if 7 = d, then all positions in row 0 oDXN (d) must be occupied. lf < d, then one can easily

check that all positions in rowin DXN (d — 1) must be occupied. Hence, the difference between
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the largest level and the smallest level with a deficient riedg mostd. Taking this into account,

one can show that < log n, which yields the lemma. O

This lemma has some immediate consequences when comiimitg results about the static

Pagoda:

Lemma 5.3.3 If Invariant 5.3.1 is true, then the dynamic Pagoda netwoitk w nodes is a bounded

degree network and ha3(log? ) levels, a diameter ab (log n), and an expansion &t (1/logn).

Proof. The claim about degree, levels and diameter follow from diavd 5.3.1, Lemma 5.2.4
and Lemma 5.3.2. Using the same routing strategy as in thef pfd.emma 5.2.5, one can show
that every permutation routing problem can be routed witkexgrected congestiof (log n). This
can then be used to show that the dynamic Pagoda networknwithdes has an expansion of

Q(1/logn). O

Next we define local control algorithms that allow nodes fa nd leave the system, denoted
by the operationsdiN and LEAVE, while preserving Invariant 5.3.1 at any time (under thedttion
that nodes depart gracefully).

5.3.1 Isolated Join and Leave operations

First, we describe thealN and LEAVE protocol for the case that just one node wants to join or

leave the system at a time.
The isolated JoIN protocol
The basic strategy of the join protocol is to make sure thatyemew node is inserted at a place

that fulfills Invariant 5.3.1. Suppose that nadevants to join the system. This is done in two stages.
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Figure 5.3: Figure (a) shows the operation of stage 1 anch{@ys the operation of stage 2.

Stage 1 Suppose that node, at position(j,z) in DXN (i), is initiating IN(u) to insert node
u into the network. Ifv has a short-cut edge to a node at positigne0) in DXN (i + 1), then it
forwards the request to that node. Let this new node’bH v’ does not exist then we refer to node
v asv'.

We are now at some nodé, at position(;’,z’) in DXN (i'). If ' has a short-cut edge to a
node at positior{;’, 2’1) in DXN (i’ + 1) (here the column with suffix 1 is used to ensure an even
spreading of dIN requests), then it forwards the request to that node. Lstthie be the new'.

We repeat this until no new exists. Call this last node”.

We are now at some nodé€, at position(j”, z”) in DXN (:"). If v" is not deficient then”
forwards the request to the node at positigh+ 1, 2”) in DXN (i") if j;” < 4", and else it forwards
the request to the node at positith 2”1) in DXN (i” + 1). This is the new”. This is repeated
until no newv” exists. Call this last node. The operation of this stage is shown in Figure 5.3(a)
wherev transfers the request along the edges shown. At this paigest ends and we proceed with

stage 2 on this node.
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Stage 2 Initially, the JOIN request must be at some deficient nade If w = (i,y) in some
DXN(d) with 0 < i < d, thenw requests information about the column child (i.e. the child
reachable via the column edge) from all parentswoff all parents report an existing child; can
integrateu as its column child without violating Invariant 5.3.1(a)th@rwisew forwards the &IN
request for, to any parentv’ reporting a missing column child, i.e. nodé is deficient.

If i = 0, thenw requests information from its parents about each tree théltis a parent of its
column child. If all relevant tree children exist, can integrate: as its column child, and otherwise
w forwards the ®IN request to any parent’ reporting a missing tree child.

Finally, if i = d, thenw picks any of its missing tree childranand requests information from
w’s parents about each column child that is a parent.df all relevant column children existy
can integratey at the position ofv, and otherwisav forwards the ®IN request to any parent’
reporting a missing column child. Figure 5.3(b) shows therafion of this stage where the insert
request is transfered along the edges shown.

This is continued until: can be integrated.

The isolated LEAVE protocol

Suppose that a hodewants to leave the Pagoda. This is also done in two stagege $tes

the same as stage 1 for theid protocol.

Stage 2 Initially, the LEAVE request must be at some deficient nadelf w has a child, themw
forwards the request to any one of its children. This is ¢cargd untilw does not have any children.

Once this is the casa; exchanges its position with so thatu can leave the network.

The DIN and LEAVE protocols above achieve the following result.

91



Theorem 5.3.4 Any isolatedJoIN or LEAVE operation can be executed @n(log n) time and with

constant topological update work.

Proof. Consider any JIN request starting at some node From the construction, it can be seen
that the request is transferred through at mbshort-cut edges until the request reaches a ndde
in DXN(d — 1) (the second large€dXN in the system). From a node iBXN (d — 1), at most
O(logn) column or tree edges have to be traversed to reach a deficdeietun in DXN (d) or
DXN(d — 1). From nodew on, every time the request is transferred to a deficient nibelevel
of the nodew’ receiving the request decreases by one. Hence, it followws fremma 5.3.2 that the
JoIN request can be transferred along at niogtn deficient nodes. Thus, an isolatediN request
can be executed i@(d) = O(logn) time.

Also every LEAVE request is sent along at mastshort-cut edges an@(d) column or tree
edges until it reaches a deficient node Fromw, it takes at mostog n further nodes to reach a
node without children, at which thedave request can be finished. Hence, also any isolatesl/E
request can be executed@d) = O(logn) time.

The bound on the update work (i.e. the number of edge chaigyebyious. O

5.3.2 Concurrent Join and Leave operations

We also study the congestion of concurrent versions of th& and LEAVE protocol. Notice

that the bounds are guaranteed.

The concurrent JOIN protocol

Suppose that node wants to join the system. This can also be done in two stagages is

as before, but stage 2 has to be changed to resolve conflictsgamultiple dIN requests.
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Stage 2. Initially, the JOIN request must be at some deficient nadat some positiorj, «). Each
deficient node has a slot in its local memory for every positigf, ) with j < j* < |z| (notice
that |«| is the dimension ofv’s DXN), every position(j’, z0) and (j/, z1) with 0 < j' < |z| + 1,
and every positiorfj’, 00), (5, 201), (j/,210), and(j’, x11) with 0 < j' < |z| + 2. Now, every

deficient nodewv at position(j, x) does the following in each time step:

¢ Receive requestsNodew receives newdIN requests and assigns each request to an empty
slot (5, ) with smallest possiblg’ andy. (If w runs out of empty slots, it may buffer the

request somewhere else, but in the situations that we willider, this cannot happen.)

e Check Slots:Nodew checks for every occupied slot’, y) with ;' > 0 whether all the parent
positions of(;’, y) not managed by are already occupied, either because there is already a
node at those positions, or the deficient node responsibtadse positions has already filled
this slot. (This can be checked VizXN edges.) If notw sends the dIN request in(j’, y)
over to the deficient node’ managing a parent slot to store it there. Furthermaerehecks
for every occupied slof0, y) whether slot|y| — 1,y/2) is already occupied. This is done by

using the balancing edges. If nat,moves the request froiid, ) to (|y| — 1,y/2).

e Insert: If the slot (5, y) representing a child of fulfills j* > 0 and is occupied, thew
checks whether all the other parent position$;0fy) are already occupied by a node (which
can be done vi®XN edges). If sow moves to positior(;’,y) and inserts the node whose
join request is stored in sldy’, y) at its old position. For the case thit= 0, w inserts the
new node at positioflj’, y) and sends to this node all requests in slots relevant fof &ny

of the other child positions ab is still empty,w remains a deficient node.

Theorem 5.3.5 Any set of concurrenioIN requests with at most one request for each old node can

be executed with congestiénlogn).
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Proof. First, we bound the congestion in non-deficient nodes, wisigreated in stage 1 of the
JoIN protocol. Notice that any request starting at colufirx) will proceed with columngj, z0),
(j,201), (j,2011), (4,20111), etc. This guarantees that for any two requests startinglahms

x andy with = # y, they will traverse different columns for any columns of leihgth more than
max{|z|, |y|}, no matter whether these columns are in the s&¥X&l or not. Hence, as long as
every node has at most oneid request, at mostd requests will pass any node of the Pagoda in
stage 1, wherd is the largest value so that the Pagoda has a nodEXiN (d). This completes the
congestion bound for non-deficient nodes.

Due to the congestion bound, at m@gtJoIN requests will arrive at any deficient node. Hence,
the largest slot position aoJN request will ever occupy is at mogt+ d/2 levels higher than the
largest slot position of a deficient node in the Pagoda. Seesls of deficient nodes can only be
d + 2 levels apart from each other, it is not difficult to see that sfots given to the deficient nodes
always suffice to accommodate athidi requests in our case. Now, eachiN request will only
move along a fixed sequence of slots. This sequence has & lehgt mostO(d), and it is the
same for all requests in slots of this sequence. Hence, ahynsh deficient node is traversed by
at mostO(d) requests, and since each deficient node onlyth@js slots, the congestion bound for

the deficient nodes follows. O

The concurrent LEAVE protocol

Concurrent IEAVE requests can also be done in two stages. Stage 1 is as bafostage 2

has to be changed to resolve conflicts among multigeMe requests.

Stage 2. Initially, the LEAVE request must be at some deficient nedat some positiorj, x).

Each deficient node has a slot in its local memory for eventipos(;’, z) with 0 < ;' < j, every
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position(j’, z/2) with 0 < j’ < |z| — 1 if 2’s least significant bit is 0, and every positi¢fi, z/4)
with 0 < j/ < |z| — 2if z's two least significant bits are 0. Now, every deficient nadat position

(7, z) does the following in each time step:

e Receive requests:Node w receives new EAVE requests and assigns each request to an
empty slot(;’,y) with largest possible’ andy. If there is no empty slot left, angl is the
lowest row number of slots iw, forward the request via a to the deficient node responsible
for row numbersg, /2. (If there is no such deficient node,may buffer the request somewhere

else, but in the situations we will consider, this cannotpeap)

e Check slots: Then,w checks for every occupied slgt’, y) with ;' < |y| whether the all child
positions of(j’, y) are currently occupied. If say checks whether the slot in the deficient
nodes responsible for those positions are already filledotifix moves the EAVE request to

some deficient node, who will store the request in that slot.

e Completion: If the slot(j’, ) representingu’s position is occupied, them checks whether
all of its child positions are still occupied. If not, afjtl > 0, w orders the node at position
(7' — 1, ) to take the position of the node whose&AVE request occupies sldy’, =) and
moves to positior{;’ — 1, x). If j/ = 0, thenw checks whether its parent is a deficient node.
If not, w does the same as fgr > 0. Otherwisew takes over the position of the node in slot

(4/,x) and forwards all of its remaining #AVE requests to its parent.

Notice that whenever a#AVE request meets a0IN request, the node that wants to join can

take over the position of the node that wants to leave, fingsthe two requests immediately.

Theorem 5.3.6 Any set of at most/2 concurrentL EAVE requests can be executed with congestion
O(logn).
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Proof. The proof is very similar to the proof for thedN requests above. O

5.3.3 Routing

Suppose that we want to route unicast messages in the Pagtwaria Consider any such
unicast packep with sources = (j,z) in DXN (i) and destinatiort = (j', z) in DXN(i'). First,
p picks a random pair of real valugs, ) € [0,1)? (a precision oflog n bits for each is sufficient).

Then,p is sent in three stages:

1. Spreading stage:First, sendp from s along column edges and a tree edgéite- 1, x/2)
in DXN (i — 1). Then, seng upwards to the nod€), y) in DXN (i — 1) with y being the
closest prefix of. From there, forwarg to the nodgk, y/2) in DXN (i — 2) with k/(i — 2)

being closest te.

2. Shuttle stage: Forwardp along short-cut edges across nodgsy’) with £’ being closest to

c andy’ being the closest prefix afuntil a node(k’,y’) in DXN (i — 2) is reached.

3. Combining stage: Perform stage 1 in reverse direction (witheplaced by) to forwardp to

t.

Notice that as long as andt¢ are non-deficient nodes, this strategy is successful eNgle nodes
join and leave the system, because the position of every thadés an non-deficient node will be
fixed in the Pagoda. Also, whenever a node leaves, the notieiag it can inherit its packets so
that no packet gets lost. More general strategies for eamgudliable communication even while
nodes are moving, using the concept of virtual homes, caonuoedfin Section 5.5.6.

With these facts in mind, one can easily design a protocatdas the random rank protocol

(see, e.g., [130, Chapter 7]) to show the following theorem.
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Theorem 5.3.7 If every node wants to send at most one packet, the packetsrliagom destina-
tions, and every node being the destination of a packet datemove forO(log n) steps, the routing

strategy above can route the packet&lflog n) time, with high probability.

5.3.4 Data management

Finally, we show how to dynamically manage data in Pagoda.u¥éea simple trick to dis-
tribute data evenly among the nodes of the Pagoda so thaségishable. Suppose that we have
a (pseudo-)random hash function mapping each data itenmte seal vectorc, ) € [0,1)2. The
current place of a data iterhis always the lowest possible positi¢f x) in the Pagoda where is
the closest prefix of andj/|z| is closest ta- among allj’/|z| with 0 < j' < |z| (|z| denotes the
length ofx, and thus the dimension of tfEXN owning (j, x)).

This strategy implies that DX N (d) represents the largest exchange network that has occupied
positions in the Pagoda, then all data items will be storatbdes iNDXN (d — 2), DXN(d — 1),
or DXN(d). Since every node will at most have to store@fi/(d - 2¢)) fraction of the data and

d-2¢ = 9O(n), we get:

Theorem 5.3.8 The data management strategy ensures that every node isespignsible for an
expected)(1/n) fraction of the data at any time, and this bound even holdh high probability

if there are at least log n data items in the system.

Notice that none of the DHT-based systems can achieve theds@above in their basic form
— they only achieve a bound @¥(log n/n). Combining the data management strategy with our
routing strategy above, requests to arbitrary, differaathdtems with one request per node can be
served inO(logn) time, w.h.p. The results in Section 5.5 imply that this alstdh for cases in

which some nodes want to access the same data item, i.e. wahaulticast problem, if requests
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can be combined.

5.4 The dynamic Pagoda network for non-uniform nodes

Next we show that the Pagoda network can also be used foragbiton-uniform node band-
widths. In this case, we want to maintain the following heagpprty to allow efficient multicasting,

apart from the invariants for the Pagoda network of unifomdes.

Invariant 5.4.1 For any nodev in the Pagoda,
(a) Position: all of its parent positions are occupied,

(b) Consistency:For any pair of nodes andw in the dynamic Pagoda; andw are connected

in the dynamic Pagoda if and onlydfandw are connected in the static Pagoda.

(c) Heap: the bandwidth o is at most the bandwidth of any of its parents.

Similar to the uniform case, we require these invariantseduifilled while nodes join and
leave the system. Because of item (c), we cannot just do &esemghange operation to integrate or
remove a node but we have to be more careful. First, we destitddIN and LEAVE operations

for the isolated case, and then we consider the concurrest ca

5.4.1 Join and Leave operations

For any nodeu in the Pagodamax-child{:) refers to the child of maximum bandwidth and

min-parent{:) refers to the parent with minimum bandwidth.
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The isolated JoIN protocol

Suppose that nodeis executing ®IN(u) to insert a new node with bandwidthb(w) into the
network. This is done in three stages. Stages 1 and 2 aréddetatthe uniform case. So it remains

to describe stage 3 which is similar to inserting a node imaityi heap.

Stage 3 Once the @IN request foru has reached a deficient node with an empty column or tree
child position in whichu can be integrated without violating Invariant 5.4.1¢a)s integrated there
with active bandwidttu(u) equal to the minimum df(«) and the bandwidth of its min-parent. The
active bandwidth is the bandwidth it is allowed to use withaolating Invariant 5.4.1(b). Then,

u repeatedly compardgu) with a(u). If a(u) < b(u), it replaces its position with the position
of its min-parent and afterwards updatgs:) to min{b(u), b(min-parent())}. Onceu reaches a
position witha(u) = b(u), the DIN protocol terminates. The process of moviagipwards is

calledshuffle-up

The isolated LEAVE protocol

Suppose that a nodewants to leave the Pagoda. Then it first sets its active batbwo b(u).
Afterwards,u repeatedly replaces its position with its max-child andatpd its active bandwidth
to a(u) = b(max-childg)) until it reaches a position with no child. At this point,is excluded
from the system so that Invariant 5.4.1 is maintained. Thegss of moving. downwards is called

shuffle-down

Bandwidth changes

If the bandwidth of some node increases, we use the shuffle-up procedure, and if the band-

width of some node: decreases, we use the shuffle-down procedure to repaitidnv&r4.1.
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Isolated update requests have the following performance.

Theorem 5.4.2 Any isolated join operation, leave operation, or bandwidttange of a node needs

O(log? n) time and work to repair the invariant.

Proof. First, consider the insertion of some node The process of moving the request ©of
downwards only need®(logn) time. According to Lemma 5.3.3; is integrated at some level

¢ = O(log? n). Hence, the shuffle-up process only requif&sog® n) messages and edge changes
because each exchange of positions betweand some parentto repair Invariant 5.4.1 moves
one level upwards and requires updating only a constant auoftedges. Every shuffle operation
maintains the invariant for all nodes involved in it. Henttes total time and work i) (log® n).

For the case of an isolated leave operation of nedé holds that the leave request would
be transferred alon@ (log?n) levels according to Lemma 5.3.3. Thus, the shuffle-down gssc
requiresO(log® n) messages and edge changes. Hence, the total time and waitedetpr an
isolated leave operation i9(log?n). Bandwidth changes are handled as either a shuffle-up or
shuffle-down and hence the time and work requirements fod\Watth change are also (log? n).

O

The concurrent JOIN protocol

The only difference between the isolated and concurremt protocol is that we need to be
more careful about exchanging positions. If a nedeants to replace its position with some parent
v, thenu checks whether is a node that has not finished its18 operation or bandwidth increase

operation yet (i.ea(v) < b(v)). If so, u does nothing. Otherwise, replaces its position with.
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The concurrent LEAVE protocol

Also the concurrent EAVE protocol is similar to the isolateddave protocol, with the only
difference that if some node in the process of leaving the network wants to replace itstipas
with some childv, u first checks whether is a node that has not finished itEAVE operation or
bandwidth decrease yet (i.e(v) > b(v)). If so, u does nothing. Otherwise, replaces its position
with v.

Bandwidth increase or decrease is handled similarly. TRelamma shows that the concurrent
operations always terminate with a work that is at most tha sfi the work for isolated update

operations.

Lemma 5.4.3 For any set ofk concurrent insertions, deletions, and bandwidth chandesodes,

the work and time required to repair Invariant 5.4.10%k log® n).

Proof. The work bound is obvious. Thus, it remains to prove the timmerial.

Considerk concurrent update requests. From the analysis in the mmit@se we know that
O(klogn) work is necessary for nodes ab(N requests to be integrated into the system. Each time
step progress is made here until alid requests are integrated.

Afterwards, we mark all nodes with 1 that have not completezirtloiN or bandwidth in-
crease operation yet, all nodes with -1 that have not comgligteir LEAVE or bandwidth decrease
operation yet, and all other nodes with 0. Suppose that ikexeleast one node marked as 1. Then
let v be any of these nodes of minimum level. Since the level ofust be at least 1 (as the root
cannot be a 1-node), it can replace its position with its parent, thereby making progress.

On the other hand, suppose that there is at least one nodednask1. Then let’ be any of
these nodes of maximum level.df does not have any children, thehcan leave, and otherwise it

can replace its position with its max-child, thereby makimggress in any case.
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Hence, we make progress in every time step. Since the totd efahe shuffle-up, shuffle-
down, and departure operations is boundediy log® n), the time spent for executing these oper-

ations is also bounded (% log® n). O

5.5 Multicasting

Finally, we study how well the non-uniform Pagoda suppansticary concurrent multicasting.
We first define the concurrent multicast problem, providelwding strategy in the Pagoda network
to route multicast requests and then finally show that thetedyy is competitive with respect to

congestion in the best possible network for the given proble

5.5.1 The concurrent multicast problem

In the concurrent multicast problem, we are given a set ehtiserver-demand triples called
streams (7%, sk, Di), whereT}, is a set of client nodes served by a server ngdand Dy, is a
demand vector which specifies the flow demanded,dfy each client node fok > 1. All the &
multicast requests are to be satisfied concurrently and wénsrested in the congestion caused
in the Pagoda network due to the flows created. We are inggléstcomparing the congestion
created in the Pagoda network to that of an optimal netwodegfeeA opr for the given multicast
problem. Notice that our definition of the problem allows #osingle multicast stream to have

different classes of service based on the demand vector.

5.5.2 Routing strategy

We start by constructing a flow system for one serggr,and one client € T,. We name

this flow system,f;, ;. We assume that;, is a node inDXN (i) andt is a node inDXN (j). Our

102



routing strategy has three stages, calledgpeeadingstage, theshuttlestage and theombining

stage, described below.

1. Spreading stage: This stage spreads flow originating gt in DXN (z) evenly among the

nodes inDXN (i — 2). This is done in three steps.

a. Move the flow froms;, along column edges to the top nodeldXX N (i).

b. Move the flow upwards to the bottom nodeMX N (i—1) along the tree edge connecting
the two DXN’s. From there, cut the flow int®'—* flow pieces of uniform size and send
piece: upwards to nod€0, i) along the unique path of de Bruijn edges representing
right shifts.

c. Move all flow from the top nodes IPXN (i — 1) to the bottom nodes IDXN (i — 2)
along tree edges. Every bottom nodelX' N (i — 2) sends flow along its column edges
so that each node in the column gets the same fraction of flbat i§, at the end every

node iNDXN (i — 2) has al/((i — 1)2i~2) fraction of the flow ofs;.

2. Shuttle stage:Short-cut edges are used to send the flows forwardXav (j —2) (which may
be upwards or downwards in the Pagoda) so that the flows regweinly distributed among

the nodes in each exchange network visited floXN (i — 2) to DXN(j — 2).

3. Combining stage: This stage is symmetric to stage 1, i.e. we reverse stage dctorallate

all flow in ¢.

This results in a flow systenyy, ;, for a sources;, and a destinatiom € Tj,. Let fj:(e) be
the flow through any edgein this flow system. The procedure is repeated for each clienfl},.
We now construct a flow systenfi,, for the streank. We lay the flow systemg;, ; one on top of

the other. The flow through an edge in systéms the maximum flow through the same edge in
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eachf, ;. Thatis, letfy(e) be the flow through any edgein flow systemf;. Then we have the

following:

fr(e) = max fi +(e)

teTy,

Note that we select the maximum flow because if there are twesflaf the same stream going
through an edge then we simply keep the one with the highedviidth (the lower bandwidth
stream may be reconstructed from the higher one). We use fisters f;, to route multicast flow

for streamk.

5.5.3 Competitiveness

In this section we show that the Pagoda netwoi® (& op1 + log n)-competitive with respect
to congestion in the best possible network of degkeg+ when the multicast problem is posed as

a flow problem. Specifically, we prove the following theorem.

Theorem 5.5.1 The Pagoda network on nodes of non-uniform bandwidth that satisfies Invari-
ant 5.4.1 has a competitive ratio 6f( Aopr + log n) for any multicast flow problem compared to

the congestion in an optimal network for this problem whasgrek is bounded bxppr.

Proof. Let OPT be a network of degre&opr that routes the given flow system with congestion
Copr. Without loss of generality, we assume that every demand nisost the bandwidth of the
source and destination.

Consider any node in pagoda. Let it be in exchange netwalkKXN (7). We show that the
congestion at this node due to the flow system resulting franrauting strategy above is no more
than O(log nCopr) due to staged and3 and O(ApprCopr) due to stage. We show these
bounds in parts. We first bound the congestion @lue to stagd, c;(u). The flows throughu

due to stagd are the sum of the flows that originate inXN (i), DXN (i + 1) and DXN (i + 2).
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Let the congestion due to each of these:hgu), c1p(u) ande.(u) respectively. Clearlyg; (u) =
c1a(u) + c1p(u) + c10(u). We bound each of these three separately:

Stage la: Nodew receives flow from nodes that are below it (in the same colummgxchange
network DXN (i). We call this setS, 1,. The flow is}, max.cs, ,,{dx(v)}. Note that the max
term is used since flows belonging to the same stream are nedhhiesulting in a flow of largest

demand among these. Therefore, the congestianisat

o) = 3 maxes{du(0)} < 33 Y <5, 1) Copn
b(w) 4 el C)

The setS,, 1, contains at modbg n nodes. Therefore;,(u) < logn - Copr.

Stage 1b:Nodew receives flow from the bottom nodesDXN(¢). Let f;(-) be the flow sent up by
a bottom node. Thus, each bottom node sends a flof @f /2! to each top node. Note thgit is
purely the spreading caused by stage 1b.

Let S, 1, be the set of bottom nodes with paths crossingnd letD be the set of top nodes
with paths crossing. We now boundS,, 15| and|D|. Letu be in levelh of DXN(i). There are2’
nodes in each level dXN(7), and each node has an address loits. Due to the bit-shift routing
of the de Bruijn graphs, the number of paths crossirig | S, 15| - |D| = 2°. This can be seen by
observing that the nodes 8, 1, must have the same— i most significant bits ag and nodes in

D must have the sameleast significant bits as giving | S, 15| = 2¢~" and|D| = 2".

|DI- fi(v)

>+ Which is the number of nodes in

The flow from each node < S, 1, that reaches is

|D] 1

D times the amount of flow destined for each node in the top roR.BH (i). Since5 = et

this become'?‘g’;(—fz‘.

Since flows belonging to the same multicast group merge ingoflow equal to the maximum

AQ)

u,1b ‘Su,lb‘ ’

of the two it follows that the flow that reachesis ), max,cs Assumingv; andwvs are
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the two tree children of, the congestion at is

Zk fe(v
Z b |Su 1b|

Z (c1a(v1) + c1a(v2)) < 2logn - Copr
veSuvlb

1
cip(u) = b— Z axuesu,u, |S b|
k? u

1
<
|Su,1b|

Stage 1c:Nodew receives flow from the bottom node in its column. Therefone, ¢congestion at
u, c1.(u) is at most the congestion at the bottom node in the exchartg@®re The bottom node
receives flow from its two descendantsDXN(i + 1). Note that the two descendants will send up

equal flows, let one of them he So,c1.(u) < 2¢qp(v) < 4logn - Copr.

We show the bounds for flows due to stageith the help of Lemma 5.5.2. We need to lower
bound the congestion that an optimal network can achieved®this by showing how an optimal

network has limited bandwidth to send flows.

Lemma 5.5.2 Let Eopt be the set of edges in the optimum network. For any pair of’sedad Y

that are subsets of the set of nodes,IBtX, Y) = > MaX.er,ny {dx(v)} and B(X,Y) =

> (w)e Boppnx oy MIN{b(w), b(v)}. ThenCopr > D(X,Y)/B(X,Y).

Proof. Consider any pair of setX,Y C V. B(X,Y) as defined in the statement measures
the bandwidth between sef§ andY. Note that it is not necessary that andY form a cut.
Similarly, D(X,Y) is the demand thaX asks ofY. The ratio of B(X,Y) to D(X,Y) is the

average congestion. The maximum congestion must be atthenatverage congestion. Therefore

D
C’OPT > B(X,Y)" o
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Stage 2:Let U be the set of nodes in the Pagoda which belong to all exchagtgerks above and
including DXN(i + 1). Let Z be all nodes in exchange netwdBXN(i + 2). Let V' be all nodes
below and including exchange netwolKXN(: + 3). Let the collective flow through exchange
networkDXN(7) be f. Any stream whose source isihU Z and has a destination ¥ U Z must

go throughDXN(i) according to our routing strategy. The expression for the fto

f=>_ maxeyuzdi(v)

speluZz

Due to lemma 5.5.2 we boun@as follows:

f< (U] OPTZ,g%/?tJXZ{b }+ U U Z|Aopr I}"gg{b }+1Z]AopT I%aZX{b }) - Copr

The first term accounts for bandwidth betwdérandV U Z, the second term for bandwidth

betweenV andU U Z, and the third term for bandwidth withid. Hence,

f<3|UUZ|Aopt ,gfafz{bi} -Copt < 3|U U Z|Aopr by - CopT

Since the Pagoda spreads tree flow evenly across all nodashregchange network, the flow

throughu is at most~+i—. Thereforec,(u) < W

BN B The construction of the Pagoda

1Z]

implies that|U' U Z| < 2 |Z|, and|DXN (i)| > 55 . Thus,cz(u) < 72 Aopt - Copr-

The congestion ai due to stage 3 is identical to the congestion due to stagedubecthe two
cases are symmetric. Heneéy) = 2 ¢1(u) 4 c2(u) < (14logn+72 Aopt) - Copt. The theorem

follows. O

107



5.5.4 Turning multicast flows into trees

In practice, it may be expensive or impossible to divide asmbmbine streams. Instead, we
choose a pseudo-random hash functtothat maps every node in the Pagoda to a pair of real
values(c,r) € [0,1)2. Similar to the routing strategy in Section 5.3.3, we camtheapt the

multicast scheme in the following way for a sourcand target:

1. Spreading stage:This stage has three sub-stages as earlier. Stage (a) iartteeas above,
but instead of spreading the flow in (b), we route all flow to tleele (0, y) in DXN (i — 1)
with y being the closest prefix of. From there during stage (c), we forward the flow to the
node(k,y/2) in DXN (i — 2) with k/(i — 2) being closest te. (In the above, notice that we
are comparing a label if2]* with a real number which is done by treating the label [g]’

as a binary decimal number which then represents a real mumbg 1) uniquely.)

2. Shuttle stage: Forward the flow along short-cut edges across nddég)’) with £’ being

closest ta- andy’ being the closest prefix efuntil a node(k’, v') in DXN (j — 2) is reached.

3. Combining stage: Reverse the spreading stage to send the flow to

Multicast flows that belong to the same stream are combindgbagdor every edge, the flow for
that stream throughis the maximum demand over all flows of targethat are part of that stream.
Using this rule, it is not surprising that the expected catiga of our integral flow scheme is equal

to the congestion of the divisible flow scheme above.

Theorem 5.5.3 The integral multicast flow scheme has an expected conveetiiio ofO(AopT+

log n) compared to an optimal network with degréepr.

Proof. The theorem can be shown by following the line of argumentsémroof of Theorem 5.5.1.

Here, we just give an intuition of why the theorem is corréfe start with bounding the expected
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congestion for stages 1 and 3.

Lemma 5.5.4 The expected congestion from routing the spreading stag¥lisg n)-competitive

against an optimal network of degréeypr.

Proof. Letd; be the total demand requested by nedeross all streams, and Igt be nodei's
bandwidth.

Consider the congestion on any noddJA N (i) due to stage (a) of the spreading stage. Since
flow is sent up along column edges, the maximum congestioars@t the top nodes d).XN (7).
If dnax is the largest demand of any node in some nodecolumn, therw must route at most
(i + 1) - dmax demand, under the worst case assumption that the demanfis diferent streams
and cannot be combined. Sincdas at least the bandwidth of every node with deménpg., this
is O(log n)-competitive with respect to congestion.

Now consider the congestion at any noddJiA N (i — 1) caused by stage (b) of the spreading
stage. Here, any nodé, j) in DXN (i—1) receives flow along the column edges from nédel, j)
in DXN (i — 1) which receives flow from at most two nodé&s j0) and(0, j1) in DXN (i). Since
the nodes I XN (i) have flow of at mosti + 1)dmax from stage (a), the demand at any n¢dgy)
in DXN (i — 1) is at mos2(i + 1)dmax Which isO(log n)—competitive with respect to congestion.
From the bottom nodes iDXN (i — 1) the flow reaches a top node MXN (i — 1). Since these
top nodes are chosen independently and uniformly at randoenexpected demand at any of the
top nodes is no more than the demand at the bottom nodes.eEutth bit-shift routing properties
of the de Bruijn graph [130] which can be extended to DXN imgblgt the expected demand at the
intermediate nodes iPXN (i — 1) would be no more than the demand at the bottom nodes. Putting
these arguments together, one can show that the expectgestimm at the top nodes IMXN (i —1)

is O(log n)—competitive.
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Similar arguments apply to stage (c) of the spreading stag@®ae can show that the expected

congestion at any node IBXN (i — 2) is O(log n)—competitive. ]

The following lemma bounds the expected congestion duatges2.

Lemma 5.5.5 The expected congestion from routing flow in the shuttlees&@(Aopr)—competi-

tive against an optimal network of degréeypr.

Proof. Consider the boundary between any two DXN networks. The flowssing this boundary
upwards (resp. downwards) along short-cut edges must hagea source$ and a set of desti-
nationsT’ with S N'T = (). Hence, there is a cut in the optimal network that all thesedlbave

to cross. Furthermore, since we are sending exactly one aebhe stream across the cut, we are
sending no more flow than OPT must send. The same upper boutte alemand across a cut as
shown in Lemma 5.5.2 holds as in the divisible flow case. Siheenodes along which the flows
travel are randomly selected, the expected congestionyah@ate would be the total flow divided
by the number of nodes in the DXN, which implies that the catiga iSO (AopT)-competitive in

expectation. O

Combining the two lemmata and noting that the congestiontdustage 3 is no more than the

congestion of stage 1, yields Theorem 5.5.3. O

5.5.5 Multicast streaming

Next, we address the issue of how to use the multicastingodafess for multimedia streaming
where peers can enter and leave a multicast stream at any fimensure reliable streaming, a
mechanism is needed to join and leave a multicast strearasésve bandwidth in the nodes along

that stream, and to use a local admission control rule foriticign multicast stream requests in a
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fair and transparent way.

Joining and leaving a multicast stream

Consider the situation that nodein the Pagoda wants to join a multicast stre&rof source
s. Nodew then prepares a control packet containing the demaretjuested by it and sends the
control packet tas as described in Section 5.5.4. Along its way, the controkpaavill try to
reserve a bandwidth ef. If it succeeds, it will continue to reserve bandwidth aldétsgwvay until it
reaches a point in which for the streafra bandwidth of at least is already reserved.

Every node along the multicast stream will only store forleatits incoming edges the client
requesting the stream with the largest demand.

Suppose now that some nod&vants to leave a multicast stregin Then it first checks whether
it is the client with largest demand féfthat traverses itself by checking its incoming edges. If not
does not need to send any control packet. Otherwisbecks whether there is a path of some client
v for S'into u. If so, u prepares a control packet with the largest demand of them@sl Otherwise,

u prepares a control packet with demand 0. This control pasketnt towards the sourceof S
as in Section 5.5.4. Each time the control packet reacheglawnthat is also traversed by other
clients toS (that arrive at different incoming edges), the demand ofcwtrol packet is updated
to the largest demand of these clients. This is continueil thiet control packet reaches a node

traversed by some client f¢f with demand larger than the original demand.of

Rate reservation

For a rate reservation scheme to be transparent and failicg needed that gives every peer
a simple, local admission control rule with the propertytiifia request is admissible according to

this rule, then the rate reservation request should suaeébdigh probability. We will investigate
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two such rules:
Suppose that every noderepresenting a server in the network offers multimediaastre
s\ 50 with ratesr(”), r$" .. so thaty™, r(*) < b(v). Then consider the following rules for

some client.

e Admission rule 1: Admit any multicast request to some serueas long a$(v) < b(w) and

the total demand of the requestsuvidoes not exceeeb(v)/ log n.

e Admission rule 2: Admit any multicast request to some serueas long a® is not belonging

to any other multicast group and the demand of the request ninteexceed 200w}

logn

Rule 1 will normally be the case in practice because servesg@ams usually have a higher band-

width than clients, but rule 2 would also allow multicastifithis is not true.

Theorem 5.5.6 When using admission rule 1 or 2, every request fulfilling thie can be accom-

modated in the Pagoda, w.h.p.

Proof. Recall the integral multicast routing strategy in Sectioh.4 Consider any multicast
problem that fulfills rule 1 or rule 2. Using the proof of Thean 5.5.1, one can easily show that
for any nodeu in the Pagodag,(u) = cip(u) = cic(u) = O(e) andez(u) = O(e). Hence, the
expected total amount of demand traversings O(eb(u)). Since any single demand through
can be at mostb(u)/log n (demands from or to a nodewill always traverse only nodes with
b(w) > b(v)), and the flows for different servers follow paths choserepehdently at random, it
follows from the well-known Chernoff bounds that the totel@nt of demand traversingis also
O(e) with high probability. Hence, making the constargmall enough, the admission rules 1 and

2 will work correctly with high probability. O

Notice that also a combination of rules 1 and 2 is allowed.
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5.5.6 Multicasting in a dynamic setting: virtual homes

Our multicast tree approach above has several problens, Eirequires to know the position
of the server in the Pagoda to join a stream from it, and sedbneluires to update the multicast
stream each time the server or a client moves. Fortunaté/ptoblem has an easy solution: For
every nodey, let h(v) € [0,1)? be choserindependenbn its position in the Pagoda. For example,
h(v) may depend on’s IP address. Then can treat the node closesti¢v) two DXNs abovev
as itspersonal virtual homehat only has to move if leaves its current DXN.

Suppose that every node continuously informs its virtuahb@bout its current position and
that virtual home responsibilities are exchanged wheneudes exchange positions. Thewonly
has to update its connection to the multicast stream if itdedts current DXN. However, when
using the short-cut edges, such an update can be done iranbtiste so that the disruption of
service tov is kept at a minimum. While frequent switches between DXNda@ause frequent
update operations, a lazy virtual home update strategy earséd to easily solve this problem.

A third problem with dynamic conditions is that intermedi@iodes may change their requested
bandwidth. We can usactivebandwidth restrictions to ensure that the previous invarg@ntinues
to hold, so that routing is still valid. Since the invariamintinues to hold, congestion remains low

and the admission control theorems remain true.

5.6 Chapter summary and acknowledgements

In this chapter we have shown that there exist deterministitstructions of overlay networks
that can handle peers of non-uniform bandwidth efficientige showed that the resulting network,
Pagoda guarantees a logarithmic diameter, bounded degree, doglafithmic expansion. The

construction is also deterministic.
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Isolated peer join and leave operation can be done uSiihgz? ) time and work and reduces
to O(logn) time and constant topological update for the special caserevall the nodes in the
network have same bandwidth. We also investigated the timlewsork bounds for the case of
concurrent join and leave operations.

Apart from the above properties, we also showed that the dRagetwork guarantees good
load balancing properties when used as a distributed ha#d ia the case where all the nodes in
the network offer the same storage.

In addition, we demonstrated that the Pagoda network haséd@umpetitive ratio with respect
to congestion for routing concurrent multicast requestg (Bheorem 5.5.1).

In the current form, when the nodes have non-uniform stocagacities, the Pagoda network
is not easily amenable as a DHT satisfying load balance piepe In fact, distributed data man-
agement for uniform storage systems is well understood & staictured overlay networks can be
easily used to arrive at a good data management strategyfoBllite case of non-uniform storage
systems, very little is known. Only recently [133] solutsoare proposed.

A preliminary version of this chapter appeared in [14]. TWiark is done jointly with Ankur

Bhargava, Chris Riley and Mark Thober. Qian Li also paratgal in early stages of this work.
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Chapter 6

P2P Networks: Supervised P2P Systems

In the previous chapter, we saw that designing determinister-to-peer networks is a highly
non-trivial problem. Though we presented a solution fos tihe entire construction is quite com-
plex. On the other hand, it is known that traditional serbaded systems can provide guarantees on
reliability and are therefore preferable for critical ajpplions that need a high level of reliability.
But they are not easily scalable unless special high-codivzae is employed. However, the advan-
tage of peer-to-peer systems is that they can scale to nslld sites even with low-cost hardware.
An interesting question is whether it is possible to marey tilvo approaches in order to share their
benefits without sharing their disadvantages. In this d@drapie proposesupervised peer-to-peer

systemss a possible solution. Our approach also results in datéstiai constructions.

6.1 Introduction

A supervised peer-to-peer systégna system in which the overlay network is formed by a
supervisor but in which all other activities can be perfodmn a peer-to-peer basis without in-

volving the supervisor. That is, all peers that want to jan Ieave) the network have to contact

115



the supervisor, and the supervisor will then initiate thefegration into (or removal from) the net-
work. All other operations, however, may be executed withowlving the supervisor. In order
for a supervised network to be highly scalable, we proposecewtral requirements that have to be

fulfilled:

1. The supervisor needs to store at most a polylogarithmiouaatnof information about the
system at any time (i.e. if there arepeers in the system, storing contact information about

O(log? n) of these peers would be fine, for example), and

2. The supervisor needs at most a constant number of messaipetude a new peer into, or

exclude an old peer, from the network.

The second condition makes sure that the work of the sumertagsinclude or exclude peers from
the system is kept at a minimum. Still, one may certainly wasnghether supervised peer-to-peer
systems are really as scalable as pure peer-to-peer sysietins one hand and as reliable as server-
based systems on the other hand. In this chapter, we argueuhapproach can result in highly

scalable and highly reliable systems.

6.1.1 Motivation

First of all, remember that even pure peer-to-peer systezas some kind of a “rendezvous
point”, such as a well-known host server [118] or a well-kmomeb-address like gnutellahosts.com,
which allows new peers to join the system. The rendezvoust ggpically does not play any
role in the overall topology of the network but just acts asridde between new nodes and the
existing network. This means that nodes have to self-orgati form an overlay network with
good topological properties such as diameter, degree guahsion. In such a scenario, we saw in

the last chapter that (a) randomized constructions caguatanteea good expansion or diameter
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and (b) deterministic constructions involve complex balag schemes [14] to arrive at a good
topology.

We show that allowing the supervisor to oversee the topolafghe overlay network, apart
from working as the rendezvous point, tremendously simgdiihe problem of maintaining the
above mentioned desirable properties of the peer-to-petevank. Hence, as long as the commu-
nication effort of a supervisor for including or excludingpeer is only a low constant, supervised
designs should compete well with pure peer-to-peer systems

Our approach has many interesting applications in the drgadcomputing [127, 135, 33],
WebTV, and massive multi-player online gaming [49], asioed in Section 6.7. A supervisor may
also serve, for example, as a reliable anchor for code execubllback, which is important for
failure recovery mechanisms such as those used in the Timmp $Yatem [39]. This would make
supervised peer-to-peer systems particularly interggtingrid computing [127]. With our concept,
supervised peer-to-peer systems can scale to millionsespeithout requiring the supervisor to be
more powerful than just having a normal workstation with 8 Mbit/s connection. Also, itis much
easier to recover from temporary network partitions withupesvised system than a pure peer-to-
peer system. This is useful for systems in which fast regoigimportant due to real-time content,
such as Internet radio or Internet TV. Finally, though sujsed peer-to-peer systems are not as
stable as server-based systems with powerful servers athegantage is that because the supervisor
only takes care of the topology but may not be involved atrefiéer-to-peer activities, it is from a

legal point of view a much safer design than the server-bdssign.

6.1.2 Our Results

In Section 6.2, we show how to combine known techniques m®gpdor peer-to-peer systems

such as the hierarchical decomposition approach of CAN][1&%d the continuous-discrete ap-
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proach [110] in a novel way to obtain a general framework ierdesign of supervised peer-to-peer
systems. Our approach requires the supervisor to stoomstantamount of information about the

system at any time and to only send and receilmaconstanhumber of messages in order to inte-
grate or remove a peer from the system. We demonstrate ouragpby showing how to maintain

a supervised hypercube network and a supervised de Bruijoriewith it. Our scheme can also be

extended to allow concurrent join/leave operations omaltaultiple supervisors as outlined in Sec-
tion 6.4. In order to demonstrate that supervised system&eanade highly scalable, we propose
solutions in Section 6.4 that allow a supervisor to serveynjaim and leave requests concurrently
and then extend our basic design to allow multiple supersiséfterwards, in Sections 6.5 —6.6 we
look at robustness issues. We discuss how our supervisgghd=m be extended to handle random
faults. We also present and analyze a simple scheme ingothig supervisor so that the resulting
network is robust even against adaptive adversarial gang attacks, a study recently initiated in

[132]. Finally, we discuss in Section 6.7 various applimas of our supervised approach.

6.1.3 Related work

Special cases of supervised peer-to-peer systems haaewlieen formally investigated [118,
128, 127], but to the best of our knowledge a general framiefasrsupervised peer-to-peer systems
has not been presented yet.

In [118], the authors consider a special node calledhhst serverthat is contacted by all
new peers that join the system. The overlay network maiathioy the host server is close to a
random-looking graph. As shown by the authors, under a agizhmodel of join/leave requests the
overlay network can, with high probability, guarantee aectivity, low diameter, and low degree.
Alternative designs were later proposed in [128, 127]. Bg[lit is shown how to maintain a tree

topology using a supervisor for guaranteed broadcastidgrafiL27] it is shown how to maintain a
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supervised overlay network with de Bruijn graph topology dod computing and load balancing.
In this work, we propose a unified model that enables one tatera large class of supervised
overlay networks.

Most of the distributed systems are either server-based@rip-peer. For example, Napster
is rather server-based because all peer requests are Haatdée single location. Also systems
like SETI@home [135], Folding@home [45], and distributexd.[33] are heavily server-oriented
because they do not allow peer-to-peer interactions. Giystems such as the IBM OptimalGrid
allow communication between peers but it still uses a staoltmy and therefore is still closer to
being server-based than supervised. Extensive researcbnoputational grids is also done in the
Globus Alliance but they do not appear to consider topoklagiesigns in their research.

The line of research that is probably closest to our appraattte work on overlay networks in
the area of application-layer multicasting. Among them@pecadit [31], NICE [9], Overcast [62],
and PRM [10], to name a few. However, these systems only fonuspecific topologies such as
trees, and they do not seem to be generalizable to a uniwgasadlach for supervised systems. Other
protocols for application-layer multicasting such as Bef20], Bayeux [157], 13 [141], Borg [154],
SplitStream [21], and CAN-Multicast [126] are rather exdiems of a pure peer-to-peer system. For

an evaluation of several of these protocols see [22], fomgte.

6.2 A general framework for supervised peer-to-peer system

Our general framework for supervised peer-to-peer systeesls several ingredients, includ-
ing the hierarchical decomposition technique [125], thatibmous-discrete technique [110], and the
recursive labeling technique. After presenting thesertiegles we show how to put them together

in an appropriate way so that we obtain a universal approachupervised peer-to-peer systems.
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Afterwards, we give some examples that demonstrate how ity dpis approach to maintain a

supervised hypercubic network and a supervised de Brutjnoré.

6.2.1 The hierarchical decomposition technique

Consider anyl-dimensional spadg = [0, 1)¢ for somed > 1. Thedecomposition tred@(U)
of U is an infinite binary tree in which the root represeft@nd for every node representing the
subcube/’ in U, the children ofv represent two subcubég’” andU"”’, whereU"” andU" are the
result of cuttingl’ in the middle at the smallest dimension in whichhas a maximum side length.
Let every edge to a left child i (U) be labeled with 0 and every edge to a right childZitl)
be labeled with 1. Then the label of a nodés the sequence of all edge labels encountered when
moving along the unique path from the root®fU) downwards ta. Ford = 2, the result of this

decomposition is shown in Figure 6.1.

Figure 6.1: The decomposition tree fde= 2.
Our goal for the supervised peer-to-peer system will be tp tha peers to nodes @f(U) so
that

1. the subcubes of the (nodes assigned to the) peers armtlisjo
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2. the union of the subcubes of the peers gives the entiE ,satd
3. the peers are only distributed among nodes of two corisedatels inT'(U).

The above goals are important for the following reason. Rélea CAN based approach of
[125]. The basic idea is to combine an infinite complete hirteee 7' with a family of graphs
G = {Gu|t € INo} with |V (G,)| = 2¢ for every/ > 0. The first two goals are required so that every
path down the tree starting with the root contains exactly peer which is the basic invariant for the
CAN-based approach [125]. In order to keep the degree loas&lgoal of the CAN approach is to
keep the nodes in as few levels of the tiéas possible. This can be quantizedidyel imbalance
being defined as the maximum difference between the levelseafiodes iril". This parameter is
called theglobal gapin [2]. The third goal thus asks for an assignment of nodeswel$ so that the
level imbalance is close to optimal.

Whereas CAN-based peer-to-peer systems usually satieffirdt two properties, they have
problems with the third property. For example, using ranteah strategies [2, 125] involve ad-
vanced techniques such as multiple-choice hashing [103Jresult in a level imbalance that is
within O((loglogn)/logd) for d > 2. But as we will see, it will be easy for our supervised

peer-to-peer approach to also maintain the third propestygudeterministic strategies.

6.2.2 The continuous-discrete technique

The basic idea underlying the continuous-discrete appr¢atO] is to define a continuous
model of graphs and to apply this continuous model to therelissetting of a finite set of peers.

Consider anyl-dimensional spac& = [0, 1)¢, and suppose that we have a Bef functions
fi : U — U,i> 1. Then we definéZr as the set of all pairér,y) € U? with y = f;(x) for some

i. Given any subset C U, letI'(S) ={y € U\ S |z € S : (x,y) € Er}. We say thatU, Er)
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is connectedf for any subsetS C U it holds thatl'(S) # ¢.
Consider now any set of peels, and letR(v) be the region inJ that has been assigned to

peerv. Let Gr (V') be the graph with node sét and edge set

E(Gfr) ={(v,w) e VxV | Tz € R(v), Jy € R(w), (z,y) € Er}

That is, E(Gr) contains an edgév, w) for every pair of nodes andw for which there is an
edge(z,y) € Er with z € R(v) andy € R(w). Using the above setting, the following theorem

holds:

Theorem 6.2.1 Suppose that,cy R(v) = U and (U, EF) is connected, then alsGr (V) is con-

nected.

The proof of the above theorem follows from the definitionshug, to arrive at a situation
whereG (V') is connected we have to ensure thaty R(v) = U. But the goals of the hierarchical
decomposition technigue ensure such an assignment.

Let p = max, ,cv |R(v)|/|R(u)| be the smoothness [110] of the above assignment scheme.
Then, using the properties of the hierarchical decompwsitechnique it holds thai is indepen-
dent ofn andp < 2. Havingp a constant has nice implications as described in [110] evesnw

considering an arbitrary sét of functions.

6.2.3 The recursive labeling technique

In the recursive labeling approach, the supervisor assigabel to every peer that wants to
join the system. The labels are represented as binary steng are generated in the following
order:

0,1,01,11,001,011,101,111,0001,0011,0101, 0111, ...
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Basically, ignoring label 0, when stripping off the leagjrsficant bit, the supervisor is first creating
all binary numbers of length 0, then length 1, then lengthrigl 0 on. More formally, consider
the mapping : INg — {0, 1}* with the property that for every € INy with binary representation

(zq...x0)2 (Whered is minimum possible),

g(.%’) = (xd_l N (Eowd)

Then/ generates the sequence of labels displayed above. In therifad, it will also be helpful

to view labels as real numbers 0, 1). Let the functionr : {0,1}* — [0,1) be defined so that
for every labell = (0145 ...44) € {0,1}*, r(¢) = Zle g— Then the sequence of labels above
translates into

0, 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, ...

Thus, the more labels are used, the more denselj0th¢ interval will be populated. When using

the recursive approach, the supervisor aims to maintaifotf@ving invariant at any time:

Invariant 6.2.2 The set of labels used by the peerq4§0),¢(1),...,¢(n — 1)}, wheren is the

current number of peers in the system.

The above invariant is useful for our approach as shown ii&eé.2.4 so that all the three

goals of the hierarchical decomposition technigue are met.

This invariant is preserved when using the following simgiiategy:

e Whenever a new peerjoins the system and the current number of peers the supervisor

assigns the labél(n) to v and increases by 1.

¢ Whenever a peew with label ¢ wants to leave the system, the supervisor asks the peer with
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currently highest label(n — 1) to take over the role ofv (and thereby change its label &p

and reduces by 1.

6.2.4 Putting all pieces together

Now we are ready to put the pieces together. We assume thahweeahsingle supervisor for
maintaining the overlay network. In the following, the labssigned to some peewill be denoted
as/,. Givenn peers with unique labels, we define firedecessoof peerv, denotecred(v), as the
peerw for which r(¢,,) is closest from below te(¢,). We define thesuccessoof peerv, denoted
succ(v), as the peetw for which r(¢,,) is closest from above tp(¢,) (viewing [0,1) as a ring in

both cases). Given two peerandw, we define theidistanceas

d(v,w) = min{(1 + r(€,) — r(¢y)) mod1, (1+r(fy,)—r(¢,)) mod1}

In order to maintain a doubly linked cycle among the peerssiwgly have to maintain the follow-

ing invariant:

Invariant 6.2.3 Every peew in the system is connectedpeed(v) andsucc(v).

Now, suppose that the labels of the peers are generatedeviathrsive strategy above. Then

we have the following properties:

Lemma 6.2.4 Letn be the current number of peers in the system, and let 21°s™J Then for

every peew € V,

ly| < [logn] andd(v, pred(v)) € {1/(2n),1/n}.

So the peers are approximately evenly distributef@in) and the number of bits for storing a

label is almost as low as it can be without violating the upitgss requirement.

124



Now, recall the hierarchical decomposition approach. Tupgesvisor assigns every peeto
the unique node in T'(U) at levellog(1/d(p, pred(p))) with ¢, being equal td,, (padded with O’s
to the right so that/,| = |¢,|). As an example, if we have 4 peers currently in the systeam the

mapping of peer labels to node labels is

0—00,1—10, 01 —01, 11 — 11

With this strategy, it follows from Lemma 6.2.4 that all terdemands formulated in the hierarchical
decomposition approach are satisfied.

Consider now any family of functions acting on some spate= [0,1)¢ and letC(p) be
the subcube of the node Ii(U) thatp has been assigned to. Then the goal of the supervisor is to

maintain the following invariant at any time.

Invariant 6.2.5 For the current sel” of peers in the system it holds that

1. the set of labels used by the peer$dQ), ¢(1),...,¢(n — 1)}, wheren = |V,
2. every peev in the system is connectedpeed(v) andsucc(v), and

3. there are bidirectional connectiof®, w} for every pair of peers andw for which there is

an edgez,y) € Er withz € C(v) andy € C(w).

6.2.5 Maintaining Invariant 6.2.5

Next we describe the actions that the supervisor has to qoeriio order to maintain Invari-
ant 6.2.5 during an isolated join or leave operation. Fopsitity, we assume that all nodes are
reliable and trustworthy and also that peers depart grigefa., they announce their departure to

the supervisor. (Non-graceful departures and untrustwanbdes are treated in Section 6.5). We
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also assume that the supervisor can in each round send agad¢kafcan contain up to a constant

amount of information. We start with the following importegact which can be easily shown.

Fact 6.2.6 Whenever a new peerenters the system, themed(v) has all the connectivity infor-
mationv needs to satisfy Invariant 6.2.5(3), and whenever an old peleaves the system, then it
suffices that it transfers all of its connectivity infornaatito pred(w) in order to maintain Invari-

ant 6.2.5(3).

The first part of the fact follows from the observation thatemhl enters the system, then the
subcube ofpred(v) splits into two subcubes where one residegati(v) and the other is taken
over byv. Hence, ifpred(v) passes all of its connectivity information tg thenv can establish
all edges relevant for it according to the continuous-dierapproach. The second part of the fact
follows from the observation that the departure of a pednasréverse of the insertion of a peer.

Thus, if the peers take care of the connections in Invariabi563), the only part that the

supervisor has to take care of is maintaining the cycle. lkierwe require the following invariant.

Invariant 6.2.7 At any time, the supervisor stores the contact informatibpred(v), v, succ(v),

andsucc(succ(v)) wherew is the peer with labef(n — 1).

We now describe how to maintain Invariant 6.2.5 during arry @ leave operation.

Join: If a new peerw joins, in order to satisfy Invariant 6.2.7, the followingtianis are performed.

In the following, .S denotes the supervisor.

e Sinformsw that{(n) is its label,succ(v) is its predecessor, andcc(succ(v)) is its succes-

SOor.

e S informssucc(v) thatw is its new successor.
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S informssucc(succ(v)) thatw is its new predecessor.

S askssucc(succ(v)) to send its successor information to the supervisor, and

S asksv which is nowpred(w) to send the connectivity information accordingfao node

w.

S setsn =n + 1.

Leave: If an old nodew leaves and reports,, pred(w), andsucc(w) in order to maintain Invariant
6.2.5(3), the following actions are performed. In the faling, S denotes the supervisor. Recall

that we are assuming graceful departures.

S informs v (the node with labe¥(n — 1)) that ¢,, is its new label,pred(w) is its new

predecessor, andicc(w) is itS new successor.

S informs pred(w) that its new successor isandsucc(w) that its new predecessoris

S informs pred(v) that succ(v) is its new successor anghcc(v) that pred(v) is its new

predecessotr.

S askspred(v) to send its predecessor information to the supervisor aagkpred(pred(v))

to send its predecessor information to the supervisor.

S asks node to transfer all of its connectivity information according &' to pred(v), and

Ssetsn=n—1.

Thus, the supervisor only needs to handle a constant nunfilbeessages for each arrival or
departure of a peer. In fact, at most 8 messages suffice fbraggaration, and each message is very

small. If we assume, for example, that the supervisor hagavilfit/'s connection, each message
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has a size of 64 bytes, we have 1,000,000 peers in the systémneaah peer stays in the system for
a minute (on average), then the bandwidth of the supenagdarprinciple high enough to handle all
of the arrivals and departures (though this would need a paghllelization of the handling of join
and leave requests, as discussed in Section 6.4). Moreopeer can join and leave the supervised
system with a constant number of communication rounds. &lemar join method is much faster
than in pure peer-to-peer systems where the join requespegafirst has to be forwarded to the

right location, which usually takeQ(log n) time.

6.3 Examples

In this section we show some examples to illustrate the paf/i¢he supervised approach.
We show how to maintain dynamic variants of two well- knowrtwark topologies, namely the

hypercube and the de Bruijn network.

6.3.1 Dynamic Hypercube Network

Consider thel-dimensional Hypercube network with nodes labeled x5, . . ., z4) € {0,1}¢
and nodes: andv are neighbors if and only if their labels differ in exactlyeoposition.
For a supervised hypercubic network, [ét= [0,1) and selectF’ as the family of functions

Fy:={f",f;" : U — Uli € IN} with

(2

fH(@) = (z+(1/2")) mod1 and f; (z) = (z — (1/2"))mod 1

Using the above family of functions, then the neighbors dfipo € U are defined a$y|y =

Ji @),z =13 U{yly = f;7 (), 2z = 0}.

Using our framework, the following lemma holds by Invari&n?.5.
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Lemma 6.3.1 A supervised dynamic hypercubic network can be maintaingd (1) time and

work for each (isolated) join and leave request.

In addition to the above lemma, we now show that the dynampetoube has the following

topological properties.

Theorem 6.3.2 At any time, using the supervised framework, a dynamic leypercan be main-

tained so that:
e the network has a degree 6flogn)
e the network has a diameté¥(log n) and,

e the network has an expansiér(1/logn).

Proof. The bound on the degree follows as each pelsrmapped to an intervak(v) of size in at
most2/7 wheren = 2l°6™) and each functiorf € F; maps an interval to another intervaf (1)
of length same as that of intervAl Moreover, once > 1+ log ., the intervalf;(I) is contained in
the regionR(pred(v)) U R(v) U R(succ(v)). Hence, the degree of any peeiglog n).

For the diameter, we note that for any two poiats- (21, x2, ..., z4) andy = (y1,y2, .- -, Yd)
when usingFy, it takes at mosk edge traversals to adjusty, z2, ..., x%) t0 (y1,Yy2, .-, Yk)
following the standard bit-flipping scheme of the hypercuBencex andy may differ in at most
O(log n) bit positions, it follows that the diameter of the dynamigkycube isD(log n).

For the expansion, recall that the supervised approach pegrs to at most two consecutive
levels of the decomposition tree. If all the peers are mapgpeaisingle level of the tree then the
Gr, (V) has ad-dimensional hypercube as a subgraph and hence has aniexpait3(1/ log n).

If the peers are mapped to two consecutive levels, @ign(V') has dog n—dimensional hypercube

as a subgraph and hence has an exparig{anlogm) = Q(1/logn). 0
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Notice that the expansion we can guarantee using the sspdrapproach is better than what pure

hypercubic peer-to-peer systems like Chord [142] can &ehie

6.3.2 Dynamic de Bruijn Network

Recall the definition of thé—dimensional de Bruijn network where nodes are labéladz,,
... xq) € {0,1}¢ and a node with label:y, x5, . . ., z4) has nodeg0, zs, . .., z4) and(1, za, . . .,
x4) as neighbors.

For a supervised de Bruijn network, consider the sgéce [0, 1) and selectp := {fo, f1 :

U — U} as the family of functions oy’ with

fo(z) =2/2 and fi(z) = (1+x)/2

The family Fp of functions approximate the de Bruijn edges. Hence, whamube super-

vised framework and maintaining Invariant 6.2.5, the failog lemma holds.

Lemma 6.3.3 A supervised dynamic de Bruijn netwar,, (V) can be maintained witty(1) time

and work for each (isolated) join and leave request.

Moreover, the following theorem can be shown along the limfeBheorem 6.3.2. Notice that
the expansion that can be guaranteed is also better thamkpeer-to-peer systems that are based

on the de Briujn network [67, 110].

Theorem 6.3.4 At any time, using the supervised framework, a dynamic dgrBmatwork can be

maintained so that:

e the network has a degree 6f(1)

e the network has a diametér(logn) and,
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e the network has an expansiér{1/logn).

As these examples show, choosing the family of functibregpppropriately, various topologies

are possible.

6.4 Concurrency

In this section we extend our approach to concurrent joinleage operations and also provide

a way to allow multiple supervisors.

6.4.1 Concurrent Join/Leave Operations

In order to be able to handkéjoin or leave requests in parallel, Invariant 6.2.5 justde®
be extended by one more rule given below. In the followingd, (v) (resp.succ;(v)) denotes the

it predecessor, (resp. successor)p afn the cycle of nodes. That ipred,(v) = pred(v) and

pred,(v) = pred(pred;_;(v)).
4. Every peew in the system is connected to itth predecessor and ithh successor

In addition to this, given that is the node with label(n — 1), Invariant 6.2.7 needs to be extended

to:

Invariant 6.4.1 At any time, the supervisor stores the contact informatibn, ¢the 2d successors

of v, and the3d predecessors af.

These invariants can be preserved as follows:
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Concurrent Join Operation In the following, letv be the node with label(n — 1). Let thed
new peers bev;, ws, ... wy. Then the supervisor integrates betweensucc;(v) andsucc;41(v)
foreveryi € {1,...,d}. Asis easy to check, this will violate rule (4) for tBe closest successors
of v and thed — 2 closest predecessors @f But since the supervisor knows all of these nodes, it
can directly inform them about the change. In order to repaiariant 6.4.1, the supervisor will
request information about thith successor from the furthest successors fromand will setv to

wgy. Thus, we obtain the following result:

Claim 6.4.2 The supervisor needs at mastd) work andO(1) time (given that the work can be

done in parallel) to process join operations.

Concurrent Leave Operation Let thed peers that want to leave the systemuog wo, . . . , wy.

For simplicity, we assume that they are outside of the pamwak to the supervisor, but our strategy
below can also be easily extended to these cases. The gtodtidge supervisor is to replaae; by
predy;_1)(v) for everyi. As is easy to check, this will violate rule (4) for theclosest successors
of v and the3d closest predecessors of But since the supervisor knows all of these nodes, it
can directly inform them about the change. In order to repaiariant 6.4.1, the supervisor will
request information about th#h predecessor from théfurthest predecessors fromand theirdth

predecessors and will setto pred,,(v). Thus, we obtain the following result:

Claim 6.4.3 The supervisor needs at mastd) work andO(1) time (given that the work can be
done in parallel) to procesg leave operations.

6.4.2 Multiple Supervisors

In this section, we show multiple supervisors can work tbhgetn maintaining a single super-

vised peer-to-peer system. We assume that the number ofviagrs it not too large so that it is
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reasonable to connect them in a clique.

In a network withk supervisorsSy, Si, - - - Sx_1, the [0, 1)-ring is split into thek regionsR; =
[(i—1)/k,i/k), 1€ {1,...,k}, and supervisof; is responsible for regiof;. The supervisors are
assigned distinct labelg which is equal to the binary representationiafsing [log, k| bits. For
example, with4 supervisors, the labels of the supervisors @)1, 10 and11. Every supervisor
manages its region as described for a single supervisoreabath the exception of the borders of
its region. The borders are maintained by communicating tié neighboring supervisors on the
ring.

Each time a new node wants to join the system via some supewdjs S; forwards it to a
random supervisor who will integrate it into the system. TEmgrate labels for the nodes in the
system, supervisa¥; prepends its own label to the labels generated accordingctms 6.2.3 with
the modification that label is the first label to be generated. Thus in a system with 4 sigues,
where supervisor 2 has label = 01 supervisorS; generate®111 as the label for the third node
to join the system unde$,. To formalize the above discussion, tgtbe the number of nodes that
are being managed by supervisgircurrently with " , n; = n being the total number of nodes

in the system currently. Then, supervisgrmaintains the following invariant:

Invariant 6.4.4 The set of labels generated by superviso$;, i € [k] is

{Si . 1,SZ' '01,82‘ . 11,82‘ '001,...}

where the operator denotes binary concatenation.

The above sequence of labels is generated by stripping of; st significant bits and the

least significant bit, then supervisSf is enumerating all binary numbers of length 0, followed by
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length 1 and so on. The mappidg INy — {0, 1}* from section 6.2.3 can then be easily provided.

SupervisorS; also maintains the invariant that whepnodes are in the system managedshy
then the set of labels used{i§0), (1), ..., #4(n; —1)}. Using techniques from section 6.2.1-6.2.3,
it can be shown that supervisst has to only take care of maintaining the doubly linked cydle o
peers and the peers have to maintain the connections acgdadinvariant 6.2.5(3).

Each time a node under some supervisdf; wants to leave the systeri; contacts a random
supervisor (which may also be itself) to provide a node thatreplace.

Thus, the join rule provides a random distribution of therpeemong the supervisors and it is
not too difficult to verify that the leave rule preserves tliadom distribution. Hence, when using
the Chernoff bounds we get the following claim. In the follog/claim, the phrase high probability

refers to a probability that is at leakt- 1/k¢ for a constant.

Claim 6.4.5 Letn be the total number of nodes in the system. Then it holds oy e\ [k] that

the number of nodes currently placediy is in the rangen/k + O(+/(n/k) log k + log’i’;k), with

high probability.

This implies that ifn is sufficiently large compared ta all properties formulated above for a
peer-to-peer system with one supervisor can be presemeldding the property that the peers are

only distributed among nodes of two consecutive levels efdcomposition tree.

6.5 Robustness against Random Faults

So far we have assumed that the peers announce their departine supervisor and thus are
said to be graceful. In reality, however, such an assummasmot be justified as peers may depart

ungracefully. In this section, we show how to handle undgrdagepartures under the assumption
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that ungraceful departures are uniformly distributed agthe nodes in thé, 1) interval and the

rate of ungraceful departures is low enough so that the sigoercan handle.

6.5.1 The Random Fault Model

We now introduce theandom fault modelinder which we want to show robustness guarantees
for the supervised overlay network. To state the model mormaélly, we let each node in the
system have a probability of failurg; that is independent of any other node in the system. We
require that the average failure probabilfty= 3" | p; be such thap is a constant betweehand
1. Thus, our model does not require that all peers have the &ailoe probability. Additionally,
we require that the failure probabilities are also spreaifiormly. Nodes can depart at any time
without informing the supervisor about their departure. ¥8g that the network (system) is in a
valid state if it holds that forn available peers in the network, the peers occupy positions with
labels¢(0) through?(m — 1) and all the invariants are met. The goal of the supervisoesstated
as arriving at a valid state in a finite amount of time aftettad faults (ungraceful departures) have
occurred and in this case we say that the supervisor has léetoaecoverthe network.

Towards this goal, the supervisor now maintains the follmpinvariants fork = clogn, for

some large constaiat We start with the following notation.

Definition 6.5.1

e Foranyv € V,weletN, := {v} U{pred;(v)|i =1,2,--- ,k}U{succ;(v)|i = 1,2,--- , k}.

e ForanyV’' C V,weletR(V') := Uyeyr R(v).

Finally, recall from Section 6.2.2 th&(s) for any S C U refers to the neighbors it \ .S of

nodes inS according toE .
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Invariant 6.5.2 Every nodev is connected to:

e pred;(v) andsucc;(v) fori € {1,2,...k}, and

e all nodesw such thatl’(R(N,)) NT'(R(Ny)) # ¢.

The above connectivity rules introduce:-awise redundancy in the system as each node main-
tains connections to nodes in itsneighborhood. The supervisor stores the contact infaonat

according to the following invariant.

Invariant 6.5.3 The supervisor maintains the following connections.

¢ Join connections: These are to th@k successors an8k predecessors of the nodewith

label ¢(n — 1). These connections are similar to the connections spedifiddvariant 6.4.1.

e Repair connections:These are to some peet, thek closest predecessor positionsuafand
the k closest successors positionsuafBy the predecessor (successor) positions of a node
we mean the positions in the unit interval that preceass. succeed) nodes and may or

may not be occupied by any peer currently in the system.

The join and leave operation are now extended as followsn3ert a neww into the system,
the supervisor assigns a label#oand proceeds according to a normal join operation in section
6.2.5 and also satisfying invariant 6.5.2. To maintain tiara 6.5.3, the supervisor updates its join
connections accordingly by requesting relevant infororati The leave operation of a gracefully
departingw now follows similarly to that of a basic leave operation bg gupervisor reversing the
last join operation.

Thus the supervisor has to maintain only a logarithmic arh@firinformation. The cost of

join and leave operation increases¢log n) from a constant. As the size of the network increases
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or decreases by a factor of 2, the supervisor updates the @l accordingly by a factor of:-c.
The supervisor also updates its repair connections @ any successor/predecessoruotieparts

by choosing the closest successor/predecessor position.

The above operations along with the invariants have theviatlg property under the random

fault model. We start with the following lemma.

Lemma 6.5.4 Under the random fault model, consider any Setf & consecutive positiong , ¢,
-+ qr Where peemw is chosen for position independently and uniformly at random from the
peers in the network. Then, the probability that either abkgions are occupied or none of the

positions are occupied by a peer is polynomially small.

Proof. Let X; be a random variable defined so tlat = 1 if and only if the peer in position;

fails and0 otherwise. It holds that:

E[X;] = Pr|peer in positiony; fails] = » ~ Pr(peer; is in positiong;] - p; = p
=1

Let the random variabl& := Zle X;. As the X;’s may not be independent, we may not
use Chernoff bounds oi. However, it can be shown that the random variablg's are negatively

correlated as follows.

3

PI‘[XZ = 1|X1 = 1,X2 = 1,"' 7Xi—1 = 1] §

k+1
n—=k

The above probability represents the increase in the agdedlgre probability of peer assigned
to positiong; in the setS under the worst-case scenario that all the previous pasitio the setS

have failed peers.
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Thus, it holds that for any subsst C {1,2,--- , k},

E[HiES’Xi] = Pr[/\iesl XZ = 1] = HiES’ PI'[XZ = 1‘X1 = 1,X2 = 1, e 7Xz'—1 = 1] S Hieslﬁu

Hence, the random variables;’s can be seen as negatively correlated with probabiljtyand we
can use the Chernoff bounds df to show that the event that all peers $rfails, i.e. the event
{X > (1 + 0)kp,}, has a polynomially small probability singeis bounded from above by a
constant.

Similarly one can show that the random variahlss are positively correlated as follows:

PriX;=1X1=1,Xp=1,-+ , Xi-1 =1] = P> (1= (k—=1)/n)p=:Dy

ForanyS’ C {1,2,--- ,k}, itthen holds that

Ellice X;| =iee Pr(X; =1|1X1 =1, X0 =1,...,X;,_1 = 1] <Ijce Dy

This means that the random variablgs, X5, - - - X g are positively correlated with probability
P, allowing one to use Chernoff bounds an(cf. [131, Lemma 1.41]) to show that the the event that
none of the peers if fail, i.e., the even{ X < (1 — 9)kp,}, has a polynomially small probability,

sincep is bounded from above by a constant. O

Theorem 6.5.5 When considering the random fault model, the supervisorreanver the network

in a finite amount of time after all the faults have occurred.

Proof. To prove the theorem, first notice that the supervisor alvikaysvs the positions in the cycle

that should be occupied as this is precisely the positiotis aviabel amond(0) to ¢(n — 1). From
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the above lemma it holds that in any regiBnwith high probability at least one position has a failed
peer and not all positions have failed peers. Thus, the sigoercan always make progress during
the repair process by the way the repair connections areegdAlso, by performing one complete

tour of the unit interval, the supervisor can bring the neto a valid state. O

For the dynamic setting that faults may occur while the super is in the middle of a repair
phase, we argue that in any time inter¥alarge enough so that the supervisor can complete a entire
tour around thé0, 1) interval and so that the average error probability stays enatant between
0 and1 and the faults are evenly distributed around the unit irstierVhen, during any such interval
T, according to the above lemma, the supervisor never enemutite situation that it cannot make

any progress while processing ungraceful departures.

6.6 Robustness against Adaptive Adversarial Attacks

In this section we describe a simple scheme to guarantestriss against even adaptive ad-
versarial join/leave attacks. Due to the presence of sigmnour scheme for providing robustness
under an adaptive adversary is surprisingly simple.

While the results of the previous section guarantee thasyiséem is robust to random node
failures, the system is not robust against adaptive adialsstacks. Such attacks take the form
of adversarial nodes that can join and leave the system ag tima@s as they wish. In our system,
adaptive adversarial attacks can easily disconnect thengigpr from the rest of network by taking
positions that the supervisor is connected to. This woudshtmake it difficult for new peers to
join the system. The adversary can also place nodes atatmiimsitions so that routing in the
network is disrupted by not forwarding the packets or foiuag them to the wrong location or by

injecting lots of packets destined for other adversariala®so that the network would be heavily
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congested. These type of attacks are recently studied #] [h8showing how to maintain a robust

ring network of nodes under the presence of such a powerlidradry. While mechanisms for other

network topologies are not known, using the supervisedagmtr we show how to extend our basic
scheme to provide robustness guarantees for any overleyprietinder the presence of an adaptive
adversary.

Formally, we allow the adversary to own up ¢e of the n nodes in the system for some
sufficiently small constant > 0. These nodes are also calladversarialnodes and the rest are
calledhonestnodes. The supervisor and the honest nodes are oblivioudversarial nodes, i.e.,
there is no mechanism to distinguish at any time whether #icpéar node is honest or not. To
achieve robustness in the presence of an adaptive adversange the following scheme.

In the following, aregionis an interval of size /2! in [0, 1) starting at an integer multiple of
1/2' for somei > 0, and a node belongs to a regiom if 7(¢,) € R. Recall tham = 2l'°s™), The
supervisor organizes the nodes into regions so that eamnregntains betweenlog 7w and2clog 7
nodes for some constant> 1. Whenever these bounds are violated in a region, the sigoersplits
it or merges it with a neighboring region. Thenodes are also organized into 5 s8isto S5 and

the following invariant is maintained for these sets.

Invariant 6.6.1 At all times,
1. S hasn/8 nodes with label$(0), ¢(1),...,¢(n/8 — 1).
2. Sy hasm/8 nodes with labelg(n/8),¢(n/8 + 1),...,¢(n/4 — 1).
3. S5 hasm/4 nodes with labelg(n/4), ((m/4 + 1),...,¢(m/2 — 1).
4. Sy hasn/2 nodes with label§7/2), (/2 + 1), ..., ¢(m — 1).

5. S5 has the remaining. — 7 nodes with labelg(n), (7 + 1),...,¢(n — 1).
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Figure 6.2: Logical organization of nodes into five sets. mhmber against node position indicates
the set to which the node belongs to.

The following invariant describes the connections mairgdiby the nodes in the various sets
and the connections maintained by the supervisor. To siynmitation, for a real number € [0, 1),
R(z) is the region that: belongs to andb;(R) is the set ofS;-nodes belonging t&. For every
regionR, let Sg = S1(R) U S2(R) andSk = S3(R) U S4(R) U S5(R) if R precedesk(r(¢(n)))
and otherwiseSr = S1(R) andSg = So(R) U S3(R) U S4(R) U S5(R). For every regionr let

Mp = S1(R) U S2(R) U S3(R).

Invariant 6.6.2 For all regions R, everySg-node is connected to all nodes$ix U Sg. EverySg-
node is also connected to all nodes in the predecessor amessir regions aR, denotecbred(R)
andsucc(R), and for everyu € Sg that has a connection to a nodes Sr, according to Invariant
6.2.5(3), allSk-nodes are connected to &lz/-nodes.

The supervisor is connected to all the nodes'inin the regionsR(r(¢(n — 1))), pred(R(r(¢(
n —1)))) andsucc(R(r(¢{(n — 1)))). The above connections are callg@ih connections

The supervisor is connected to all the nodeddp for some regionR, and to a special node

v* € Mpg. These connections are calledxing connections
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1

Figure 6.3: Physical organization of nodes into five sets.

Figure 6.2 shows the logical organization of the nodes aads#tsS, throughSs and Figure
6.3 shows the physical organization. Our organization ®hibdes ensures that in a constant fraction
of the network, the adversarial nodes cannot influence ttveank behavior.

The setS; is also referred to as th&tableset. The goal of the supervisor is to have the honest
nodes in the majority in every s8t (R) of sizeclog n nodes, with high probability. The reason for
this goal are stated shortly.

The setS; is in a stage called theplit-and-mergestage becausg:-nodes are merged into the
stable set or removed from it as nodes join or leave the systdmmsetS; is in a stage calledhixing
stage in which the supervisor performs transpositions raaeg to a uniformly chosen permutation
to ensure that the nodes are well-mixed before being integiato the stable set.

The setS, is in areservoirstage..S, is used to fill departed positions in the sétsto S3 by
selecting random nodes By and filling their positions with the last nodes$j. Finally, the setS5

is in afilling stage where new nodes are added by assigning them the/(abel
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The join and leave operation have to be extended so that geg\ssor can ensure the majority

condition at all times. We first describe the modification#i® join/leave operations.

Join:

The supervisor assigns to the new node the ldbe) and integrates it so that the Invari-
ants 6.6.1 and 6.6.2 are satisfied.

Afterwards, the supervisor updatesto be successor af* among the nodes i/ ;. If there
is no such node, thef/ is updated to thé//r. where R’ is the region succeeding regidhand
v* is taken to be the first node ilg/. Suppose that* belongs to the sef; in My for a region
R. Then the supervisor picks a nodewith position between* and 1 (exclusive) uniformly at
random and exchanges the positionswoéndv*. This is realized by the supervisor informing all
nodes inS;(R(¢(n))) the positions of nodes" andw so that this is reliably done without involving
the supervisor.

Each time a new node causes the supervisor to switch fromi@nrégto succ(R), the nodes
in S3(R) are merged int®; (R) as prescribed by Invariant 6.6.2.

Observe that during the join operation, nodedir undergo transpositions that has the effect
of permuting the nodes according to a permutation choseforamly at random from the set of
all permutations of sizéMpr|. This is crucial to guarantee robustness as shown in thewib
result. Thus, once a pass has been made through all positiosisU Sy U S3, the positions in

S;,i € {1,2,3} form a random permutation.

Leave:

If a nodew leaves withv € S, U S5, the supervisor simply replaces it by the last nodéjin

Otherwise, the supervisor replacedy a random node i%, and fills the position of that random
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node with the last node i85. This is followed by performing a mixing operation similar that
done during a join operation. (The supervisor initiatesl&a&e operation fov only if a majority of
S1-nodes inv’s region notify it about that. In this case, the supervisas the necessary information
to correctly initiate the replacement.) Each time a departauses the supervisor to switch from
a regionR to pred(R), the nodes inSz(pred(R)) are split away fromS;(R) as prescribed by

Invariant 6.6.2.

Majority Condition

The goal of the above scheme of the supervisor is to ensuténtlaay region ofR of loga-
rithmic size, the honest nodes are in a majority with highogiality. This condition is referred as
the majority conditionand is useful in the following way. Suppose the majority dbad holds.
Then quorum strategies can be used to wash out adversaniaVibe as follows. Consider any set
T of clogn nodes inS;. According to Invariant 6.6.2, all the honest nodediare connected to
all nodes inT'. To perform any network operation such as finding the nodha witjiven label, all
the nodes irl" perform majority voting. The outcome of the operation iseditined uniquely if a
majority of the nodes ifl" agree on the outcome. This means that for adversarial nodes/e any
influence on the outcome of a network operation, they shoeilieh la majority in the set’ of clogn

nodes since we assume that honest nodes act honestly.

6.6.1 The Semi-adaptive Model

Before we proceed further, we outline the way in which theetxopin/leave the system. We
start by considering a model similar to that [132] where bm®des do not leave the system and
only adversarial nodes may join/leave the system in an adaptanner. Certainly this is a simple

model but is very illustrative.
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Theorem 6.6.3 For a sufficiently small constart> 0 it holds that as long as the adversary owns
at mosten nodes, the above scheme guarantees that in every régmirsizeclog n for ¢ > 1, the

honest nodes are in the majority i (R), with high probability.

Proof. We first consider the following random experiment. Consiaddralls placed inn bins such
that there is exactly one ball in each bin. The balls are &behiquely from 1 through and the
bins are numbered from 1 through. Now, the ball in bin 1 is switched with the ball in a bin chosen
uniformly at random from bins 1 through. This is followed by switching the ball in bin 2 with the
ball in a bin chosen uniformly at random from the bins 2 thiloug This is continued until we visit
the ball in binm — 1. Also, the choice of bin at any time is independent of the ity choices.

This random experiment creates a random permutation bélls in the bins as it holds that:

e Every permutation is an outcome of the random experiment,any permutation of the balls

assigned to bins can be produced by the above experiment, and

e Any permutation, or outcome of the random experiment, isatiguikely with a probability

of 1/m!.

Consider the basic model where only adversarial nodes majlgave the system. Aftes
join/leave operations the effect of the mixing operationshie same as that of choosing a random
permutation of sizéS; U S2USs|. It then follows that as nodes #y, S2 andSs are permuted during
the mixing operations?, we arrive at a situation where given any positionSinfor i € {1, 2, 3},
the probability that the node at that position is an adveabkaode is at mos% < 4e/3.

We prove the theorem in this case by considering any fixed'setS; (R) of clog n positions

in a regionR. Given that any position iff" is occupied by an adversarial node with probability

close toe, the probability that a majority of the positionsThare occupied by adversarial nodes is
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at most:
7]

> <‘:/:’> (4e/3)" < 27171 (4¢/3) 71/ < (16¢/3)°1°8"/% < 1/n*
k=|T|/2

if ¢ > 3 ande < 1/6. Since there are at moaY clog n regions of size:log n, the probability that

for some such region the majority condition is violated isnatst1 /»3 using Boole’s inequality

We now extend the model to allow also honest nodes to leaveydtem but so that the leave
operations of the honest nodes are spread uniformly ardu@i1) interval. This means that
the adversary cannot issue join/leave requests for howestsradaptively. The same proof extends
easily to the case where honest nodes may also leave thendystsuch leave operations are spread
uniformly in the [0, 1) interval. In this case, it holds that in any regiéh the expected number of
leave operations required so that a majority of the honedesideave the system &(n). During
each such leave operation the probability that the posisioeplaced by an adversarial nod€ié).
Since afteiO(n) operations, the nodes iR are replaced by the transpositions, hawirigw enough

will ensure that the majority condition holds for every mgiR with high probability.

6.6.2 The Fully Adaptive Model

Finally, consider the situation where the adversary caogfdronest nodes to leave in a non-
uniform or adaptive manner. We call this thdly adaptive model In this case it is possible that
from a given region, a majority of the honest nodes are madeaee. This case captures the
most difficult scenario for distributed systems as it becomifficult to ensure uniform spreading
of adversarial nodes. The reason for this is that using tliweascheme, the following sequence
of join/leave operations violate the majority conditiorr &ome regionR. Fix any regionR and
assume thaR? has no adversarial nodes at this time. Now the adversary arae honest nodes

from R to leave successively. During each such leave operatierpribbability that an adversarial
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node entersk is ©(e). So afterO(logn) leave operations of honest nodes frdtnthe expected
number of adversarial nodes iis ©(¢|R|). By repeating the scheme fé¥(log n) times, where
during these operations no adversarial node le@ebe majority condition fork can be violated.
Note that during thes® (log? n) nodes inkR may be part of exchange operations initiated outside of
R. But the probability of this is onl¥ (log n/n), which is small enough so that the above scheme
is not affected.

What led to the failure of the existing scheme is that the stipar does not have a chance to
make any transpositions in regidhuntil ©(n) join/leave operations have occurred. This presented
a window for the adversarial nodes to gain a majority in ragid as the honest nodes leave en-

masse.

The Modified Leave Operation

We proceed as follows during the leave operation. Recallttieleave operation of node
with a position inS; U Sy U S involves replacing the position of with a nodew chosen from
Sy uniformly at random. The supervisor now maintains a spgoisition p* in every regionR.
During every leave operation of a node with a positiorkirthe supervisor also exchanges the node
in positionp* with that of another node’ chosen independently and uniformly at random from the
nodes inSy. Positionp* is then updated to be the successor of positibamong the positions in
the regionR. If there is no successor position @f in region R, thenp*is taken to be the first node

in R.

With this modified leave operation we now show the followihgdrem similar to Theorem

6.6.3.

Theorem 6.6.4 In the fully adaptive model, for a sufficiently small constan- 0 it holds that as
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long as the adversary owns at mestnodes, the above scheme guarantees that in every région

of sizeclog n for ¢ > 1, the honest nodes are in the majoritySn(R), with high probability.

Proof. In addition to the proof of Theorem 6.6.3, we also considerdhse that honest nodes may
leave from any given regioR.

Consider any regiorkR. Denote by theageof nodewv in R as the number of leave operations
from R during which nodev is not replaced. Upon entering the regi&n nodev has age 0 and
during every time step that is still in R, the age ofv increases by 1. It then holds that the age
of any node inR while using the modified leave operation is at mpat. The reason for this is
that after| R| more leave operations, nodes certainly replaced by another node via an exchange
operation.

It also holds that during any leave operation frétnthe probability that the node in position
p* is replaced by an adversarial node is at m@%’( < 2e. It then follows that the expected number
of adversarial nodes i due to|R| leave operations is at mo8t|R|. Since the actions of leave
operations are independent, one can use Chernoff bountsuothat the majority condition holds

for region R with high probability wherx is sufficiently small. O

Notice that the modified leave operation is actually replgeiodes in5; U Ss U .S3 with nodes
in .S4. This may sound artificial but the following counter-exampliggests that replacing the node
at positionp* with that of another node at a position chosen uniformly atican from the positions
in S; U .Sy U Sy still allows the adversary to gain a majority in some regiras follows. Fix a
region R. It holds that there will be on expectatidi(n/logn) regions, excludingk, where the
positionp* is currently occupied by an adversarial node. Now the adwgrssues a leave request
from one of these regions. The probability that an adveabaondes then enters the regiéhis at

leastO(1/n). But, using the scheme repeatedly, while not disturbingréiggon R, the adversary
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can gain a majority irR. Hence, we have to exchange the node at positfonith a node fromSy.

This attack can be seen as an indirect attack on refion

It is worth noting that such a strong guarantee can be prdvitigh a simple scheme. The
amount of information the supervisor has to maintain is dogjarithmic. The analysis is also not
as complicated as that of [132] and the presence of a supetfingts the ability of the adversary
even with adaptive join/leave attacks. The simplificatieaults from the fact that nodes i3, S
andsSs are isolated from the node join/leave operations allowiregdupervisor to permute the nodes

before integrating them into the existing network.

6.7 Applications

We now discuss some applications of the supervised ovedayarks that arise in the area of

distributed computing.

6.7.1 Grid Computing

Recently, many systems such as SETI@home [135], Distdbuté [33] have been proposed
for distributed computing. A main drawback of such systemthat the topology of the system is
a star graph with the central server maintaining a direchegtion to each client. Such a topology
imposes heavy demands on the central server. Instead, waseathe basic approach of Section
6.2 to design a overlay network for distributed computingelPto-peer connections allow subtasks
to be spawned without the involvement of the supervisor abttie demands on the server can be
significantly reduced. Thisis particularly interesting distributed branch-and-bound computations

as was discussed in [127].
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6.7.2 WebTv

Our approach can also be used in Internet applications sigtedTv. In such an application,
there are typically various channels that users can browseatch while being connected to the
Internet. The number of channels ranges in the scale of kdsdwhile the humber of users can
range in the scale of millions. Such a system should allowsusequickly zap through channels.
Hence, such a system should allow for rapid integration anddalable to large number of users.
Our supervised overlay networks can easily achieve suchamtsnoperation. Suppose that every
channel has a supervisor, each supervisor maintains ithovatcast network, and the supervisors
form a clique. Then it follows from our supervised approaghich can handle join and leave oper-
ations in constant time, that users browsing through cHarmmag be moved between the networks in
a very fast way, comparable to server-based networks, saigeas only experience an insignificant

delay.

6.7.3 Massive Multi-player Online Gaming

Distributed architectures for massive multi-player oaligaming (MMOG) are being studied
recently (see e.g., [49]). The basic requirements of suglst&s includes authentication, scalabil-
ity, and rapid integration. Traditionally, such systemsénheen managed by a central server that
takes care of the overall system with limited communicati@tween the users. As can be seen,
such a system will not be scalable and also might experieeaeytcongestion at the central server.
Hence, distributed architectures are required at a cestte. A supervised overlay network natu-
rally satisfies the requirements. Authentication of eegitan be done by the supervisor (or multiple
supervisors) and the system stays highly scalable becdubke celatively low load on the super-

visor. Rapid integration is also possible since the supervtan handle integration of new peers
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(players in this setting) with a constant number of commaition rounds.

Typically in a MMOG, it is possible to partition the virtualosld into what are calletbcales
In an architecture based on supervised overlay networksitheould be possible to have one (or
more) supervisor to be responsible for each such locale.néklex a player moves between locales,
the supervisor can coordinate the join/leave of the playéidy. Also, based on number of players
based at various locales, the supervisors can be distiilaate¢hat the load at the supervisors stays

balanced.

6.8 Chapter Summary

In this chapter, our goal is to design highly scalable antliigeliable systems. We proposed a
method, supervised peer-to-peer systems, that inhedtadkiantages of both peer-to-peer systems
and centralized server-based systems. Our unified schenifding a supervised peer-to-peer
system from a large class of topologies is not very compitat

We also showed that robustness guarantees under a stroegaid® model can also be pro-
vided with small modifications to the basic design. Our camsion falls under the category of
pro-activeapproaches to providing robustness guarantees, as opymaseattiveapproaches which
take some action only when certain conditions are met. Cosap the approach of [132], the
scheme presented in Section 6.6 is much simpler owing tordsepce of the supervisor.

We note that our supervised peer-to-peer system can bg easinded to function as a dis-
tributed hash table (DHT) as shown in [127]. While [127] fses on networks with a de Bruijn
topology, the results can be easily extended for any togolédso, our design guarantees that the
load among the peers is balanced up to a low constant factexgactation, when using known

techniques [69] of hashing data using a (pseudo)-randoim faastion.
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A preliminary version of the results in this chapter appdareg[79].
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Wireless Ad hoc Networks



Chapter 7

Wireless Ad Hoc Networks: Model and
Spanner

In this chapter, we consider the problem of designing oyenletworks for wireless ad hoc
networks. While many local control algorithms have beeerady suggested in the literature, most
of them are based on an oversimplified model of wireless conization. We first suggest a model
that is much more general than previous models. It allowgtik loss of transmissions to signif-
icantly deviate from the idealistic unit disk model and does even require the path loss to form
a metric. Also, our model is apparently the first proposedalgorithm design that does not only
model transmission and interference issues but also aimpeowiding a realistic model for phys-
ical carrier sensing. Physical carrier sensing is needethaoour protocols do not requireny
prior information (not even an estimate on the number of spdbout the wireless network to run
efficiently.

Based on this model, we propose a local-control protocokftablishing a constant density
spanner among a set of mobile stations ifode$ that are distributed in an arbitrary way in a
2-dimensional Euclidean space. More precisely, we estalaibackbone structure by efficiently
electing cluster leaders and gateway nodes so that thendyis@onstant number of cluster leaders

and gateway nodes within the transmission range of any nodehe backbone structure satisfies
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the properties of a topological spanner.

Our protocol has the advantage that it is locally self-ditebg, i.e., it can recover fromanyini-
tial configuration, even if adversarial nodes participaté,ias long as the honest nodes sulfficiently
far away from adversarial nodes can in principle form a gnginnected component. Furthermore,
we only need constant size messages and a constant amototgisat the nodes, irrespective of
the distribution of the nodes. Hence, our protocols woulehework in extreme situations such as

very simple wireless devices (like sensors) in a hostilédrenment.

7.1 Introduction

An important problem for wireless ad hoc networks has beetetign overlay networks that
allow time- and energy-efficient routing. Many local-cantstrategies for maintaining such overlay
networks have already been suggested, but mostly highydgweless models have been used for
their analysis. However, since mobile ad-hoc networks magay features that are hard to model
in a clean way, it is not clear how well these strategies mayadly perform in practice. Major
challenges are how to model wireless communication and baonadel mobility. Here, theoretical
work is still in its infancy. So far, people in the algorithroemmunity have mostly looked atatic
wireless networks (i.e. the wireless stations are alwagdase and do not move). Even in such

static situation, modeling wireless networks is difficuliedto the following reasons.

e The area over which a wireless node can transmit messagesssiuly, called thérans-
mission rangeand denoted by;, can be of arbitrary shape due to the characteristics of the
environment, transmission power, and other factors. Thikes it very difficult to model the

concept of message transmission accurately.

e Wireless devices are prone to interference problems. Tdnsbe caused by wireless devices
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transmitting simultaneously or due to external factorsst Jike the transmission range, the
area over which a wireless node can cause interferencedctikinterference rangeand
denoted byr;, can also be of arbitrary shape. Usually, the interfereacge is bigger than

the transmission range.

e Wireless devices often use their ability to sense the gdmgéore transmitting. This is called
physical carrier sensingPhysical carrier sensing is needed so that protocols doegoire
any prior information (not even an estimate on the number of spdéout the wireless net-
work to run efficiently. However, modeling physical carrsansing has not been done in the

theoretical community.

A variety of models are proposed in the literature for wisslenetworks. Below, in Section
7.2 we first review the models so far proposed and point outsohtheir short-comings. We then
introduce our new model for wireless networks in Section TriBSection 7.4 we define the span-
ner problem and make some initial observations. Sectiordid&usses related work for overlay
constructions for wireless networks. In Section 7.6 a boiedrview of our entire protocol is pre-
sented. In Sections 7.7-7.8 we present and analyze ourghese protocol. The chapter ends with

a summary and acknowledgements.

7.2 Models of Wireless Networks

7.2.1 Unit Disk Graph (UDG) model

By far the easiest model of wireless models is called the disk graph model (see e.g.,
[47, 146, 138, 85]). In this model, all wireless nodes areiax] to have the same transmission

rangeR. The neighborhood of any node thus consists of all other sititt are within a distance
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Figure 7.1: Neighborhood of nodeaccording to UDG model.

R and all links are bidirectional. When the transmission eiggscaled td, we get the following

definition for unit disk graph.

Definition 7.2.1 (Unit Disk Graph) The graphG = (V, E)) with V' being a set of wireless stations
located in a 2-dimensional Euclidean plane and for any < V, the edgdu,v) € E if and only
if the Euclidean distance betwearandv is at mostl is called the unit disk graph corresponding

toV.

Transmission of messages are saithterfereat a node if at least two of its neighbors transmit
at the same time. A node can only receive a message if it da@stadere with any other message.
Figure 7.1 shows the neighborhood of nadaccording to the UDG model where nodédnas node

v andw as neighbors but not node and node: can interfere at nodesandw.

7.2.2 Packet Radio Network (PRN) model

In the packet radio network model (see e.g., [30, 80, 82,, 84 network is modeled as a
graph and the wireless units, or nodes, form the vertex selt,t&o vertices are connected by an
edge if and only if the corresponding wireless nodes areimitie transmission range of each other.
Thus, this model removes the assumption that all nodes haveaime transmission range and also

does not rely on Euclidean distances to model the transonissinge. The interference model is
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Figure 7.2: Neighborhood of nodeaccording to PRN model.

the same as that of the UDG model. Figure 7.2 shows the grapimeld by using the PRN model
where node: has nodey as a neighbor but not node, and node: can interfere at node but not
nodew.

The packet radio network model is a simple and clean mode¢laff@vs one to design and
analyze algorithms for overlay networks with a reasonableuant of effort. However, since it is a
high-level model, it does have some serious problems wittaicescenarios in practice. In reality,
the transmission range of a message is not the same as ifefiatee range and for the network in
Figure 7.2, itis possible that nodemay still interfere at node even though they are not neighbors.
There are other serious problems due to interference ttgatrtbdel suffers from, which we discuss

in Chapter 8.

7.2.3 Transmission, Interference Model

One of the drawbacks of the PRN model is that it models thefarence range to be the same
as that of the transmission range. However, in reality, therference range of a node is usually
bigger than its transmission range. There are a limited raunalb papers that use a model that
differentiates between the transmission range and théenégice range , see e.g,. [4, 55, 56, 57, 83].
In these models, in general, the interference range is taklea a constant factor bigger than that of

the transmission range. This is shown in Figure 7.3 where ndths node® andw as neighbors,
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Figure 7.3: The general transmission, interference model.

nodeu can interfere at node and nodeu cannot interfere at nodg As shown, these models still

assume a disk model in a sense that the transmission rangetarfdrence range can be modeled
by two distance values that hold irrespective of the pasith a node. Thus, this model can be
seen as an extension of the UDG model to handle a biggerémnteide range. We propose a more

general model.

7.3 A new model for wireless communication

In order to motivate our model, we first review some commordgditransmission techniques
in wireless communication. We will concentrate here on tBEE 802.11 standard because IEEE
802.11-based radio LANs are currently dominating the ntaake will most probably do so also in
the future. The IEEE 802.11 standard distinguishes betwdemysical (PHY) layer and a Medium
Access Control (MAC) layer for the transmission of messagée 802.11 MAC protocols are

based on Carrier Sense Multiple Access with Collision Aanice (CSMA/CA).
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7.3.1 Carrier sensing

The basic approach of the CSMA/CA scheme is as follows. Wireareenode has a packet to be
transmitted, it first listens to the channel to ensure thaither node is transmitting. If the channel is
clear, it transmits the packet. Otherwise, it uses an exptaidack-off scheme until it either finds
a time point in which the channel is clear so that it can trahgmpacket or aborts the transmission
due to too many failed attempts. (The idea of back-off is thla¢never a node that has a packet
to transmit experiences a busy channel, it retries at a gulese time with a reduced probability of
transmission. In exponential back-off, the retransmisgimbability is reduced exponentially.)

In wireless devices, there is usually just one antenna ftir bending and receiving, and hence
the nodes are not able to listen while sending. For this ahdrateasons there is no collision
detection capability like in the Ethernet. Therefore, amkledgment packets (ACK) have to be sent
from the receiver to the sender to confirm that packets haga berrectly received.

In wireless ad hoc networks that rely on a carrier-sensingoen access protocol, such as IEEE
802.11, the wireless medium characteristics generate leonphenomena such as the well-known
hidden-node problerand theexposed-node probleas shown in Figure 7.4. In order to handle
these problems, the MAC layer ugglsysicalandvirtual carrier sensingechniques.

The physical-carrier-sensing part of the CSMA scheme igigenl by a Clear Channel Assess-
ment (CCA) circuit. This circuit monitors the environmeaotdetermine when it is clear to transmit.
It can be programmed to be a function of the Receive Signehgth Indication (RSSI) and other
parameters. The RSSI measurement is derived from the $téite Automatic Gain Control (AGC)
circuit. Whenever the RSSI exceeds a certain threshold eaia@pEnergy Detection (ED) bit is
switched to 1, and otherwise it is set to 0. By manipulatingedain configuration register, this

threshold may be set to an absolute power value @B, or it may be set to bé dB above the
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(@) (b)
Figure 7.4: Figure in (a) shows the hidden node problem whedesA andC cannot send t@ at

the same time and (b) shows the exposed node problem wheamnot sent packets 10 while B
is sending ta4 asC senses busy medium thoughis out of the transmission range 6f

measured noise floor, whetean be set to any value in the range 0-127. The ability to nugextig
the CCA rule allows the MAC layer to optimize the physicalr@rsensing to its needs.

Virtual carrier sensing is usually achieved by using two toginpackets, Request-To-Send
(RTS) and Clear-To-Send (CTS), which are exchanged béferddta transmission is taking place.
Virtual carrier sensing has been added to 802.11 to mititiegéhidden node problem. More pre-
cisely, before transmitting a data frame, the source noddssan RTS packet to the receiving node
announcing the upcoming frame transmission. Upon reagittie RTS packet, the destination
replies by a CTS packet to indicate that it is ready to recdiegedata frame. Upon receiving the
CTS packet, the sender initiates transmitting the actual déoth the RTS and CTS packets contain
the total duration of the transmission, i.e. the overalktineeded to transmit the data frame and the
related ACK, so that other nodes within the transmissiogeaof either the source or the destination

stay silent until the transmission is complete.
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7.3.2 Transmission range, interference range, and physitearrier sensing range

Every data transmission mechanism has a minimum signabite ratio (SNR) at which a
data frame can still be transmitted with a reasonably lom&arror rate. The minimum SNRs for
802.11b, for example, are 10dB for 11Mbps, 8dB for 5.5Mbp& &r 2Mbps, and 4dB for 1Mbps,
and for 802.11a, 23dB is usually the minimum SNR for 54Mbpghk 802.11a standard [115], the
minimum dB values are defined as the received signal strdagéh at which the frame error rate
(FER) of a 1000-octet frame is less than 10%.

The SNRs above specify thinsmission rangeT X_RANGE, of the data transmission mech-
anism, i.e. the maximum range within which data frames célrbstreceived correctly. The trans-
mission range is highly dependent on the environment. Aomade model for determining the
transmission range is the log-normal shadowing model [82].1n this model, the received power

at a distance of relative to the received power at a reference distancg @f given in dB as

—-1046 loglo (d/do) + XO—

where @ is the path loss coefficient andl,, is a Gaussian random variable with zero mean and
standard deviatiom (in dB) that models the influence of the background nose@sually ranges
from 2 (free space) to 5 (indoors) [124]. For example, if theaived power at a distance of 100
meters from the transmitting node is 40 dB, then at a distafi@)0 meters, the received power
would be40 — 10 6 + X, dB = 20 + X, dB when we usé = 2.

When using forward error correction mechanisms as propwsttek IEEE 802.11e MAC stan-
dard currently under development, the transition betwesingoable to correctly receive a data
frame with high probability and not being able to correcthceive a data frame with high proba-

bility is very sharp. As shown in [25], it can be less than 1 dBus, in an ideal environment the
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transmission range is an area with a relatively sharp bdfdsrin reality, however, may be blurred
due to environmental effects.

A limitation of the shadowing model is that it is only applide in uniform environments. In
non-uniform environments, the signal strength can exkilpibn-monotonic behavior. For example,
it can happen that the sender positidrhas a smaller distance to a positiBrthan to a positiorC'
and yet the strength of the signal framreceived atB is lower than the signal strength received at
C. This can even happen B andC are close by.

The PCSRANGE is the range within which a node can detect a busy charseexplained
earlier, this range can be set through the CCA circuit. ThRANGE is the range within which
a transmitting node can cause interference at other nodess & transmission from nodecan
interfere a receiving node if v is in the IERANGE of u. Normally, IFFRANGE is larger than the
TX_RANGE and a good approximation is to use the range over whielsignal strength is above a
certain constant fraction of the white Gaussian noise.

From the above, it can be said that for the interference aydighl carrier sensing ranges
there does not seem to be a commonly accepted definitionétiggraSo we will use a conservative

model for these ranges to make sure that our results in thilehawe meaningful in practice.

7.3.3 Formal model

In our model, we assume that we are given aldedf mobile stations, onodes that are
distributed in an arbitrary way in a 2-dimensional Euclidespace. For any two nodesw € V,
let d(v, w) be the Euclidean distance betweeandw. Furthermore, consider any cost function

with the property that there is a fixed constarg [0, 1) so that for allv, w € V,

e c(v,w) € [(1—-9)-dv,w), (1490)-d(v,w)] and
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Figure 7.5: Properties of the new model for wireless comation.

e c(v,w) = ¢(w,v), i.e.,cis symmetric.

¢ determines the transmission and interference behavioodésand bounds the non-uniformity
of the environment. Notice that we do not requir® be monotonic in the distance or to satisfy the
triangle inequality. This makes sure that our model everiegppo highly irregular environments.
In Figure 7.5(a), for example, the distance betweeandwv is greater than the distance between
andw. Yet, the cost of communicating betweerandw, c(u, w), is bigger tharc(u, v). In Figure
7.5(a), node: can communicate directly with nodesa, andc but not with node$ andw. Similar
cost functions were also used in [87].

We assume that the nodes use some fixed-rate power-codtaml@munication mechanism
over a single frequency band. When using a transmission pofne, there is a transmission range
r¢(P) and an interference range(P) > r.(P) that grow monotonically withP. The interfer-
ence range has the property that every node V can only cause interference at nodesvith
c(v,w) < r;(P), and the transmission range has the property that for evasynbdesv, w € V
with ¢(v, w) < r¢(P), v is guaranteed to receive a message fiosent out with a power aP (with
high probability) as long as there is no other nade V' with ¢(v,u) < r;(P’) that transmits a

message at the same time with a powePafFigure 7.5(b) shows the above ranges for a nade
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For simplicity, we assume that the rafio= r;(P)/r.(P) is a fixed constant greater than 1 for
all relevant values of’. This is not a restriction because we do not assume anytiiagtavhat
happens if a message is sent from a node a nodew within v’s transmission range but another
nodew is transmitting a message at the same time witn its interference range. In this case,
w may or may not be able to receive the message frpiso any worst case must be assumed in
the analysis. The only restriction we need, which is imparfar any overlay network algorithm
to eventually stabilize, is that the transmission range sharp threshold. That is, beyond the
transmission range a message cannot be received any mémnen(gh probability). This is justified
by the fact that when using modern forward error correctechhiques, the difference between the
signal strength that allows to receive the message (with pigbability) and the signal strength that
does not allow any more to receive the message (with highgtibty) can be very small (less than
1dB).

Nodes can not only send and receive messages but also pgtfigsital carrier sensing, which
has not been considered before in models proposed in theithlge community. Given some
sensing threshold” (that can be flexibly set by a node) and a transmission pdwehere is a
carrier sense transmission (CST) rangkenoted-, (7', P), and acarrier sense interference (CSl)
range denotedr; (7, P), that grow monotonically with” and P. The rangery (T, P) has the
property that if a node transmits a message with powerand a nodev with c(v, w) < rg (T, P)
is currently sensing the carrier with threshdlti thenw senses a message transmission (with high
probability). The range; (T, P) has the property that if a nodesenses a message transmission
with thresholdT’, then there was at least one nadewith c¢(v, w) < 7 (7, P) that transmitted a
message with poweP (with high probability). More precisely, we assume that thenotonicity

property holds. That is, if transmissions from a Eebf nodes within the-,; (7, P) range cause
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to sense a transmission, then any supersét wiill also do so. The two sensing ranges are shown
in Figure 7.5(c) shows the sensing ranges. When all nodea traasmission powef and nodew
uses a threshold dF, in this example, node canalwayssense transmissions of nodavhile it
maysense transmissions of nollandcan neversense transmissions of node

For simplicity, we will assume in the following that for thartier sense ranges, for all relevant

values ofT" and P, 7 (T, P)/rs(T, P) = r;(P)/r¢(P).

7.4 Our contributions

Our contributions are two-fold: apart from the new modelfadreless networks, we demon-
strate how to develop and analyze algorithms on top of thidehby presenting self-stabilizing
local-control algorithms for building constant densityngiaating sets and spanners.

In our algorithms, the nodes do not requaney a-priori knowledge about the other nodes, not
even an estimate on their total number. Also, fixed identificanumbers of any form are not
required so that our protocols may even be applicable tontipeitant field of sensor networks. It
is sufficient for us if the nodes choose identification nurstss that there are no local conflicts
(which can be easily achieved with random, local-contrdbing strategies). In this case, we also
say that the labels atecally distinctmeaning that the label of a nodeis different from the label
of any nodev that is within the transmission range @f We only require that the mobile hosts can
synchronize in rounds of constant length. This can be dameeXample, with the help of GPS
signals or any form of beacons (that are sufficiently far tjatime for a round of our protocols to
complete).

In order to obtain a constant density spanner under an arpitlistribution of nodes, we pro-

ceed in two stages. First, we show that there is a simpleajlaigtd protocol to obtain a constant
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density dominating set, and then we show how to extend tlutopol in order to also obtain a
constant density spanner.

It is worth noting that our protocols only need a constant anmi@f storage at each node,
irrespective of the distribution of the nodes. The constamy depends on thé in our model.
Moreover, our protocols can self-stabilize even if somehaf hodes shovarbitrary adversarial
behavior. We only require the honest nodes that are outsidetain range of the adversarial nodes
to be placed so that they can in principle form a single comtecomponent. In this case, the
protocol would then arrive at a constant density spanneffimita amount of time. So our protocols

would even work for very primitive devices in hostile enviroents.

7.4.1 Constant density dominating set

We start with the following definitions for dominating setdamaximal independent set.

Definition 7.4.1 (Dominating set) Given an undirected grapty = (V, E), a subset/ C V' is
called adominating seif all nodesv € V are either inU or have an edge to a node . A
dominating setJ is called connectedf U forms a connected componentGh Thedensityof a

dominating sel is the maximum over all nodesc U of the number of neighbors thathas inU'.

Definition 7.4.2 (Maximal independent set (MIS)) Given an undirected graplty = (V,E), a
subsety C V is called anindependent sef for any pair of hodesy,w € U, there is no edge
betweerv andw in G. If an independent séf has the property that every nodec V \ U is a

neighbor of at least one node I, thenU is called amaximal independent set

Given an arbitrarily distributed st of nodes in a 2-dimensional Euclidean space, let the

graph@, = (V, E,) contain all edgegv, w} with d(v, w) < r. Suppose that we select a maximal
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independent sdt in @),.. Then this is also a dominating set of constant density [sauthe 2-
dimensional Euclidean space a node can have at most fiveboegtvithin a distance of that are
part of an independent setdp. [144]. Note that a constant density dominating set is alstnatant
factor approximation of a minimum dominating set, a welleséd problem in the algorithms and
wireless networking community.

Now, let us consider the gragh, = (V, E!) that contains all edgel®), w} such that(v, w) <

r. Sincec(v, w) < (1 +9) d(v, w), it follows from [144]:

Fact 7.4.3 Every nodev can have at most five neighbors within a Euclidean distaneg @f + 0)

that are part of an independent setd..

Otherwise, there must be a pairw € V with c(v, w) < (1+6)d(v,w) < (140)-r/(14+6) =7
that are in an independent setGf, a contradiction. Furthermore, because, w) > (1—6)d(v, w),
a node can only be connectedGf to nodes up to a Euclidean distancergfl — §). Hence, it is
easy to see that for every nodehere is a set’, of neighbors o in G, of constant size so that for
every neighbom of v in G, there is a neighbow’ € C,, with d(w,w") < r/(1 + §). Combining

this with Fact 7.4.3, we get:

Fact 7.4.4 For any independent set i@, it holds that every node in G, can have at most a

constant number of neighbors in this set, where the consigménds on.

Now, recall that any maximal independent set in a gréplis also a dominating set ifi,., and
according to the fact above, any maximal independent sét.ihas a constant density (i.e., every
node only has a constant number of neighbors in that set)cé{ém order to obtain a dominating
set of constant density, it suffices to design an algorithah ¢cbonstructs a maximal independent set
in G,.. It turns out that constructing such a set is quite trickyegithe uncertainties in our model,

but we can construct something close to that so that theafoip result holds.
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Theorem 7.4.5 For any desired transmission rangeand any initial situation, the dominating set
protocol generates a constant density dominating sef,irin O(log? n) communication rounds,

with high probability.

Hence, our protocol self-stabilizes withi(log? n) rounds. Interestingly, this result is only
possible because our protocol uses physical carrier sgndinis known that if physical carrier
sensing is not available and the nodes have no estimate sizhef the network, then it takés(n)

steps on expectation for a single message transmissiongindgessful [66] in any protocol.

7.4.2 Constant density spanner

We start with the definition of a spanner.

Definition 7.4.6 (Spanner) A subgraphH of a graphG is called a(topological)¢-spanneiof G if
for every pair of nodes, w in G there is a path ind from v to w whose length is at mosttimes
the minimum length of a path fromto w in G. In this caset is also called thestretch factoor the

spanning ratiaf H.

Notice that a connected dominating set forms a topologipahser. If the connected domi-
nating set has constant density, then we say that the regtitpological spanner also has constant
density. We thus extend the dominating set protocol by &tdit protocols that connect the nodes

in the dominating set via so-called gateway nodes so thdbtlosving result holds.

Theorem 7.4.7 For any desired transmission rangeand any initial situation, the spanner protocol
generates a constant density spannetinin O(D log?n + log* n) communication rounds, with
high probability, whereD is the maximum number of nodes that are within the transorissinge

of a node.
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All of our protocols can self-stabilize even under advaeddvehavior as long as the nodes

outside a range of = ©(r) of adversarial nodes form a connected componenit,in

7.5 Related work

The problem of finding a minimum dominating set is an impdrtastriction of the more gen-
eral set cover problem. The minimum dominating set problesmiteen proven to be NP-complete
in [48, 71]. If we take all nodes as dominating set then thib welude less than{A + 1) times
the size of optimal minimum dominating set, whekes the maximum degree in the graph, so an
O(A) approximation is trivial. The greedy algorithm first takea@de with maximum degree and
continues taking the node which covers maximum number ofwvered nodes until every node is
covered. This algorithm achievedae A approximation [65, 100, 137] and Feige [40] proved that
the approximation ratio achieved by the greedy algorithbeist possible, unless NP h#g(loglogn)
time deterministic algorithms.

The problem of finding a minimum dominating set has been showre NP-complete even
when restricted to unit disk graphs [27] and, hence, apprakibn algorithms are of interest. Recent
research focused on developing distributed (rather thatralezed) algorithms for finding good
approximations of minimum dominating sets in arbitrarygire. A simple and elegant distributed
approximation algorithm was proposed by Luby [102].

Distributed algorithms for small size of dominating setextensively studied. Liang and Haas
[97] presented distributed implementation of the greedyodihm. However, the runtime of the
algorithm in [97] can be polynomial in the number of nodedhia hetwork. Jia et al. [63] extended
this algorithm to obtain a local randomized greedy alganitivhich works inO(log nlog A) time.

The algorithm of [63] is also &g A approximation algorithm but the resulting dominating set i
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not guaranteed to be a connected dominating set.

Kuhn and Wattenhofer [84] proposed an algorithm based oneldxation techniques which
achievesD (kA?/¥ log A) approximation inO(k?) time for an arbitrary numbek. Recently, Dub-
hashi et al. [36] presentedlag A approximation algorithm for minimum connected dominating
set problem which works in polylogarithmic time. The key ehtion in [36] is to sparsify a
given graph as the resulting graph has only a linear numbedgés but still stays conected. It was
also shown in [36] that no such distributed algorithm thaisrino(n) rounds exists where as their
randomized algorithm runs i@ (log n) time.

Wu and Li [150] presented an algorithm finds an initial contadaominating set and removes
redundant nodes from this set. This algorithm requires tao imformation. This algorithm has
time complexityO(A?) and message complexi@(nA).

Alzoubi et al. [5] presented the first constant approximatdgorithm for the minimum con-
nected dominating set problem in unit-disk graphs witfr) time andO(n log n) message com-
plexity, respectively. Cheng et al. [23] proposed a polyiarime approximation scheme for the
connected dominating set problem in unit-disk graphs.

Huang et al. [60] formally analyze a popular algorithm useddiustering in ad-hoc mobile
network scenarios. They show that this algorithm actudligga 7-approximation for the minimum
dominating set problem in unit-disk graphs, while adaptpgmally to the mobility of the nodes
in the network.

Recently, Kuhn et. al. [83] presented a distributed albarithat computes a constant factor
approximation of a minimum dominating set@log? n) time without needing any synchroniza-
tion but it requires that nodes know an estimate of the tatahimer of nodes in the network. In

[119], Parthasarathy and Gandhi also present distribuigalitams to compute a constant factor
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approximation to the minimum dominating set. The runnimgetiof their algorithm depends on the
amount of information available to the nodes, and nodes ttakeow an estimate of the size of the

network. Both papers extend the unit disk model taking imimoant signal interference.

Spanners

Suppose that we have a set of nodleghat are distributed in an arbitrary way in a Euclidean
space. Fou,w € V, letd(v,w) denote the Euclidean distance betweesndw. The goal of the
geometric spanner problem is to find a gragh= (V, E) so that for each pair of nodesw € V
there is a path itz from v to w whose length is at most d(v, w) for some fixed constart In this
case( is called ageometrict-spannerof G wheret is the stretch factor.

Bose et. al. [16] proposed @(nlogn) time centralized algorithm that constructs a planar
t-spanner, fot < 10.02 , such that the degree of each node is at most 27. This is thalfjrithm
that constructs a planar spanner of bounded degree.

For constructing geometric spanners, several structuses heen proposed. It is known that
Delaunay triangulation is a planar t-spanner fo< 4v/37/9 [73]. Hence constructions based
on the Delaunay triangulation are studied e.g., [47, 93].14¥hile the spanner constructed in
[47, 93] is planar, the node degree is not bounded. Wang andi14i7] proposed an efficient
localized algorithm that constructs a bounded degree plasanner. This spanner has spanning
ratiot = max{%,wsin § + 1} - Cyg and each node has degree at most 25 wherea < /3
whereCyg| < 44/31/9 is the spanning ratio of the Delaunay triangulation.

Spanners based on the Yao graph [152] and the Gabriel gr&plaifd presented in [94, 148,
138]. Of these, the results of [94, 95] guarantee constagredeand constant spanning ratio but are
not guaranteed to give a planar spanner. Song et. al. [138}rwt a planar low degree spanner

combining the constructions of both the Gabriel graph aedvéo graph.
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For topological spanners, Dubhashi et. al. [36] presentedaaner with logarithmic stretch

factor. Alzoubi et. al. [5] presented a spanner with corissanretch factor of 5 where the protocol

is very similar to ours but uses a high-level model for wissl@etworks. Our protocol for selecting

gateway nodes also has similarities to the protocols pteden [146, 47]. However both these

papers are based on high-level wireless models.

7.6 Overview of spanner protocol

In the following, r; denotes the desired transmission range @ndrepresents the graph with

node sel” and edge sek,, containing all edge$v, w} with c¢(v, w) < ry.

Our spanner protocol faf,, consists of 3 phases:

e Phase I: The goal of this phase is to construct a constanitgeimsninating set in,,. This
is achieved by extending Luby’s algorithm [102] to our mommplex model. Since the
dominating set resulting from Phase | may not be connectediegd further phases to obtain

a constant density spanner.

Phase II: The goal of this phase is to organize the nodes ofldh@nating set of Phase |
into color classes that keep nodes with the same color siriflgi far apart from each other.
Only a constant number of different colors is needed for, thisere the constant depends on
0. Every node organizes its rounds into time frames congjstinas many rounds as there
are colors, and a node in the dominating set only becomesgeactiPhase Il in the round

corresponding to its color.

Phase llI: The goal of this phase is to interconnect evenygfaiodes in the dominating set

that is within a hop distance of at most 3@)., with the help of at most 2 gateway nodes,
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Figure 7.6: Two consecutive rounds of the spanner protocol.

using the coloring determined in Phase Il to minimize ir@egfice problems. Constructions
using gateway nodes were also presented in [47, 146] butrésga higher level model of

wireless networks.

Each phase has a constant number of time slots associated,wihere each time slot represents
a communication step. Phase | consists of 3 time slots, Rhegssists of 4 time slots, and Phase
Il consists of 4 time slots. These 11 time slots togethemfaround of the spanner protocol (see

also Figure 7.6). We assume that all the nodes are synclkwimizounds, that is, every node starts
a new round at the same time step. As mentioned earlier, thyskm achieved via GPS or beacons.

The spanner protocol establishes a constant density spagneinning sufficiently many
rounds of the three phases. All of the phases are self-giialgil More precisely, once Phase |
has self-stabilized, Phase Il will self-stabilize, and ®@fhase Il has self-stabilized, Phase Il will
self-stabilize. In this way, the entire algorithm can shbilize from an arbitrary initial configura-
tion.

It is not difficult to see that our spanner protocol resultaib-spanner of constant density:
Consider any pair of nodesandt in G,, and letp = (s = vg,v1,...,v, = t) be the shortest
path froms to ¢ in G;,. Then we can emulagevia the connected dominating set by first going to a
leader/y of s, then (possibly via gateway nodes) to a leafjeof vy, then to a leadef; of v, and
S0 on, until we reach a leadéy of ¢, and finally tot. The length of this path is at mo%t + 2 < 5k

for everyk > 1. Combining this with the time bounds shown for the variouag@s in the sections
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below results in Theorem 7.4.7.

Legend:
(] Active Node
o Inactive node
. Gateway node
—  Gateway
---  Other edges

Figure 7.7: The spanner of the original network.

An important feature of our protocol is that all messages aem of constant length and the
nodes only have to have a constant amount of storage, itesp®f the density of the network.
We just need the assumption that a storage unit is large @rtougiore the ID of any node. Hence,

our protocol can be used with very simple devices such aosens

7.7 Phase |: dominating set

Let P be some fixed transmission power with transmission rapged interference rangg
for which we want to construct a dominating set of constamisitg. That is, given any set of nodes
V', we want to find a subséf C V' of nodes so that every nodec V has at least one node € U
with ¢(v, w) < r; and at most some constant number of nodes U with ¢(v, w) < ry.

As mentioned earlier, if we want to reach the goal above irbalisear number of steps without
physical carrier sensing, then a good approximatiotvgf: is needed, where = |V|. Since our
goal is to arrive at a dominating set without using any prinowledge of the network topology,
physical carrier sensing has to be used, which complichesiésign as it has uncertainties (see
our model). To handle these uncertainties, we use a digtdbeoloring strategy together with two

different sensing ranges.
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In our protocol, nodes can either betiveor inactive The active nodes are the candidates for
the dominating set. The nodes use two different sensinghbtds, depending on their state. The
sensing threshold’, has a CSl range of; and the sensing threshold has a CST range of,. To
distinguish between these ranges, we speak about an aCSlTraitje whenever we medh and
iCST/iCSl-range whenever we me#h

Each node cuts the time intine frameof & roundseach for some constant numbethat is
the same for every node. The rounds are synchronized amengpties but we do not require the
frames to be synchronized.

Initially, all nodes are inactive. Afterwards, each node@xes the following protocol in each
round. In this protocol, each active node has exactly onedfactive round in a frame and a signal

is just a very simple message. Each item represents a coroatiom step.

1. If vis active and in its active round, thersends out an ACTIVE signal.

If v is inactive andy did not sense any ACTIVE signal for the ldstounds using a sensing
threshold off,, v senses with thresholfi,, and if it does not sense anything, it becomes active
and declares the current round number as its active roundlitf sense some ACTIVE signal

in one of the lask rounds, it just performs sensing with thresh@ldand records the outcome.

2. If v is active and is in its active round, then with some fixed pbiliig p, to be determined
later, v sends out a LEADER message containing its IDv lflecides not to send out a
LEADER message but it either senses a LEADER message wigshtbldT,, or receives

a LEADER message; becomes inactive.

In the following, letH, , = (V, E) be an undirected graph that contains an edge between two
nodesv andw if and only if v andw are active and use the same active round (or cdlcand

c(v,w) < r. Anodew is called aleaderif it is active and there is no other active nodeof the
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same color withe(v, w) < ry. Since inactive nodes sense with an iCST range; dfefore they
become active, none of the inactive nodewith c(v,w) < r; will become active in the active

round ofv. Hence, we get:

Fact 7.7.1 At any time, the set of leader nodes forms an independenh gét, i, that is discon-

nected from all other active nodes I., ;..

In addition, a leader node uses an aCSl rangg ahd will therefore not be affected by nodes

outside of a range of;. Hence, we arrive at the following fact.

Fact 7.7.2 Once a node becomes a leader, it will stay a leader as longe@sdit functiore does

not change.

Furthermore, an inactive nodecan only become active if in the previokgounds there was
no active nodev with c(v, w) < rs, wherer, is the CST range for thresholf,, because otherwise

v would have sensed the ACTIVE signalwfin one of these rounds. Hence, we also get:

Fact 7.7.3 There cannot be two leadersand w with c(v, w) < rs.

Sincer,/r, is a constant, the facts above and Fact 7.4.4 imply that duehs must form a set

of constant density idr,,. On the other hand, the following lemma is true.

Lemma 7.7.4 In any situation in which all active nodes are leaders butl#eders do not form a

dominating set with respect @,,, at least one inactive node will eventually become active.

Proof. From Facts 7.4.4 and 7.7.3 it follows that there can be at sasie constant numbef
of leaders within the iCSI range of any node. Hence; it &’ then for every inactive node that
does not yet have a leader within its transmission range tmeist be at least one rourdn which

there is no leader within its iCSI range. Because the inactade will continue to explore potential
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active rounds in a round-robin fashion as long as it sensemnarhission with threshold;, it will
eventually arrive at round and become active (unless some other inactive node closbdoomes

active before that). O

On the other hand, the following result is easy to check.
Lemma 7.7.5 Every connected component of active nodeH.ipy, results in at least one leader.

Thus, the algorithm eventually arrives at a situation whbege is no inactive node that does
not have a leader within its transmission range. At that fpdhre leaders must form a superset
of a maximal independent set @&,,. Thus, according to Facts 7.4.4, 7.7.3, and 7.7.2 the lsader
eventually form a static dominating set of constant dengttyemains to prove how much time is

needed to reach such a state.

Theorem 7.7.6 If all nodes are initially inactive, afte©(log* n) rounds of the algorithm, with high

probability, the leaders form a static dominating set of stamt density with respect 6,,.

Proof. The next two lemmata state important properties of condeotenponents of active nodes

in H,, .. Notice that a leader always represents a connected comiponéself.

Lemma 7.7.7 At any time step, H,, ;, consists of connected components of active nodes where all

nodes in a connected component were reactivated at the samd.r

Proof. Suppose that there are two adjacent nodes)dw, in some active, connected component in
H,, ; that were not reactivated at the same round. W.1.0.g: ke the first node that became active.

Thenw could not have become active becauss in its iCST range, leading to a contradictiom

For the next lemma, given an active nadeve definds(v) as the bit sequence in which tita
bitis 1 if and only ifv sent out a LEADER message in rounsince it joined its current component.

Is(v); denotes the firstbits of is(v).

178



Lemma 7.7.8 Every connected component of active node,in;, needs at mosP(log n) rounds,

w.h.p., until every node in it either becomes inactive ordnees a leader.

Proof. Consider any connected componéhbf active nodes i, ;. at some time point,, and
let C’ be the union of the connected components of active nodEs,ip that have at least one node
within the interference range of a nodeGh

Whenever a node becomes active attgrit cannot interfere with the remaining nodesdh
because it will be guaranteed to be outside of their interfee range (and therefore also of their
aCSl range). Hence, we only need to focus on the remainimgeanddes inC' U C”.

We prove the lemma in two steps. First, we show that it onlysaR(log n) rounds, w.h.p.,
until there are no two active nodesandw in C' U C’ wherew is within the aCST range af or vice
versa. Then we show that it only tak€glog n) further rounds, w.h.p., until there are no two active
nodesv andw in C that are within the transmission range of each other.

The probability that for any two fixed, active nodesandw it holds thatls(v); = ls(w); is
equal top’. Hence, ifi = clog; /, n, then the probability that there are two nodesndw in C'U c’
with Is(v); = Is(w); that are within their aCST range is at megt/p°'°#1/»" = n>=¢. Thus, the
probability that afterclog, ,,, n rounds there are still two nodes within the aCST rang€’io c’
that are both active is polynomially smallinfor ¢ > 2.

Hence, afterO(logn) rounds, there can only be at most some constant numloéractive
nodes within the interference range of any active nod€iwhered depends on the ratio between
the interference range and the aCST range. Thus, when clggost 1/d, then the probability that
exactly one of the active nodes within the interference easf@n active node in C'is transmitting a
LEADER message in a round &(p). Therefore, it takes at moéX((1/p) log; s, n) = O(dlogyn)

rounds until for every node in C that is still active there is no other active node in the tnaission
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range ofv, with high probability. O

Next we give a lower bound on the number of leaders that enfevgea connected component
of active nodes infZ,, ;. For the rest of the proof, we assume w.l.o.g. that- 1 andr; = 1 + «
for some constant > 0. We define the area covered by an active node the area that is within

the transmission range of

Lemma 7.7.9 For any time step in which the currently existing connectethjgonents of active,
non-leading nodes cover an area d4f = Q(log®n), the number of leaders emerging from these

components i€(A/ log?n), w.h.p.

Proof. Consider any set’ of connected components of active, non-leading nodes thesr an
area ofA. Given any node, letI'(v) denote the set of nodes € C with c¢(v,w) < 1 and let
v(v) = |T'(v)|. Let H be the directed graph resulting frofiby connecting two active nodesand
w by an edgév, w) if and only if ¢(v,w) < 1 andy(w) > 2v(v). A node is called &inkif it does

not have any outgoing edgeA. has the following important property:

Claim 7.7.10 Every nodev in H has a directed path to a sinkof length at mostog n.

Proof. First of all, H cannot contain a directed cycle. Thus, every directed patst mventually
end in a sink. Suppose now that some nedes a directed pathto a sinks of length more than
log n. Because of the definition of the edges, it follows thét) > 2% . y(v) > n - y(v), which

cannot happen because there are enhodes in the system. O

Recall that our cost function must satisfio, w) € [(1 — d) d(v,w), (1 + §)d(v,w)]. Thus, if
we consider disks of radiud + logn)/(1 — ¢), around the sinks aff, then the complete are&of

active, non-leading nodes is covered. To extract out ofiallssa set of sinks useful for our analysis
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below, we consider these sinks one by one. For eachsthkt has not already been eliminated,
eliminate all sinkss’ that are of distance at mo$from s and adds to a setS. At the end, we arrive

at a setS of sinks of pairwise distance at leassuch that disks of radius = (5 + logn)/(1 — 9)
around these sinks cover the entire arearlhus, the areal can be decomposed into areas of size
at mosta = 72 each containing a sink i, and thereforéS| > |A|/a. It is not difficult to show

that these sinks have the following property:
Claim 7.7.11 For any sinks € S, the expected number of active nodeF (g) that become a leader
isO(1).

For any sinks, let the random variablé(; denote the number of active nodeslTifs) that
become leaders and l&f = > X,. From Claim 7.7.11 it follows thaE[X]| > «|S| for some
constantx > 0, and because the distance between any two sinksisrat leastt, the X ; variables

are independent. Thus, we can use Chernoff bounds to obtain

Pr[X < (1 — €)a|S[] < e eI51/2

for anye > 0. This is polynomially small ife = 1/2 and|S| = Q(logn) is sufficiently large.

Hence, in this case,

alA|
Pr[X < «a|S|/2] =Pr [X < m]
is polynomially small, which completes the proof of the leenm O

Now, let us call a nodeinfinishedif it is active but not a leader or it is inactive and it does
not have a leader within its transmission range. We knowahainfinished node is either active or
must have at least one node within its iCSI rangg,that was active within the previousrounds

(because otherwise it would become active). Hence, wheninlgadisks of radiusr;; /(1 — ¢)
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around all nodes that were active in at least one ofitlpeevious rounds, the entire area that the
nodes can transmit messages to is covered.

Let Ay be the area covered by the transmission ranges of all thesniodthe system. If
Ay = Q(log®n), then Lemma 7.7.8 and Lemma 7.7.9 imply that aftétog n) rounds, the area
covered by the unfinished nodes is at most

AO—C‘1A20 :<1 L)AQ

B log?n

for some constant, with high probability. Thus, aftek stages ofD(log n) rounds each, the area

covered by the unfinished nodes is at most

k

_log n

with high probability. The right hand side is less thag®n if £ > (log Ag)(log?n)/c. Once an
area of sizeD(log>n) is reached, it follows from Lemma 7.7.5 that it takes o6lglog® n) more
stages ofD(log n) rounds each until there are no unfinished nodes any moree dine= O(n), it

follows that the total runtime needed for the set of activdesoto stabilize i€ (log” n). O

The dominating set algorithm can be easily extended so thelfistabilizes [32] and it is
robust against malicious behavior. Self-stabilizatioramsethat it can recover frormny initial con-
figuration.

7.7.1 Self-stabilization

An extra rule is necessary to provide self-stabilizationaese if the protocol above starts in a

configuration violating Fact 7.7.3, it may not succeed imleshing a dominating set.
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Consider adding a third step to each round of the protocol@bim this step, every active node
sends a leader message with probabjiggnd a transmission power so that its transmission range is
only equal to the aCST range. Adding now the rule that whenaneactive node receives a leader
message in that step for a round different from its activendythen it becomes inactive, we do not
have to assume anything about how the nodes are initiallyadet! in order to satisfy Fact 7.7.3.

So we get:

Corollary 7.7.12 for any initial situation, the extended protocol needs ashi¥(log* n) rounds to

arrive at a static dominating set of constant density witkpect toG,.,, w.h.p.

7.7.2 Robustness

Our dominating set algorithm is also highly robust agaimsteasarial nodes. For any node
let ther; ®ro-range ofv be defined as the union of the-ranges of all the nodes within th¢-range
of v. Given any distribution of nodes, let be the area covered by thg & r;-ranges of adversarial
nodes, where;; is the iCSI range of a node. Because in our protocol adveisaoides can directly
influence only nodes within their iCSI range, nodes beyomdr-thrange of these nodes can only

have leaders outside df, and leaders outside of will stay leaders forever, one can show:

Corollary 7.7.13 If the honest nodes outsideare connected ir@7,.,, then afterO(log® n) rounds,
the active honest nodes outsideform a dominating set of constant density with respeadfio

w.h.p.

7.8 Constant density spanner

In the next two subsections, we describe Phases Il and lletaild We use the following

notation. The constanl; refers to the number of active nodes that are within the fiatence range
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r; of any node. The constat refers to the number of active nodes that are withinther;-range
of any node, and the constapntefers to the maximum number of required gateway connestion
any active node. Finally) refers to the density of the network, i.e. the maximum nundferodes

within the transmission range of a node.

7.8.1 Phase Il - Distributed Leader Coloring

Similar to Phase |, each node organizes the time into tinmadsaconsisting ofd; rounds for
some constant that is the same for every node. Also here, the rounds arénsynized but frames
do not have to be synchronized among the nodes. We agaimasgige nodes to distinct rounds
using a coloring mechanism. While the coloring in Phase | da®e with respect t6r,,, we now
need a coloring of the active nodes with respeatfas,,, that is, we need the active nodes to be at
leastr; ® r; apart in order to receive the same color.

Every active node from Phase I tries to own one of the roundsadive node: is said toown
a round if no other active node within it & r; range is using that round. Active nodes are in one
of the state§owner, volatile}. An active node is in owner state if it already owns a round iariad
volatile state if it is still trying to own a round. Active ned in owner state always send their ID in
the first time slot of their round. Initially, every active d®is volatile. Active nodes in volatile state
choose an active round from thé; possible rounds uniformly at random. Active nodes in owner
state use a sensing threshdlgwith CST ranger; and active nodes in volatile state use a sensing
thresholdT;, with a CST range being equal to the CSI rang& gfr;;.

Active nodes do the following repeatedly. Every time a naglactivates, it sets its time stamp
to 0. This time stamp is used by active nodes in Phase Il topepenentries. Each item below

represents a communication step.

184



. Every active node in owner state that is in its active rosadds out a LEADER message

containing its ID and its current time stamp and increasesrite stamp by one afterwards.

. Every active node in owner state that is in its active rodadides with probabilityl /2 to

send out an OWNER message either in the first or second suiisségp 2.

. Every inactive node that sensed a LEADER message witshblg T, sends out a BUSY
signal. Every active node in volatile state that senses aBbi§nal in its active round

chooses a new active round uniformly at random.

. Every inactive node that sensed OWNER messages in bastegsbof step 2 with threshold

T, sends out a COLLISION signal.

If an active node in owner state senses a COLLISION signalsant an OWNER message
in the second substep, it changes into volatile state anokselsca new active round uniformly

at random.

If an active node in volatile state did not sense a BUSY or CIELON signal in its active

round, it becomes an owner.

With the above protocol we can arrive at the following result

Theorem 7.8.1 Once a stable set of active nodes is available, it holds: ¥ 4, then all active

nodes will be in owner state aftér(log n) rounds of the protocol, w.h.p.

Proof. We proceed as follows. There are two reasons due to whiclieantides have to look

for a new round. First, active nodes in volatile state mayoenter collisions because of other

volatile active nodes choosing the same round. This cabses to keep trying for another round.

Secondly, active nodes in owner state may receive or sengiision due to some volatile active
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node choosing the same round. Here nadbat owns a round may get a COLLISION signabif
chooses the same round am@ndwv are not within the interference range of each other and chose
to send the OWNER message in the second sub-step. Samhding its listening period does not
know about node:.

We now try to bound the probability that some volatile activale continues to be in volatile
state afteiO(logn) attempts. The probability that two volatile nodes choosestime round is at
mostﬁdl < 1 <1/4sincec > 4. Thus after2log n attempts, the probability that there is still
some active node in volatile state is at m@gf—g =1/n3.

Similarly, we can compute the probability that an ownenectiode has to change its round
due to some volatile or owner node. The probability that someer node has to change its round
due to a volatile node is at mo%dl(l/Q) < 1/e < 1/8if ¢ > 4. In the above calculation, the
owner node will have to change its rounds only if it chose &m$mit the OWNER signal in the
second sub-step of the second step. Thus &afteg n attempts, the probability that there is still
some active node in volatile state, that has to still look&foound, is at most/n?.

We can treat these two types of collisions as failure evemdsb@und the probability of failure
due to any event to be less th@xi1/n3) and hence w.h.p. aftéd(log n) attempts, all active nodes

become owners when> 4. O

Without the two types of signals BUSY and COLLISION and the tfifferent sensing thresh-
olds the coloring achieved may fail to g @ r; distinct. For any active nodéin volatile state,
the thresholdl’, and the BUSY signal helps to identify the presence of actoa@es in owner state
with the same active round so that active nodes in owner sitheut another active node in owner
state within the;; ® r;;-range will also keep this property in the future and aredfae safe from

becoming volatile again. The COLLISION signal is necessamesolve conflicts among close by
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active nodes in owner state with the same active round, wtachhappen if volatile nodes become
an owner in the same round, or this may be part of the initetkesivhen looking at self-stabilization.
In any case, the monotonicity assumption on the sensingrimodel is important to make sure that
there will either never be a conflict among owner nodes or idtiately a conflict when a collision
is detected.

The theorem implies that aftér(log n) rounds, all active nodes have chosen rounds so that for
any two active nodeé and/’ with the same round and any inactive nadeithin the interference
range of¢, ¢’ is outside of the interference range @f Hence,/ can transmit messages to nodes
within its transmission range without interference protde and one these nodes can transmit mes-
sages td without causing interference problems/aBoth properties are important for Phase 11l to
work correctly.

Another implication of the above theorem is that if any inactode listens to the channel
for a period ofcd; time steps, then it can gather the ID’s of all the active nddéts transmission
radius. This follows because once Phase Il stabilizeshallrctive nodes are in owner state and
hence continue to send their ID messages in the first sloeafaibhnd they own. As these messages
are free of any collisions, they can be received by the imactddes. This characterization is useful

especially in Phase Il where inactive nodes need this inédion to organize their data structures.

7.8.2 Phase lll - Gateway Discovery

In this section we describe the protocol for Phase lll. Thal @ this phase is for the active
nodes from Phase | to discover gateway connections to ahdels that are within a hop distance
of at most 3 inG,,.

During this phase, the active nodes use an aCST range @he active nodes use the rounds

reserved in Phase Il to achieve interference-free commtinit with the inactive nodes within

187



their transmission range. Each round consists of four titots $or communication in Phase llI,
where each time slot represents a communication step amsimolkigure 7.6. In the first time
slot, inactive nodes send CLIENT messages and in the sedoedstot the active node sends a
response accordingly; in the third and fourth time slotsjrattive nodeu may broadcast to its
(active and inactive) neighbors all the information it hagarding possible gateways between the
leader owning the reserved round and other leader nodes ihéard about. For simplicity, we
assume that all active nodes are reactivated at the samautidigence that we can directly compare
the time stamps with respect to the different active nodasedlity, each inactive node would
keep track of the offsets of the (constant number of) timeptait receives (in the corresponding
slots allocated to the different leaders in Phase Il) andhesse offsets when comparing time stamps
from different leaders.

We first describe the data structures that are maintainddgithis Phase. Each inactive node
u maintains a cache, calléd,, which has entries of the forif, v, t,) where/ is an active nodey is
an inactive node (with, = v possibly), and, is the time stamp with respect £at which the entry
(¢,v) is added tdP,,. When comparing entries in the caches acts as a wild card that matches any
value. The operatioenqueu€, v,t,) on P, is used to add the new entfy, v, t;) to P,. Enqueue
performs the following checks before actually adding thes emtry toP,. When adding a new
entry (¢,v,ty), any entry of the forn{¢, x,¢") with ¢’ < t, is evicted. If no such entry exists afij,
is full, then the least recently added enfry *,¢'), that ist’ = min{t|t < t, and (x, x,t) € Py},
is evicted to make room for the new entry. The caghehas space enough to store a constast,
number of entries. Inactive nodes also maintain a stateighetherawakeor asleepwith respect
to each active node that is within their transmission rafige asleepnodes just listen the channel

and becomeawakewhen they receive a FREE or a ACK message.
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Each active nodé maintains a list, called,, and each entry i, contains two fields. The
first field has gateways represented as quadruples of the(formwv, ¢') where? # ¢ andu = v
possibly,/ is an active node and, v are inactive nodes. The second field contains the time stamp
t, at which the entry was added &. The operatiorenqueueon G, is used to add a new entry
((,u,v,0"),tp) to G,. Before adding the new entr§(¢, u,v,¢'),t) to Gy, any entry of the form
((¢,%,%,¢"),t") is evicted fromG, for t’ < t. If the list G, is full, then the entry corresponding tb
such that’ = min{t"|t" < t and ((¢,*,,¢'),t") € G,}, that is the entry ofj, with smallest time
stamp, is deleted to make room for the new entry. (Similartqueueon P,, for inactive nodeu).
The listG, has space enough to store a constgmiumber of entries.

In the following, ¢ refers to the ID of the active node that owns the current shotwais an
inactive node that received the ID message froamd the state of is with respect td. Each item

below represents a communication step.

1. If u is awake then, sends out a CLIENT message of the fof@LIENT, ¢, u) with proba-

bility 1,/2.

2. Nodef responds with a reply in the next time slot which can be ofdHicems. If£ receives a
CLIENT message from node then/ addsu to N, by callingenqueuéu) and also sends an
acknowledgment containing the ID afas (¢, ACK, u). If £ only senses a busy channel but
does not receive any message, theands a collision message of the foffnCOLLISION).

If £ does not receive any message and also does not sense a busglctigel sends a free

channel message of the forffh FREE).

If u is awake and decided not to send a CLIENT message in the peeslot and receives a
collision message themgoes to asleep state. dfis asleep and receives a free channel or an

acknowledgement message thebhecomes awake.
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3. If u is awake and receives an acknowledgment containing the Ib tfen v will store

(¢, u,ty) iIn Py, t, being the current time stamp associated Wijthy callingenqueu€/, u, t,).

Node v also deletes any entries of the for ¢) from P, (since? is no longer inactive).
Nodeuw then broadcasts, in the third time slot, a mess#@daV , ¢, u, t,) to its neighbors. The

ADV message is sent with a probability to be determined later.

4. Nodeu builds one GATEWAY message containing all quintuples offtven ((¢, u, v, ¢;),t)
for eachj such that/; # ¢ with (¢;,v;,t;) € P,, wheret = min{t,,t;}, and sends the
message to its neighbors. The GATEWAY message is sent, wothapility p, in the fourth

time slot.

If v is not active and received an ADV messa@dV , ¢, u, t;) then it callsenqueué’, u, ty)
onP,. Nodev also deletes any entries of the fofm, ) or (x, ¢) from P, (asu is no longer

an active node nor i6inactive).
If ¢ is active and receives a GATEWAY message contair(it@gu, v, ?'),t), then/ stores

((¢,u,v,0"),t) in Gy by callingenqueué&(?, u, v, ¢'),t).

Before we analyze the protocol, we start with the followiagtf which follows from the obser-
vation that a necessary condition for an inactive noede transmit in step 3 and step 4 is to receive

an ACK from an active node in step 2.

Fact 7.8.2 During steps 3 and 4 of the protocol there are at most a cotstamberd; of nodes

that are transmitting any message.
Using this fact, we can prove the following theorem.

Theorem 7.8.31n O(D log? n) rounds, with high probability, each active node learns atmgate-

way to each of the currently active nodes in its 3-neighbodhwith respect ta@~,, .
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Proof. We prove the convergence of Phase Il to a set of valid gatesagections irO(D log? n)
rounds after Phase | and Phase Il have reached a stable State, at that point the active nodes
have reserved rounds that are distinct within thed r; range, we can treat the actions of active
nodes independent of each other.

Let (v, ¢) be an inactive node-active node pair such thags to send a CLIENT message to
¢. Nodew has at most(D) inactive nodes in its interference range sending a CLIENTsage
to some leader node. If more than one node is in awake state redpect td, decides to send a
CLIENT message, thefwill send a collision message. Since the collision messatjbsweceived
by the inactive nodes, withiry range of¢, awake nodes that decided not to send a CLIENT message
to £ in the previous slot will go to asleep state.

Consider time to be partitioned into groups of consecutoxnds such that each group ends
with a round where the active nodesends either an ACK message or a FREE message. (A group
ending with an ACK message signifies a successful group anulig @nding with a FREE message
is a failed group). Notice that at the end of every group, Weesuccessful or not, all the inactive
nodes within the-; range off go to awake state (by step 2 of the protocol).

It can be shown that the number of rounds in each group, ssfttew failed, isO(logn)
and any group is successful with constant probability devicdl. Consider any group. Firstly, for
an inactive node; in awake state, the probability thai stays in theawake state in the current
round of the group id /2, provided the group does not end in this round. Thus, afteunds, the

probability that there is still a set ef> 2 nodes that are still iawake state is at most:

tJ

ZD: (?) 1/2)7 Z eD/j27) < 1/n?

j:c :

whenr = 2logn + log D = O(logn). We now say that each group consists-of 1 = O(logn)
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rounds, with high probability.

Consider the round + 1. The probability that the group is successful is at I@§L2j(1/2)j
> 1/2, as during thgr + 1)st round, if there are only awake nodes then the probability that
only one of them sends a CLIENT message/ig’. Thus, each group is successful with a constant
probability.

Due to symmetry reasons any inactive node is equally likelye send a CLIENT message in

a successful group. Thus, during any successful group, gorem pair(v, ¢),

Pr[ v sends a CLIENT message successfully]te 1/2D.

Using Chernoff bounds, for any given pdis, ) the probability that it takes more thabk
groups so that sends a CLIENT message £fcsuccessfully will be polynomially small fok =
3logn. Thus any node requires at mosO (D log?n) rounds to send a CLIENT message/to
successfully w.h.p.

To proceed further, let and ¢’ be active nodes, witkd(¢,¢') < 3 and let(¢,u,v,¢) be a
gateway betweehand/’. Notice that oncé and/’ receive CLIENT messages fromandv respec-
tively, ¢ and/’ can establish a gateway connection between them as sudc8E#ENT messages
are followed by ADV and GATEWAY messages in the next timesheserved for this phase. With-
out loss of generality, we assume thasends the ADV message which when received bgsults
in v adding the entry(/, u, v, ¢') to the GATEWAY message thatsends. Along with Fact 7.8.2 it
holds that during every successful group the probabiligt thgets an ACK message and sends the
ADV message is at leadt/¢’ D for a constant! = 2ed; when we sep = 1/d;. And similarly
the probability that in a successful groumets an ACK message frof and sends a GATEWAY

message is at leasf ¢’ D.
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Thus, in each group,

Pr[¢ and¢’ discover a gateway connectior 1/¢” D

for some constant’ wherec” depends om’, andp = 1/d;. Using Chernoff bounds again, it holds
that/ and/’ can establish a gateway connectior8ifi D log n groups with high probability. Thus,
for ¢ and/’ to establish a gateway connectioi D log? n) rounds suffice with high probability.
Note that, after Phase Il stabilizes and after we let Phasarilfor O(D log? n) rounds, time
stamping will be enough to guarantee that we will always keggmation received at a leader node
¢ about a valid gateway connection between leader nédesl /', if at least one such connection
exists (since we have at most a constant number of leadesneitlein cost3r; from any given
leader node, and since we have at most a constant numbeidef leades adjacent to any inactive
node, constant sizB, andgy lists at inactive nodes and active nodeérespectively will suffice).

O

Note that this gateway connection may actually use anotbée @’ adjacent to in G,,, in
caseu received an ADV message froni later than that of) and before sending the GATEWAY
message td, but that does not affect our calculations in the above pasothey were done for a

generic gateway connection.

7.9 Chapter Summary and Acknowledgements

We have introduced a new and more realistic model for wisstesnmunication in this chapter.
As will be shown in the subsequent chapters, we can develog- tand energy-efficient protocols

for other problems on top of our constant density spanney. (Broadcasting and service discov-
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ery). In particular, we address the question of how to depigiocols that can self-stabilize under
adversarial influence using our spanner construction.

A preliminary version of the results in this chapter appegf75]. This work is done jointly
with Melih Onus and Andrea Richa, from the Department of Caotap Science, Arizona State

University.
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Chapter 8

Wireless Ad Hoc Networks:
Broadcasting and Gathering

8.1 Introduction

This chapter considers the problem of broadcasting andnrdbon gathering in wireless ad-
hoc networks. Broadcasting is the problem of sending a pduie a source node in the network
to all other nodes in the network. Information gatheringniss problem of sending 1 packets from
a subset of the nodes to a single sink node in the network.d8esting is one of the most important
primitives in wireless networks and it has therefore bedemsively studied both in theory and in
practice. Information gathering is also an important comiwation primitive for wireless networks
which arises in many contexts such as sensor networks.

Most of the proposed theoretical wireless network modeksrgimplify wireless communi-
cation properties. Such simple models can have a serioastadh the practical efficacy of the
proposed algorithms. We will use our model from Chapter T thiees into account that nodes have
different transmission and interference ranges, and weqa® algorithms in this model that achieve
a high time- and work-efficiency. Our algorithms have theaadage that they are very simple and
self-stabilizing, and would therefore even work in a dynamnvironment. Also, our algorithms

only require a constant amount of storage at any node. Thuslgorithms can be used in wireless
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systems with very simple devices, such as sensors.

8.2 Motivation

Broadcasting is a basic communication primitive for wisslenetworks, and it has therefore
been heavily studied both in the systems and in the theoryraamty. Though broadcasting itself
appears to be an easy problem, it is actually quite hard izeem an efficient and reliable way
in a mobile ad-hoc network. The main problem concerning ribizal investigations is that mobile
ad-hoc networks have many features that are hard to modetigaa way. So far, people in the
theoretical community have mostly looked at static wirelggstems (i.e. the mobile units are always
available and do not move).

Broadcasting in wireless networks has been the study ofalepapers. Recently, the focus
is on designing algorithms that assume no knowledge of thelagy of the network except pos-
sibly the size of the network. Wireless communication isalisunodeled using the Packet Radio
Network (PRN) model, described in Section 7.2.2.

The PRN model is a simple and clean model that allows to desighanalyze broadcast
algorithms with a reasonable amount of effort. Howevercsiit is a high-level model, it does
have some serious problems with certain scenarios in peactFor example, in reality it is not
true that the transmission range, of a node is the same as its interference rangelnstead, the
interference range of a node is usually at least twice ag laggjits transmission range. Not taking
this into account may result in broadcasting algorithmg tanot handle certain scenarios well,
although efficient on paper.

When both these assumptions are removed, it is quite clgatigno design efficient broadcast-

ing algorithms. The problem becomes more acute as it hasdiEamved in [112] that uncontrolled
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additional retransmissions of the message by nodes hitlgersctual receipt of message by some
nodes due to interference and excessive channel conterfluis phenomena is calldatoadcast

stormproblem in [112].

Figure 8.1: An example network with nodehe source of the broadcast.

Consider a simple broadcast algorithm for wireless netwavkere every node that received
the message retransmits the message with a probabillty2aduring every time step. Now consider
for example, a network af nodes where two nodesandt¢ and a seU of n — 2 nodes. Node is
the source of the broadcast message. All nodés ame within the transmission range ©but only
nodewv € U, is within the transmission range ofs in Figure 8.1. In this situation, when a bigger
interference range is not taken into account, nodeceives the message when nadgansmits
after the source nodesends the message. Thus, the broadcast algorithm hasmeuwftO(1) in
expectation and (log n) with high probability.

Let us reconsider the above example when the interferemmggera is bigger than the trans-
mission range;. Further let all the nodes il exceptv have the property that nodeas within their
interference range and outside of their transmission rasgghown in Figure 8.1. Thus, only node
v can successfully deliver the message tohereas any simultaneous transmission of nodds in

would just result in interference at For the above simple broadcast scheme, riad receive the
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message precisely when only nodé&ransmits and rest of the — 3 nodes inU do not transmit in

a given time step. In this scenari@(2") steps are required in expectation. It could be argued that
the above scheme is very simple and hence has poor perfoenvemenr; > r,. However, such

a scheme is typical of many algorithms for broadcasting ireless networks [90, 81, 30] where
during every time step there is a setaaftivenodes that have the same probability of transmitting
the message. In the aboaetivenodes are those that already received the message. Suohgisot
are also callediniform protocols in [66] and the runtime of such protocols in thevabexample
would beo(n) when we consider the situation that> r;.

The assumption that the size of the network or a linear egtiroithe size of the network is
available to the nodes in the network also over-simplifiesgioblem. Without an estimate of the
size of the network it was shown in [66] that for a single mgss@ be sent successfully(n) time
units are required in expectation, if physical carrier sagss not available. The reason for this
simply is that without knowledge of the size and no physieatier sensing, when using algorithms
that rely on an exponentially decaying transmission proigbnodes do not know when a round
ends.

Thus, it is required that algorithms for broadcasting ineMss networks handle the above
problems. One way to minimize interference problems isdoice redundant broadcasts. Heuristics
for reducing redundant broadcasts are studied in [112] higaous theoretical analysis is not
presented. There is a limited number of papers that use alntwatedifferentiates between the
transmission range and interference range [4, 55, 57],Hayt assume that nodes are distributed in
an ideal space so that the transmission range and intecferange of every node can be specified
in terms of Euclidean distance independent of the positfdhenode.

We will use our much more general model that is presentedtaildie Chapter 7 for designing
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self-stabilizing algorithms for wireless overlay netwsror broadcasting and information gather-
ing. In this context, self-stabilization means that theoathm terminates in a finite amount of time
at the end of which it also produces a valid output. Our ators work without knowledge of

size or a linear estimate of size of the network and also cadlbanterference problems in wire-
less networks. Our algorithms even work under the conditiat the node labels are only locally

distinct.

8.3 Related work

Broadcasting in wireless ad-hoc networks has been exwgsitudied in the literature, espe-
cially in the more applied ad-hoc networking community. §et9] for a survey. All of the works
on the broadcast problem cited below assume a static neseerkario where the transmission and
interference ranges of a node are the same and wireless aoigatian is modeled using the PRN
or UDG model.

In an early work, Chlamtac and Weinstein [24] presented ardenistic centralized broad-
cast protocol which assumes complete knowledge of the mkttopology and which runs in
O(D log®n) time, wheren is the number of nodes arfd is diameter of the network. Bar-Yehuda
et al. [11] were the first to present a distributed algorittonthe broadcasting problem in ad-hoc
wireless networks. In [11] and in all of the follow-up workteil below, no topological knowledge
of the network is assumed. Bar-Yehuda et al. [11] presemidormized protocol, based on a “decay
procedure” that mandates when nodes should attempt tmsetibia broadcast message, which has
expected completion tim@(D log n+log? n). Later, Kushilevitz and Mansour [90] proved a lower
bound ofQ2(D log (n/D)) on the running time of any randomized broadcast protocawafg that

the algorithm of Bar-Yehuda et al. is in fact almost optinihis was later improved for the case of
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symmetric networks (i.e., a nodecan directly communicate with a nodef and only if v can also
directly communicate with:) by Kowalski and Pelc [81] to obtain a randomized broadcagt-a
rithm with expected time complexit@ (D log (n/D) + log® n). Czumaj and Rytter [30] extended
the method by Bar-Yehuda et al. [11] to obtain an optimal cemided algorithm that completes
the broadcast ifO(D log (n/D) + log?n) time w.h.p. while not requiring that the network be
symmetric.

Adler and Scheideler [4] present approximation algoritforghe unicast problem in wireless
ad-hoc networks under the assumption that the transmissidninterference ranges are not the
same. This model is described in Section 7.2.3. But thdyastiume a simplified disk model based
on Euclidean distances. Their unicast algorithm also datdranslate directly into an efficient
broadcasting algorithm.

The problem of information gathering in wireless networkstudied mostly in the context of
wireless sensor networks. In [61], the authors show a waypwp$itucting a tree on which gathering
and aggregation can be performed. However, they do not ddathve problems specific to wireless
networks such as channel contention and interference andlalnot provide theoretical bounds on
time and work. Data gathering in sensor networks where themsenodes are placed at the vertices
of a 2-dimensional grid with the sink node at the center ofghé is studied in [38]. In [78], the
authors study gathering in simple topologies such as tlerd&twork and the cycle network. An
online algorithm is presented where the buffer overheag arkds to be by a logarithmic factor
higher than that of an optimal offline algorithm in order tdhiswe the same throughput. Also in
[35], the authors study the throughput achievable in a e@®lsensor network for data gathering.
Information gathering and aggregation has been studiedrigmpntally in [61, 104, 153, 58] but a

rigorous formal analysis for wireless ad hoc networks hasheen presented.
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8.4 Our results

We consider two important communication problems in weslad hoc networks, namely,
broadcasting and information gathering. In the followimgg first formally define the problems
considered in this chapter and then outline some of the keyqpties that our algorithms achieve.
We also note that our algorithms do not require many of tharaptions that are commonly made

in the existing literature.

Broadcasting

The problem of broadcasting arises in many scenarios windpeniation has to be dissemi-
nated to all the participants. It is thus not surprising thiitient broadcasting in wireless ad hoc

networks has attracted considerable attention.

Broadcasting: Given a static connected wireless networkwafodes, minimize the total time and
work to sendm > 1 broadcast messages originating from a source nameall the nodes in the

network.

Isolated Broadcasting Given any fixed node distribution with some source nedad any fixed
transmission range,, let D(s) denote the maximum distance (in number of hops) of a node from
with respect to transmission range We achieve the following results with respect to the case of

broadcasting a single message, ie.= 1:

Theorem 8.4.1 Given a constant density spanner as in Chapter 7, the isblateadcast algorithm
needsO(D(s) + logn) time w.h.p., to send a broadcast message frota all the nodes in the

network.
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Theorem 8.4.2 Given a constant density spanner as in Chapter 7, the istlateadcast algorithm
needsO (W (s)) work to send a broadcast message to all nodes in the systeene Wh(s) is the

optimal work required to send a broadcast message fsamall the nodes.

Broadcasting multiple messages We also show how to extend the isolated broadcast algorithm

to achieve the following result for the case where the sonomes has to broadcasi: messages.

Theorem 8.4.3 Given a constant density spanner as in Chapter 7, the coantibroadcast algo-
rithm needsD(D(s) +m+log n) time steps, with high probability, to deliver broadcast messages

to all nodes.

Theorem 8.4.4 Given a constant density spanner as in Chapter 7, the melidadcast algorithm
needsO(W (s, m)) work, wherelV (s, m) is the optimal work required to send from s to all the

nodes.

Information Gathering

Information gathering is another important communicapomitive in wireless networks. The
problem has applications in many scenarios such as datergeghin sensor networks [61, 153,
38] and maintaining connectivity with base stations in atirhdp wireless network. (The related

problem of how best to aggregate data at intermediate nedes discussed in this paper.)

Information Gathering:  Given a static connected wireless networknaiodes among whicin
packets are arbitrarily distributed, and a sink nad@ the network, minimize the total time and
work required for sending the: packets to the sink node.

We analyze a simple two-stage strategy that has the follptitne and work bounds:
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Theorem 8.4.5 Given a constant density spanner as in Chapter 7, the infoomaathering pro-
tocol needs)(D(s) + logn + m + A,, log? n) time steps w.h.p until all the packets are delivered

to the sink node. Here, A, refers to the density of inactive nodes that have a packednd.s

Theorem 8.4.6 Given a constant density spanner as in Chapter 7, the gathgsrotocol needs
O(W'(s,m)) work whereW’(s, m) is the optimal work required to send all the packets to the

sink nodes.

Our algorithms are self-stabilizing (i.e., can start in @piteary state) and can therefore adapt
to changes in a wireless ad-hoc network. Our algorithms doreguire any knowledge of the
size of the network. For our algorithms to work correctlysiiffices that the nodes in the network
have identifiers that are locally distinct. We only requinattthe nodes synchronize up to some
reasonably small time difference, which can be easily agtisined using GPS signals or any form
of beacons. Another important feature of our algorithm#i& 8 constant amount of storage at any
node suffices even in the case of gathering. The above piepanake our algorithms applicable to
sensor networks without any modifications.

Our results build on top of the distributed algorithm for aniging the wireless nodes into
a constant density spanner presented in Chapter 7. Thendenadf this chapter is organized as
follows. In Section 8.4.1 we introduce the notations usetharest of this chapter. The isolated
broadcast algorithm and the proofs of the respective tmesrean be found in Section 8.5. The
multiple broadcast case is addressed in Section 8.6. Thethlg and proofs for the information

gathering problem appear in Section 8.7.
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8.4.1 Notation

In this section, we present the notation that is used in theakthis chapter. Let” be the
set of nodes in the network. For any transmission rangket the graphG, = (V, E) denote
the graph containing all edgds, w} with ¢(v,w) < r. Throughout,r; denotes the transmission
range andi(u,v) denotes the shortest distance betweeandv in G,,. Furthermore, given any
nodes € V, D(s) denotes the maximum distance of any node~in to the nodes € V, i.e.,
D(s) = max,cy d(s,v). We also denote by’ the constant density spanner obtained using the
protocol presented in Chapter 7. Liétrefer to the set of active nodes @&, andg refer to the set
of gateway nodes. Recall from Chapter 7 that the constanefers to the number of active nodes

that are within the interference range, of any node.

8.5 Isolated Broadcasting

Let nodes be the source of the broadcast message. Sihes a maximum distance 6f(s) to
any node inG,,, D(s) is alower bound on the time an optimal offline algorithm neledsroadcast a
message from to all nodes. Our goal is to come up with a broadcast schenteasthie time needed
by the broadcast message to reach all nodes is as cld8ésfoas possible. We use the constant
density spanner construction of Chapter 7 as the basisislhot an active node, i.es,¢ U, then
let £ be some active node that is within the transmission range ©hens first sends the message
to £. The broadcast scheme then proceeds in rounds that areregizll among the nodes. In the
broadcast scheme beloéwrefers to the ID of an active node that owns the current sloerfgitem

below is a separate time step.

1. If £ received the broadcast message in the previous round anithé first time it received the

broadcast messagésends out the broadcast message.
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2. If v is a gateway node and has already received the broadcashgeediserv sends out an

RTS (Request-To-Send) message with proballity

3. If vis a gateway node and decided not to send out an RTS messageaor active node, then
v checks if it correctly received an RTS message. If so,@ahds not received the broadcast

message yet; sends out a CTS (Clear-To-Send) message.

4. If vis a gateway node and sent out an RTS messageyttieecks if it sensed a CTS message.

If so, v sends out the broadcast message.

Notice that inactive nodes just need to listen to the wiselgdsannel in order to receive the
broadcast message eventually. This is because our spdgasthen of Chapter 7 makes sure that
message transmissions of active nodes in step 1 above néxdeie at an inactive node. Thus only
nodes inU U G may need to retransmit the message.

The following theorem directly implies Theorem 8.4.1.

Theorem 8.5.1 Given the constant density spannel®i as described in Chapter 7, the broadcast
algorithm withp = 1/d; needsO(D(s) + logn) rounds, with high probability, to deliver the

broadcast message to all nodes.

Proof. Recall that every message has to traverse a path of lengtbstbf(s) to reach any node
via the nodes irU U G. Hence, consider any fixed node and letP be any shortest path from
s to v via the dominating set. Let < 5D(s) be the length ofP. Suppose that it takes at least
a+ ¢ time steps to send the broadcast message Tten there must have been at leadime steps
in which a node inP failed to forward the message to the next nodé’irand the time steps can
be associated with nodes of monotonically increasing ardét (by always looking at the node of

maximum distance fromin P that failed to forward the packet at any given time step). fAin@ber
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of possibilities to assigi out of thea + § time steps to nodes iR in increasing order is{“j{fs),
which is equal to the number of all binary sequences of lengthd with 6 1’s. A O represents the
event “move to the next node iR" and a 1 represents the event “failed transmission” at theeat

node inP. Since the probability of a nodeto fail is equal to

Pr[v did not decide to transmit the messagePr|v transmitted the message but failed
< (Q=p+pl-(1-p)" ) =1-p) +p1—(1-1/d)" ) <1-p+pl-1/e)

= 1—p/€,

it follows that the probability that the broadcast messaggds more than + ¢ steps withd = b - «

is at most

("3 a-prer < (A e < (e 4 pe)”

which is polynomially small im if b = Q((1 4 logn/«)/p). Thus, it takesD(D(s) + logn) time
steps until the broadcast message reaches any particdawnw.h.p., which completes the proof

of the theorem. O

8.5.1 Work Efficiency

Next we consider the work efficiency of the broadcast algarit We assume that the cost for
sending and sensing the RTS/CTS message is negligible tsew¢hanly need to bound the cost for
retransmitting the broadcast message.

Suppose that the area covered by disks of radjuaround all nodes in the system is

Then a lower bound for the number of message transmissioas optimal offline algorithm is
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|A|/(47r2). Next we prove an asymptotically matching upper bound ferasaadcast algorithm.

We show the following theorem.

Theorem 8.5.2 Given the constant density spannel®i as described in Chapter 7, the broadcast

algorithm need)(| A|/r,%) work to send a broadcast message froto all nodes.

Proof. Due to the constant density of the network of active nodesneeslQ(| A|/r;?) transmis-
sions of the broadcast message in order to reach all actiesndach active node has a fixed time
slot, and thus one transmission from each active node isgimifan all inactive nodes to receive the
message. Since the spanner construction from Chapter [fsréisia spanner of constant density,
O(]A|/r:?) messages will suffice to deliver the broadcast message ittaative nodes.

It remains to show that the work necessary for the active sitoleeceive the message (from
gateway nodes) is al€9(| A|/r;2). Note that an active or gateway node only sends a CTS message
if a broadcast message can be sent to it without interferiitly @her transmissions. Since every
active or gateway node sends a CTS at most once, the numberssfige transmissions necessary
for all active or gateway nodes to receive the message isl égjtlae total number of active and
gateway nodes, which 8(| A|/r:?).

Thus, the broadcast algorithm will sexd{(|A|/r;%) messages to send the broadcast message

to all the nodes in the network. O

8.5.2 Self-stabilization

The broadcast algorithm can also provide self-stabilimatWe add a fifth step to the broadcast
algorithm in which if a node just woke up or moved, themsends an AWAKE signal. Furthermore,

we replace the first step with the following step:

e If 7 is active and received the broadcast message in the prendaod and it is the first time
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it received the broadcast message drsensed an AWAKE signal in the previous round or if

¢ just became active in this rounélsends out the broadcast message.

8.6 Broadcasting Multiple Messages

Next we look at the case that the sourcevants to send out multiple broadcast messages
instead of just one. Thenattaches continuous sequence numbers to the messagesg stéth 1.

The broadcast scheme proceeds in rounds that are synatmcgnizong the nodes. Each active
or gateway node keeps track of two numberg, andj,. Numberi, denotes the minimum message
numberv has not received so far and numbgrdenotes the minimum message numhekrfows
about since its last successful transmission attempt) a nbdistance at most; from v has not
received so far. In the broadcast scheme belomfers to the ID of an active node that owns the
current slot. Initially, for each gateway and active nedé,=j,=1. In each round, every node+# s

does the following. Each item below represents a separatediep.

1. If ¢ received the broadcast message with sequence nufmbey in the previous round, then

it setsi, = iy + 1 and sends out the broadcast message with sequence niimber
If v is a gateway node and received a broadcast message witmsequenbei’ = i,,, then

it setsi, =7, + 1.

2. If vis an active or gateway node, then it sends oURIR, i,) message (RTR means "Ready-
To-Receive”) with probabilityp. If v decides not to send out an RTR message, it checks
whether it is able to receive §RTR, ') message. If so, it sefs = min{j,,'}.

3. If vis a gateway node ang > j,, then it sends out afRTS j,) message with probability.

If v is a gateway node and decided not to send out an RTS messags an active node,
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thenv checks if it correctly received afRTS ;') message with’ = i,. If so, v sends out a

CTS message.

4. If v is a gateway node and sent out @i'S j,) message, then checks if it sensed a CTS
message. If sa; sends out the broadcast message with sequence nymbéfterwards,v
setsj, = min{j, + 1,4, — 1}. If v is a gateway node and did not send a message but received

a broadcast message with sequence nuriberi,, then it sets, = i, + 1.

The source nodeuses the same protocol as above with the only differencétivally executes
the first step. As in the case of isolated broadcast algoritheninactive nodes just need to listen to
the wireless channel in order to receive the broadcast messaventually. Only active nodes and

gateway nodes may retransmit the messages.

8.6.1 Time Efficiency

The following theorem demonstrates that this protocol hhgyh time efficiency. Recall that

dy refers to the number of active nodes that are within the fiatence range;;, of any node.

Theorem 8.6.1 Given the constant density spannergf as described in Chapter 7, the multiple
broadcast algorithm witlp = 1/d; needsO(D(s) + m + log n) rounds, with high probability, to

deliverm broadcast messages to all nodes.

Proof. The proof involves substantial extensions to the proof oddrbm 8.4.1. We use a delay
sequence argument to prove the theorem. For simplicity, sgerae each round of the algorithm
takes one time unit. Let be the last node that received all broadcast messagésung, let
P = (ug = s,uq,...,uqy = v) be any shortest path of active and gateway nodes fréonw, and

let « < 5D(s) be the length of?. Suppose that it takes, time steps for all broadcast messages
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to reachv. Given a nodev, let m(w) denote the number of messages nodeas already received.
We go backwards in time from the moment the last message edachnd move monotonically

backwards along® from v,,, = v so that at any time we stay at a nadgwith

o m(u;) =m,

e m(w) = m — 1 for some nodev within ranger; of u;, and

e m(w) > m — 1 for all nodesw within ranger; of ;.

Such a node is callegh-active. This is done until we reach the first time stgp ; at which
there is a nodes;, with j° < j that is notm-active. We then set;; = v,,_1. An m-active node
must always exist at any time froty,_; + 1 to ¢,,, because within these steps, every node fscim
the currentu; must have only neighbors with m(w) > m — 1, s has allm messages, and at step
tm, uqg—1 has initially at least one neighbar with m(w) = m — 1, namelyv.

From stept,,,_1, we go backwards in time and move monotonically backwardsgP from
vm—1 SO that at any time we stay at a noggthat is currentlyn — 1-active. This is done until we
reach the first time stefy,_» at which there is a node;: with j’ < j that is onlym — 2-active. We
then set thisi;; = v,,,_o. Again, anm — 1-active node must always exist at any time from o + 1
to t,,—1 because within these steps, every node froto the currentu; must have only neighbors
w with m(w) > m — 2, s has allm messages, and at stgp_, the node before,,,_; has initially
at least one neighbar with m(w) = m — 2, namelyv,,, .

Continuing with this argument gives us a sequence of neges . , v, of monotonic order
from s to v and a sequence of time steps< ¢ < ty < ... < t;—1 < t,,, With the property that
betweent; + 1 andt;;; there is a monotonic sequenceiof 1-active nodes from; to v;, 1. For

anysi, at mostd; - /; of the time steps from; + 1 to ¢;,1 can represent successful transmissions (i.e.
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message + 1 was successfully sent from; to some active or gateway nodewithin ranger; of

u;), wherel; is the distance along from v; to v;1. This is because every active or gateway node

betweenv; andv; 1 has at most/; other active or gateway nodes.

Hence, altogether, there can be at mégt successful transmissions. All others must have

failed. Alltransmissions of active nodes are successiiutesthey have fixed time slots. For gateway

nodes, the probability of a transmission to fail is at most

Pr[u; did not decide to send a message

Pr[u; decided to send a message with an incorrect sequence number

Pr[u; decided to send a message but fgiled
<(1=p)+p((L=p)+p1l -1 -p" )+ (1 - 1-p)")

<1-(p/9)

Thus, the probability that the broadcast message needstham® + § steps,S = dya + m with

0 =b-5is at most

<S§6> @(1 —p/9) < <6(Ss+ 5)>S <seS )S_a (1—p/9)" < (3e(1 +b)e /)3

—

This is polynomially small im if b = Q((1 + logn/S)/p). Thus, inO(D(s) + m + logn)

time steps all broadcast messages reach all active andagatemdes, with high probability. Since

each active node has a fixed time slattransmissions from each active node is enough for inactive

nodes to receive all messages. Thus){D(s) + m + logn) time steps, all nodes will receive all

m messages, w.h.p.. O
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8.6.2 Work Efficiency

The following theorem demonstrates that this protocol hiaigla time efficiency.

Theorem 8.6.2 Given a constant density spanner@f, as described in Chapter 7, the multiple
broadcast algorithm need3(m|A|/r;?) work to send alin broadcast messages to all nodes in the

system.

Proof. The proof is very similar to the proof of Theorem 8.5.2. A lovilwund on the number

of message transmissions of an optimal offline algorith(is:| A|/r;2). Similarly, O(m|A|/r:?)
messages will be sufficient to deliver broadcast messages to all inactive nodes@d|A|/r;?)
messages will be sufficient to deliver broadcast messages to all active nodes. Thus, the broadcast
algorithm will needO(m|A|/r:?) messages w.h.p., to send broadcast messages to all nodes in

the system. O

8.6.3 Self-stabilization

The multiple broadcast algorithm can also provide selbifitmtion. We can add a fifth step
to the broadcast algorithm in which if a nodgust woke up or moved, then sends an AWAKE
signal. Each active nodealso keeps track of numbéy, which is initially equal to 1. Numbet,,
denotes the minimum message number a newly awake or arrdgelaf distance at most from v

has not received so far. We replace the first step with thevidtlg step:

e If /received the broadcast message with sequence numbey in the previous round, then

it setsi, = i, + 1 and sends out the broadcast message with sequence niimber

If £ sensed an AWAKE signal in the previous round, it gets- 1. If k, < iz, £ sends out the

broadcast message with sequence numpeand sets, = k, + 1.
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8.7 Information Gathering

In this section we consider the problem of information gatigein ad hoc wireless networks.
Information gathering is an important communication ptiva in networks where all the packets
have the same destination called ik Thus, one can view the process of information gathering
as the reverse process of broadcasting from the sink nodeco&der the situation where a total
of m packets distributed in an arbitrary way among the nodes énvilieless network are to be
delivered to a sink node in the network. We seek bounds on the time and work required fo
all them packets to reach the sink. Firstly, we comment fhét:) is a lower bound in the case of
wireless ad hoc networks since the sink node can accept abm@snessage during every time step.
Similarly, D(s) is also a lower bound on the number of time steps required s, Kl + D(s))
is a lower bound on any solution for the information gathgnqmoblem. In the following, we show
how to perform information gathering efficiently.

Our solution has two stages. In stage 1, we first build a tre¢etbats in G,,, called the
gathering tree T'(s), and establish some of the propertiesZdfs). In stage 2, we show how to
perform information gathering ofi(s) and prove time bounds for delivering the messages ts.
Each stage has 4 time slots reserved. We however note thstafge 1 to work correctly, the active
nodes need not wait for their owned timed slot to transmit REBWhessages. This is because of the
fact that active nodes that have a ROUTE message to sendhagsadt a distance & r; apart and
hence their transmissions do not interfere. By having titotsst is however easy to integrate the

following protocols along with the others.
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8.7.1 Stage 1: Building Gathering Tre€l(s)

We first show how to build the gathering tree. The sink nedéit is not in U U G, selects an
active node such thati(¢, s) = 1 and sends a route packet4avith sequence number éfof the
form (ROUTE s, 0). The rest of the nodes do the following. Initialt§(s, v) = oo, m(v) = NULL
for all v € U U G whered'(s,v) is an upper bound on the distancesab v andr(v) denotes the

predecessor af in a path fromw to s andd' (s, s) = 0 andn(s) = s.

1. If u € U UG receives a messag®OUTE v, d'(s,v)) from v with a sequence number of
d'(s,v)andifd'(s,v)+1 < d'(s,u), thenu setsr(u) = vandd'(s,u) = d'(s,v) + 1. Node
u also sets flag:) = 1 in this case, indicating that has to send a route message siance
updated its predecessor.udfis inactive andl’ (s, v) + 1 < d'(s,u) andv € U, thenu updates

7(u) = vandd'(s,u) = d'(s,v) + 1.

2. If £is active andl/(s, ¢) # oo and flag¢) = 1, then/ sends a ROUTE message of the form

(ROUTE ¢, d'(s,¢)) and sets fla@g) = 0 signifying that the update has been notified.

If w € Gandd'(s,u) # oo and flaqu) = 1 thenu sends a RTS message with probability

to be determined later.
3. If u € U UG andu received a RTS message thesends a CTS message.

4. If v € G andv sent a RTS message and receives a CTS message $keds a route message

(ROUTE v, d'(s,v)) and sets fla@) = 0 signifying that the update has been notified.

The above construction has the following properties. Tét= (V' , E’) be a graph with
V' =UU{s}ugGandE’ = {(v,n(v))|lv € V'}. Then,T" is a shortest path tree rootedsaor the
graphG” = (V" E")with V" = V' andE"” = En ((U U {s}) x G). We setT'(s) = (Vp, Er)
with Vr = VandEr = {(v,7(v))|v € Vr} wheren(v) is set as in step (1) of the above protocol.

214



Since the grapli=’ defined in Section 8.4.1 is a 5-spanner of the original netwigyr, it also holds
that maxey dr(s)(s,v) < 5 maxey d(s,v). Thus the maximum distance of any node frerm
T(s) is only a constant factor away from the maximum distance gfrantle froms in G.

Finally, we show the following lemma for the time steps regdito construct’(s) using the

above protocol.

Lemma 8.7.1 Given a connected dominating set of active and gateway neidesonstant density
d; in G,,, the protocol to construct the gathering tré&s) given above takes at moSt(log n +

D(s)) time steps w.h.p. when the probabilitys set tol/d; .

Proof. The proof follows from the following claim.

Claim 8.7.2 After O(d + logn) time steps it holds that w.h.p., all nodesc U U G that are at
a distanced from s in G have their predecessor pointeifv) such that the path from to s has

length ofd.

Proof. The proof of the claim follows by induction athstarting fromd = 0. Here onlys is the
node that has a distan@grom s and the claim holds in this case due to the initializationr the
induction step, assume that all nodes with distahbave their predecessor correctly assigned. For
any nodeu at distancel + 1 from s in G” let it take more thar{d + 1) + ¢ time steps to have
m(u) set correctly. Then in a path of lengthd + 1 from w to s, we can associat&nodes that are
monotonic in distance from that failed to forward a route packet. Using calculatiomsilsir to

that of Theorem 8.5.1, then a valued®of O(log n) suffices to get the claim hold w.h.p. O

Once we have the above claim, then the lemma follows as thémax distance of any active or
gateway node from is D(s). Inactive nodes do not have to send any route messages busean

step 1 of the protocol to set their predecessor pointer. O
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8.7.2 Stage 2: Gathering or{'(s)

In this section we show how to use the gathering tree corstiuin stage 1 to perform in-
formation gathering. Iff’(s), each node has an unique path to the sink nobg following the
predecessor pointers Nodes use this path system to eventually deliver packets However, in
our model, complications arise due to the fact that a lot atfive nodes choose the same active
node as their predecessor. All such nodes transmittingl&maously will result in interference.
Hence, we proceed as follows.

Of the 4 slots available for this stage, the active node Usefirst time slot to deliver packets
and the second and third time slots are used to coordinatctiens of the inactive nodes.

Nodes? € U U G have a queue calle@, which can hold a constant number of packets. This
gueue works as a first-in-first-out list and supports openstenqueueand dequeuewnhich add a
packet and return a packet respectively to the qugue

In the following, we only consider inactive nodes that hayeaeket. Thus when we refer to
inactive nodes, it is those inactive nodes that have a pdokstnd. Inactive nodes have a state

among{awake, asl eep}. Initially all inactive nodes are in thas| eep state.

1. If 2 is active and has an non-empty queue, theends the packetequeu&),) during the
time slot owned by. This packet has a destinatiari¢) and nodes other than(¢) discard
the packet and (/) stores the packet by callingnqueueon Q. In the second time slot,

the active nodes listen to the channel.
If ¢ is a gateway node and has a non-empty queue gleamds an RTS message containing
the id of r(g) with probability p, wherep is to be determined later.

2. Ifu € U UG and@, is not full andu receives an RTS message containing the id thfenw
sends a CTS message.
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If uis inactive and has a packet to send and awake thenu sends an I-RTfor Inactive-

RTS)message ta(u) with a probability1/2.

. If g is a gateway node and sent an RTS message in the previoustémearsl receives a
CTS message from(g) theng sends the packetequeué?),) to 7(g). This packet has a

destinationr(g) and other nodes that receive the packet ignore it.

If £is active and’ receives an I-RTS message from an inactive notleen? sends an I-CTS
message. If senses a busy channel but does not receive any I-RTS me#isagé,sends

a collision message of the forgf, COLLIDE). Otherwise if¢ senses a free channel then
¢ sends a free message of the fofffFREE). These messages are sent during the third

reserved time slot.

. If u is inactive andas| eep and receives a free message thehecomesawake. If v is
inactive and decided not to send an I-RTS message in theopietime step and is awake
and receives a collision message thetdecides to go tas| eep state with probabilityl /2.

If v is inactive and sent an I-RTS in the earlier step and gets@n3-thenu sends the packet

to 7(u).

We show in the following that the gathering protocol deseditabove is efficient in terms of

the time and work, and also it suffices for noded/itu G to have a queue that can store a constant

number of packets in transit. We use the paramatgrdefined to be the density of nodes that have

a packet to send. That ig),, refers to the maximum number of nodes that are within a disk of

radiusr; around any node that has a packet to send to

Lemma 8.7.3 For any inactive node, it takesO(A,, log? n) time steps w.h.p, untit sends the

packet to an active node that is within the transmission eaofy.
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Proof. The proof is similar to that of the proof of Theorem 7.8.3. &iva stable gathering tree,
the active nodes have reserved rounds that are distincirvtitle r; ® r; range, we can treat the
actions of active nodes independent of each other. In thenfirig, we can therefore concentrate on
a specific active node, sdy

Consider any inactive node-active node pgir,¢). Nodev has at mos©(4,,,) inactive nodes
in its interference range sending an I-RTS message to sadern@ode. If more than one node is
in awake state, with respect fodecides to send an I-RTS message, theiill send a COLLIDE
message. Since the COLLIDE message will be received by #wiwe nodes within; range of/
awake nodes that decided not to send a CLIENT messafjmtine previous slot will go to asleep
state.

Consider time to be partitioned into groups of consecutoxnds such that each group ends
with a round where the active nodesends either a COLLIDE message or an I-CTS message. A
group ending with a COLLIDE message signifies a failed grough@group ending with an I-CTS
message is a successful group. Notice that at the end of graup, whether successful or not, all
the inactive nodes within thg range off go to awake state (by step 3 of the protocol).

It is not difficult to show that the expected number of roundsach group, successful or
failed, isO(log n) and any group is successful with constant probability. Dugymmetry reasons
any inactive node is equally likely to be send an I-RTS meas#ag successful group. Thus, during

any successful group, for a given péir, /) ,

Pr[ v sends an I-RTS message successfull§j t 1/cA,,

for some constant > 1.

There areA,,, inactive nodes that compete to send a packet, and due to syynreasons,
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it then follows that there is a constant probability that(dA,,, logn) time steps any particular
inactive node can send the packet to the correspondingeactide. Using Chernoff bounds the

stated claim follows. O

For the queue size, node € U U G can associate slots in the queue with distinct nodes in
U U G that are its neighbors ifi'(s). Since there are onl§(d;) such neighbors and nodes have a
constant probability of forwarding a packet during eachetistep, it suffices to have a queue of size
O(d?) so that w.h.p. all packets in transit can be accommodated.

We can show the following time bound for any packet to reach

Lemma 8.7.4 Given a connected dominating set of active nodes with cohdtnsity at mosd;
in G,, and a gathering tred’(s) with sink nodes, the information gathering algorithm presented
above withp = 1/d; needs at mosD(m + A,, log? n + D(s) + logn) time steps w.h.p so that all

them packets reach the sink

Proof. We use a technique that is similar to the proof of Theorenl8Also, once a packet that is
at an inactive node reaches an active node, then it stays guibue of nodes i UG only before it
reachess. Thus we can consider the time required for any packet asutineos the time required to
reach a nearest active node and the time required to retiwbugh nodes iV U G. The former is
bounded by Lemma 8.7.3 for those packets that start fromautive node. Thus it is left to bound
the latter.
For the latter, we proceed as follows. Using the gatherieg,tevery packet that has to reach

s has to travel a distance of at ma@gD(s). Let the last packeP to reachs arrive at timeT; and
let uy = s. The packet” then must have reached some nodeine U U G at timeT} and is still

at nodeu; during all the time steps betwe&n and7; — 1. Continuing the history of further,

it must have reached some nodgec U U G at timeT, and during the time steps betwe&nand
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Ty — 1 is at nodeus. We can similarly follow the history of till it reached a node iV U G for
the first time. (It could be that the packet is initially at somode inU U G or it has reached a node
in U U G from an inactive node.) This means that all the attemptsnwdal the packet fromu; to

u;_1 in the above sequence failed between time sig@dT;_; — 1.

Since the active nodes use reserved time slots, the trasiemssof active nodes cannot fail.

For a gateway nodg, the probability that a transmission fails is at most:

Pr[g did not decide to transmit the messagePr[g transmitted the message but failed
< A=-p)+pl—(1-p" ) =0-p) +p(1—(1—-1/d)"") <1-p+p(l-1/e)

= 1—p/€,

for the chosen value gf = 1/d;. Now assume that it took more tha&h+ § time steps for
the last packet to reachfor some value o6 = bS with .S = 5d; D(s) + m. Out of these, at most

S attempts must have been successful and albthdempts have failed. The probability of this

happening is at most:

(S ;r 5) (1—(p/e))’ < <e(SS+ 6)>S (1= (p/e))’ < (6(1 N b)e—Pb/E)S

The above probability is polynomially small & = Q((1 + logn/S)1/p). Hence, for the
packets to reach, it takes at mos©(D(s) + m + log n) time steps once the packets have reached

some node i U G.

Now add both the time bounds, we get the final bound as stated. O

Finally, ignoring the work performed while sending the RC$5 message and the I-RTS/I-
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CTS message, since we use paths that are only a constamtdaetp from the shortest paths &

we get the following result with respect to work.

Theorem 8.7.50nce a stable gathering tree has been constructed, the magherotocol de-
scribed above need®(W'(s,m)) work to send all then messages to the sink nodewhere

W'(s,m) denotes the optimal work required to send theackets to the sink node

Proof. Ignoring the work done to send I-RTS message, it holds thaireactive nodeu performs
optimal work to forward a packet to(u).

For nodesJ U G we proceed as follows. We ignore the work done to send/redeWS/CTS
message. Each active node has a fixed time slot, and thusamsenission from each active node
is enough to forward the message from the active rfoer (¢) in the gathering tree. It remains to
show that the work necessary for the gateway nodes to forth@rdhessage (from gateway nodes)
in the gathering tree. Note that an active or gateway nodg serids a CTS message if a message
can be sent to it without interfering with other transmissio Since every active or gateway node
sends a CTS at most once, the number of message transmissimessary for all active or gateway
nodes to receive the message is optimal.

Thus, there are no unsuccessful packet transmissions metisrk when using the gathering
protocol. Since the paths to the sink nadm the gathering tree are only 5 times longer than the
shortest paths, any packet is forwarded along a path oftighgt is a constant factor away from the
shortest paths te.

Hence, it holds that the gathering protocol is work-optinugd to constant factors, to send all

the packets to the sink node O
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8.7.3 Self-stabilization

The algorithms presented for both the stages can be madstahilizing as follows. For stage
1, we require that nodes € U keep sending the current value @f s, v) as ROUTE messages
during the time slot owned by. When a nodev just wakes up, it first setd'(s,w) = —oo and
m(w) = NULL and listens to the channel for a period«f time steps for a constant> 3. During
this period, since other active nodes send their currenamii® estimate, node can update its
distance estimate and parent pointer accordingly. If aititly w € U U G thenw can participate
in sending ROUTE messages after the initial listening gkrichis would also imply that also stage
2 can recover from any initial configuration if every nodetthas a packet and continues to retain
the packet in case the predecessor pointer is undefined, INUgnoring those packets in transit
that were lost by nodes that have moved or been powered laffigabther packets can indeed reach

the sink node once the system recovers till stage 1.

8.8 Chapter Summary and Acknowledgements

Using our model presented in Chapter 7, we designed algesittor broadcasting and gath-
ering in wireless ad hoc networks. All our algorithms areaidint and self-stabilizing which is
an important property for distributed systems. The algpon$ are simple enough so that they not
only look appealing in theory but may also work well in praeti Further, our algorithms only re-
guire a constant amount of storage at any node which makédghetams highly useful in practical
situations.

A preliminary version of the results in this chapter appdare[76]. This work is done jointly
with Melih Onus and Andrea Richa from the Department of Cotep8cience at the Arizona State

University.
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Chapter 9

Conclusions

In this thesis we argued that formal study of overlay netwaskimportant to understand their
various aspects and properties. We have looked specifiadltyo different classes of overlay
networks namely, peer-to-peer networks and wireless adhatweorks. Our focus was in two direc-
tions: how to arrive at good topologies and how to designiefiicrouting strategies.

The results presented in this thesis improve the statbeshtt in many cases. For example,
our construction from Chapter 5 is the first known constarttio handle heterogeneity in a fair
generality while still being efficient. The time and work véed for join/leave operations also
match those of most known randomized constructions. Thdtsesf Chapter 6 present a unified
scheme to arrive at P2P topologies that can guarantee goperties.

In Part Il we started by providing a new model for wirelessntounication which takes into
account many of the limitations of existing models that aed.in the theoretical community. Using
this model, we presented self-stabilizing protocols feivarg at a sparse backbone. The backbone
is then used to support higher order communication primgtiv

While in this thesis we have studied aspects of topology audirrg in overlay networks,
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the taxonomy of algorithms for overlay networks is much lolexa In the context of peer-to-peer
networks, areas such as security issues, trust and reputimong peers, and accounting models
are gaining a lot of attention in recent years.

Building overlay networks that are robust against malisibehavior is still an open problem.
The first such construction emerged recently [132] but tkelte hold only for maintaining a cycle
network. Similarly, peers require mechanisms so that tiaeytiust the decisions of other peers even
when operating under the influence of malicious peers wihugitive tendencies. This is essential
so that peers can successfully delegate tasks or coopeitat@tiver peers. File sharing systems
need some accounting mechanisms so as to minimize frewnidhere a set of users behave in a
non-cooperative way and try to only benefit from others’ teses while not contributing to the
overall (social) benefit of the system. The decentralizeinreaof operation of overlay networks
certainly makes these problems much more difficult.

Thus, the area of overlay networks still has important proid that arise in many practical
settings. It it thus important to study analytical guarastepart form suggesting heuristics. For
this, it is required that such problems be formulated cleamhd justifiable assumptions be made to
analyze solutions.

Finally, while there exist several solution methodologtest researchers have found useful, as
the field matures itself it is worth-while to focus on devetapgeneral tools and techniques that
could prove useful in multiple settings. We anticipate thahe coming years, such generalization
would yield fruitful results. These take the flavor of witsdsee mechanisms [107, 130], network
flow based parameters such as the routing number [130] anflotienumber [74], which have

found wide applicability apart from their suggested apatiicn.
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