Graph Theory

Assignment 4
Kishore Kothapalli

Due: 2-APR-2009

Problem 18. Prove that the deterministic algorithm for constructing a bipartite subgraph H of a given graph G will ensure that $|E(H)| \geq|E(G)| / 2$. (Hint: Use induction on n). (3 Points)

Problem 19. Think of the proof of Tutte's theorem regarding 1-factors in general graphs. How can we guarantee the presence of vertices x, y, z in the proof as discussed. (3 Points)

Problem 19. Prove or disprove: For every graph $G, \chi(G) \leq n(G)-\alpha(G)+1$. (2 Points)
Problem 20. Prove that every triangle free graph with n vertices is colorable using $2 \sqrt{n}$ colors (5 Points)
Problem 21. Let $V=\{0,1\}^{d}$ be the vertex set of a graph and the edge set is the set of vertex pairs that differ exactly at one bit position. Find $\chi(G)$ and a colouring using $\chi(G)$ colours. (3 Points)

Problem 22. Prove that every graph has a vertex ordering relative to which greedy coloring uses $\chi(G)$ colors. (3 Points)

Problem 23. Give a constructive proof of the following statement.
Every graph G can be coloured in no more than \sqrt{m} colours.

(2 Points)

