Graph Theory

Assignment 2

Kishore Kothapalli
Due: 23-FEB-2009

Problem 9. Show that the characterizations D,E, and F for trees are correct. For this argue that any or all of A, B, and C imply D, E, and F and are implied by D, E, and F. (2 Points)

Problem 10. Find 4 classes of graphs which are Eulerian. By a class of graphs we mean a set $\mathcal{G}=$ $\left\{G_{1}, G_{2}, \cdots\right\}$ so that \mathcal{G} contains one graph for every natural number. For example the class $P=\left\{P_{1}, P_{2}, P_{3}, \cdots\right\}$ is the class of graphs where the nth graph is a path on n vertices. Try to find classes with as few number of edges as possible. (1 Points)

Problem 11. Describe an $O(E)$-time algorithm to find an Euler tour of G if one exists (4 Points)
Problem 12. Use Matrix Tree theorem to find a matrix whose determinant is $\tau\left(K_{m, n}\right)$. Compute $\tau\left(K_{m, n}\right)$. (3 Points)

Problem 13. Let G_{n} be the graph on $2 n$ vertices and $3 n-2$ edges pictured below, for $n 1 \geq 1$.Determine $\tau\left(G_{n}\right)$. (4 Points)

