Graph Theory

Assignment 7

Kishore Kothapalli
Due: 27-APR-2009

Problem 1. Find the eigenvalues and eigenvectors of the adjacency matrix corresponding to K_{n} for $n \geq 1$. (3 Points)

Problem 2. An $n \times n$ matrix P is called stochastic if all its entries are non-negative and for each row i, $\sum_{j} P_{i j}=1$. It is called "doubly stochastic" if, in addition, $\sum_{i} P_{i j}=1$.

Show that for any stochastic matrix P, there exists an n-dimensional vector π with non-negative entries so that ${ }_{_}$sum $_{i} \pi_{i}=1$ and $\pi P=\pi$.
(3 Points)
Problem 3. Let G be a connected graph and let $u v \in E(G)$. For any simple random walk on G, show that $h_{u v}+h_{v u}=2 m$ if and only if $u v$ is a bridge. (3 Points)

Problem 4. Show that the resistance of the complete graph K_{n} is $\Theta(1 / n)$ and hence conclude that $C\left(K_{n}\right) \in$ $O(n \log n)$. (3 Points)

