Problem 1. Consider a directed graph having at least 15 vertices and 25 edges. Perform a DFS on the graph you consider, identify the start and finish times of all vertices, and classify edges according to the DFS. (10 **Points**)

Problem 2. For the graph you consider in Problem 1, perform a BFS and classify edges according to the BFS. (**10 Points**)

Problem 3. Give an example of a graph with negative edge weight(s) where Dijkstra's algorithm fails to work. Where in the proof of Dijkstra's algorithm do we require that edge weights are not negative? (10 Points)

Problem 4. Work out an example of Dijsktra's algorithm on a directed graph of about 8 vertices 15 edges. Show all your work. (**10 Points**)

Problem 5. Read the definition of the component graph of a directed graph from the book (CLRS). Given a directed graph G, give an O(n+m) time algorithm to compute the component graph of G. Your component graph should contain only one edge between any two vertices in the component graph.

(10 Points)

Problem 6. Work out an example of the Bellman-Ford algorithm on a directed graph of about 5 vertices 8 edges. Show all your work. (**10 Points**)

Problem 7. Let G be a directed graph with $(u, v) \in E(G)$. Prove of disprove:

(a) In any DFS of G, it is always true that f(u) > f(v)?

(b) In any BFS of G, it is always true that $\left(u,v\right)$ is a tree edge?

(10 Points)