CS 3100-Algorithms

Kishore Kothapalli

March 30, 2009

Problem 1 Let L be a given line that represent a long hall way in an art gallery. We are also given a set $X=\left\{x_{0}, \ldots, x_{n-1}\right\}$ of real numbers that specify the position of paintings in the hallway. A single guard can protect all paintings within distance 1 of his/her position (on both the sides). Design an algorithm for finding a placement of guards that uses minimum number of guards to guard all the paintings with positions in X.

Also prove the correctness of your algorithm. (Marks 10)
Problem 2 Consider a binary tree T such that for any node $u \in T$, we have an weight $w(u)$ assigned to it. An independent set of T is a subset S of nodes of T such that no nodes in S is a child or parent of any other node in S. Design a dynamic programming algorithm to find the maximum weight independent set of nodes in T where the weight of a set of nodes is simply the sum of the weights of the nodes in the set.

Prove the correctness of your algorithm. (Marks 10).
Problem 3 Assume that we have a machine m and we are given a set T of tasks specified by the start time and finish time. Unfortunately we have an additional constraint that no two jobs can be executed simultaneously. Design a greedy algorithm to maximize the number of tasks this single machine can perform.

Give the correctness proof for your algorithm. (Marks 10).
Problem 4 Work out an example with about 6 jobs to select a subset of these jobs with maximum profit for scheduling. Use the dynamic programing based solution and show all your work. (Marks 5)

Problem 5 Suppose we are given a collection $A=\left\{a_{1}, \ldots, a_{n}\right\}$ of n positive integers that add up to N. Design an efficient algorithm to determine if there exits a subset $B \subset A$, such that $\sum_{a_{j} \in B} a_{j}=\sum_{a_{i} \in A-B} a_{i}$. (Marks 10)

Problem 6 Describe an efficient algorithm for making change for a specified value with minimum number of coins assuming there are four denominations of coins with values $25,10,5$ and 1 respectively. Argue why your solution is correct. (Marks 5)

