Graph Theory

Assignment 1

Kishore Kothapalli
Due: 22-JAN-2009

Problem 1. Suppose $d=\left(d_{1}, d_{2}, \cdots, d_{2 k}\right)$ is defined by $d_{2 i}=d_{2 i-1}=i$ for $1 \leq i \leq k$. Prove that d is graphic. (3 Points)

Problem 2. Prove of disprove:
In the BFS of a directed graph, there are no cross edges. In the BFS of an undirected graph there are no forward edges. (2 Points)

Problem 3. Prove or disprove the following claim:
In a DFS of a directed graph G, if there is a path from u to v and if $f(u)>f(v)$ then v is a descendant of u in the resulting DFS forest.

(2 Points)

Problem 4. In a DFS of a directed graph G, if $S=(d[u]-d[v]) *(f[v]-f[u])$, comment on the nature of edge $u v$ with regard to the sign of value of S, with S being nonzero.
(2 Points)
Problem 5. There are two types of professional wrestlers: "good guys" and "bad guys".Between any pair of professional wrestlers,there may or may not be a rivalry.Suppose we have n professional wrestlers and we have a list of r pairs of wrestlers for which there are rivalries.Given an $O(n+r)$ algorithm that determines whether it is possible to designate some of the wrestlers as good guys and the remainder as bad guys such that each rivalry is between a good guy and a bad guy.If it is possible to perform such a designation,your algorithm should produce it.
(3 Points)
Problem 6. Take an undirected graph of about 15 vertices and 20 edges and identify the bi-connected components of your graph using the algorithm presented in the lecture. (2 Points)

Problem 7. Read the definition of an edge cut of the form $[S, \bar{S}]$ from the lecture notes posted. Then solve the following problems.

- Compute $|[S, \bar{S}]|$ for $K_{m, n}$ when S has a vertices from one partite set and b from the other.
- Compute the maximum no of edges possible in an R partite graph.

(2 Points)

Problem 8. Give a Modified DFS algorithm which computes the low-points of all the vertices. (4 Points)

