Graph Theory

Assignment 7 Kishore Kothapalli

Due: 27-APR-2009

Problem 1. Find the eigenvalues and eigenvectors of the adjacency matrix corresponding to K_n for $n \ge 1$. (3 Points)

Problem 2. An $n \times n$ matrix P is called stochastic if all its entries are non-negative and for each row i, $\sum_{i} P_{ij} = 1$. It is called "doubly stochastic" if, in addition, $\sum_{i} P_{ij} = 1$.

Show that for any stochastic matrix P, there exists an n-dimensional vector π with non-negative entries so that $_sum_i\pi_i = 1$ and $\pi P = \pi$.

(3 Points)

Problem 3. Let G be a connected graph and let $uv \in E(G)$. For any simple random walk on G, show that $h_{uv} + h_{vu} = 2m$ if and only if uv is a bridge. (3 Points)

Problem 4. Show that the resistance of the complete graph K_n is $\Theta(1/n)$ and hence conclude that $C(K_n) \in O(n \log n)$. (3 Points)