The GPGPU Phenomenon :
Understanding its Scope, Applicability,

and its Limitations

Kishore Kothapalli
kkishore@iiit.ac.1n

International Institute of Information Technology

Hyderabad, India 500 032

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

The Need for Parallel Computing

® Parallel Programming is slowly emerging as a main-
stream topic given its requirement.

® Great emphasis in curriculum and research.

® Lots of interesting and important applications to
current problems
* Search — imagine searching in videos, apart from text
* Weather modelling, life sciences — real time weather
prediction is quite intensive computationally
* Digital multimedia and special effects — A 90 minute
movie can take up to 10% floating point operations.

® [ssues can be fundamentally different!

® Hence, a focussed effort to understand and apply is
needed.

® Several problems of practical interest, ranging from

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Synopsis
* GPUs as the main-stream computing platform.
- Can deliver up to 1 Teraflop at low price.

- Have matured from OpenGL extensions to vendor
specific C-like extensions such as CUDA.

* GPGPU
- Use GPUs for also general purpose computing

- Lots of success stories in several areas

- But, applications need to re-interpreted in massively-
multithreaded form to work on GPUs.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Synopsis

- Sample success stories
- Sorting [Vineet and Narayanan : HPG 2009]

- can now sort 16 M elements in under half a second.

- a variant of radix sort
- Several on image processing, eg. FFT

- Graph connected components
- Can process a 10 M vertex, and 60 M edges graph in half

a second.

- a variant of a popular parallel (PRAM) algorithm

- Many such success abound
- See SC 2010, GTC 2010, and major international

conferences

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Synopsis

 Researchers and practitioners alike want to understand
this phenomenon.

 Important questions

- The scope and applicability of GPGPU

- Algorithmic implications

- The limits of GPU computation

Some future trends

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

About this Tutorial

* Help beginners understand the GPGPU phenomenon.

- Tllustrate the GPU architectural model and its features.
+ Explore the GPGPU programming model

- Study a few examples including algorithmic and

engineering aspects.

* Touches upon future directions.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

About this Tutorial

+ Basic knowledge of computer architecture,
programming, and algorithms is assumed.

+ Knowledge of parallel algorithms and parallel
programming helpful, but not assumed.

- Efforts will be made to provide a quick review of
concepts required.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Schedule

0:10 — 0:30 : Basics of computer architecture
0:30 — 0:55 : GPGPU architectural features
0:55 — 1:20 : GPGPU programming

1:20 — 1:50 : Regular algorithms on the GPU
SHORTBREAK

2:10 — 2:40 : Irregular algorithms on the GPU
2:40 - 3:00 : Limitations of GPUs

3:00 - 3:20 : Future trends and directions
3:20 - 3:30 : Open discussion

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Basics of Computer Architecture

t=1 2 | 3 | 4 | g5 |
Fetch Decode| |Execute| | Write

- CPU Architecture

- 4 stages of instruction execution
- Too many cycles per instruction (CPI)

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Basics of Computer Architecture

t=1 2| 3 4 51
Fetch | |Decode | [Execute]| | Write
Fetch Decode | |[Execute| | Write
Fetch Decode | |[Execute| | Write
Fetch Decode | |[Execute| | Write

- CPU Architecture

- 4 stages of instruction execution
- Too many cycles per instruction (CPI)

- To reduce the CPI, introduce pipelined execution

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Basics of Computer Architecture

t=1 2 | 3 | 4 | 5 |
Fetch | |Decode | |Execute| | Write
Fetch Decode | |Execute| | Write
Fetch | |Decode | |Execute| | Write Cache
Fetch Decode | |Execute| | Write
 CPU Architecture

- 4 stages of instruction execution
- Too many cycles per instruction (CPI)

- To reduce the CPI, introduce pipelined execution

- Needs buffers to store results across stages.
- A cache to handle slow memory access times

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Basics of Computer Architecture

t=1 2 | 3| 4 | 5 |
Fetch | |Decode | |Execute| | Write
Fetch Decode | |Execute| | Write
Fetch | |Decode | |Execute| | Write Cache
Fetch Decode | |Execute| | Write
 CPU Architecture

- 4 stages of instruction execution
- Too many cycles per instruction (CPI)

- To reduce the CPI, introduce pipelined execution

- Needs buffers to store results across stages.
- A cache to handle slow memory access times

- Multilevel caches, out-of-order execution, branch prediction,

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

* CPU architecture getting too complex.

* Not translating to equivalent performance
benefits

* Need a rethink on traditional CPU architectures.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Basic Architecture Concepts

* Couple with this the new wisdom in computer
architectures

- Memory Wall — memory latencies far higher

- ILP Wall — Reducing benefits from instruction level
parallelism

- Power Wall - Increase in power consumption with
increase in clock rates.

- Multi-core is the way forward
— Ex: GPUs, Cell, Intel Quad core, ...
- Predicted that 100+ core computers would be a reality
SOOn.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Multicore and Manycore Processors

-+ IBM Cell (1 PPU + 8 SPU)

- NVidia GeForce 8800 includes 128 scalar processors,
Tesla, and Fermi (~500 cores)

- Sun T1, T2, and T3 (16 cores, 128 threads)
- Tilera Tile64 (64 cores, 100 cores in a mesh network)

* Picochip combines 430 simple RISC cores (multicore
DSP)

- Cisco 188

+ TRIPS (Tera-op, Reliable, Intelligently adaptive
Processing System)

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

+ Given the wide choice as evident from the last slide,
why are GPUs so popular?

- Several reasons

- Low cost and power usage
- Comparable peak performance

- Todays PCs already have a GPU card, used primarily for
graphical functions.

- While GPUs may not be suitable for all operations,
should use them for appropriate tasks.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

- Hardware: 8 — 16 cores to process vertices and 64 —
128 to process pixels by 2005.

— Vertices and pixels are important stages in graphics
processing

* Less versatile than CPU cores
SIMD mode of computations.
* Less hardware for instruction issue
+ Can pack more cores in same silicon die area

* No caching, branch prediction, out-of-order execution,
etc.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

More about GPUSs

* GPGPU - General Purpose Computing on GPUs

+ In their early years, can be programmed using OpenGL.
- Difficult however.

+ Present generation GPUs come with a programmable

interface.

- For instance, Nvidia supports a C-like interface called
CUDA.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

ceuyvs Gevu

Fundamentally, there are differences in design
philosophies.

Few powerful cores vs. lots of small cores.

No system managed cache in GPUs,

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

GPGPU Tools and APIs
+ CUDA - A programmable interface to Nvidia GPUs

* OpenCL - Open Compute Language : An abstraction for

several programming environments

* OpenGL - Programming interface for early generation
Nvidia GPUs

* Brook — A programmable interface to AMD GPU

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Schedule

0:30 — 0:55 : GPGPU architectural features
0:55 - 1:20 : GPGPU programming

1:20 — 1:50 : Regular algorithms on the GPU
SHORTBREAK

2:10 — 2:40 : Irregular algorithms on the GPU
2:40 - 3:00 : Limitations of GPUs

3:00 - 3:20 : Future trends and directions
3:20 — 3:30 : Open discussion

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

GPU Architectural Features
- We'll focus on one of the latest offerings from Nvidia,
the GTX 280, or the Tesla C1070.

* A general description that is applicable to other
offerings from Nvidia.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

lheGCIX280

576 mm?area

Processor g e Processor
Texture ST Texture
Cores R e Cores

JEETER BT WL T,

Processor - =" Processor
' » Texture
Cores

i
H
-
:
i

[Vt T

110 mm?area

Intel dual core CPU
ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

The GTX 280

* Large chip area of close to 600 sqgmm.
* May induce several manufacturing defects, but none
noticed so far.
* Thermal design power of 236 W
— Idle power consumption at 25 W
* Power consumption is not too high.
— For instance, Tianhe-I would have needed three

times more power, at 12 MW, if built using only
CPUs.

* Several other power modes also available at varying
power consumption levels.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

|
Processors have no local memory
Bus-based connection to a common,
- 500 times slower than computation

large, memory RE ? ;}
Resembles the PRAM model!

Uniform access to all memory for
No caches. But, instantaneous locality

a PE

of reference improves performance I
- Simultaneous memory accesses
combined to a single transaction MEMORY

Memory access pattern determines
performance seriously

Compute power: Up to 3 TFLOPs on a
$400 add on card
ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

GPU Architecture in Contrast to CPU

« CPU Architecture features: =
-

- Few, complex cores
)

- Perform irregular operations well

- Run an OS, control multiple 10O,
pointer manipulation, etc.

* GPU Architecture features:

- Hundreds of simple cores
operating on a common memory
(like the PRAM model)

- High compute power but high
memory latency (1:500)

- No caching, prefetching, etc

- High arithmetic intensity needed
for good performance such as
Graphics rendering, image/signal
processing, matrix manipulation,
FFT, etc.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Thread Scheduler

E 1?!5]5 T E=E EERE Bk 8 | ilEl BE

»»nD] b li]blblb] PN P]bl)lbl ilbllblbiblblbl
. > P :

WEIEEIE BaaRi | §E|§E|§i T

b lbibwlbihi blbllﬂilblb) ibiblbl)ibli)lbl IDlP])l)lPI
» " .

=i
=\
(313

-
Ib » li 12 »

1
]

Atomic

A ..
e ._._i.._ _— ! — | — Y
J

p— -—-—l S B I Tt | -—--':' .—--—-'-

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

High level Model

- Streaming multiprocessors (SMs) each of which is a
collection of 32-bit processors.

+ Each SM runs in a (Single Instruction Multiple Data
(SIMD) mode.

* Devices have multiple SMs, current generation have 30
of these SMs.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Streaming Multi-Processors

+ Streaming Multiprocessor
- 8 Streaming Processors (SP)
- 2 Super Function Units (SFU)

+ Multi-threaded instruction dispatch

- Shared instruction fetch per 32 insiuelen BaehBiEsay
threads

- Cover latency of texture/memory Shared Memory

loads

+ 30+ GFLOPS
, SFU SFU

- 16K registers

- Partitioned among active threads

16 KB shared memory
- Partitioned among logical blocks

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

More on GPU Memory Hierarchy
 GPU has several types of memory.
- Global memory
- Registers
- Shared memory

- Texture
- Constant

+ Understanding these memory types and their
properties is important for application performance.

- Before understanding the memory model, need some
concepts on threads, etc.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

~ ~ D
= _ —~ _ - & -l - A 4 A /% | AR /
g f

L

- A thread is the basic unit of computation.

+ 32 threads in a Warp or a scheduling group

- Only <32 when there are fewer than 32 total threads
+ There are (up to) 16 Warps in a Block

* Each Block (and thus, each Warp) executes on a single
SM

- GTX 280 has 30 SMs

+ At least 30 Blocks required to “fill” the device
- More is better

- If resources (registers, thread space, shared memory)
allow, more than 1 Block can occupy each SM

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

S

- Inter-thread communication is essential to parallel
processing.

- Rarely is there computation which does not require
communication between threads.

+ This inter-thread communication could be by messages,
or by sharing memory cells.

+ The former is quite difficult to implement compared to
the latter.

- GPUs have the latter feature.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

What can Threads Do to Communicate?

* Each thread can: Grid
- Read/write per-thread registers

- Read/write per-thread local memory
- Read/write per-bl9ck shared memory
- Read/write per-grid global memory
- Read only per-grid constant memory
- Read only per-grid texture memory = MemoryjsMemoryfis EMemory i = Memory
* The host can read/write global,
constant, and texture memaory.

Global Memory
21 I % I N

HOST Constant Memory
vy

Texture Memory

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

+ Nvidia GTX 280
- 16 K registers each 32 bit wide

- Registers shared across threads in a warp
- High speed access, just like registers in a CPU.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

GlobalMemory

+ Nvidia GTX 280
- 1 GB of common, off-chip global memory
- 130 GB/s of theoretical peak memory bandwidth
+ High memory access latency: 300-500 cycles
+ 128 byte, 64 byte, or 32 byte memory transactions
+ 10 special texture access units to the same global
memory.
+ 30 SMs grouped into 10 Texture processor clusters

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

W__
- NVidia GTX 280
- 16 KB of shared memory per block of threads
- 16 KB organized as banks of 1 KB each.

- Access to banks should be exclusive. Otherwise, requests

are queue up.
- Alike the Queue-Read-Queue-Write PRAM model.

- Low access cost
- Typically, to be used for variables used by more than
one thread in a warp.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Texture Memory and Constant Cache

* Constant Cache
* 8 KB per SM
* All threads in an SM can use it
* But only readable.
* Texture memory
* About 6-8 KB per SM.
* All threads in an SM can access this memory
* Butitis only readable.
* Typical uses
* Store the vector in matrix-vector computations.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

AMD 5870 Architecture

EfoJli’inflI:iHiilliHﬂ

[Memory Controller Memeory Controller Memory Contraller Memory Controller

DD l:ll:l EID EI:I

20 SIMD engines with 16
Stream cores
334 sqmm area
Each SC with 5 Pes (1600
Pes in total)
Each with IEEE754 and
integer support
Each with local data share
— 32 kb shared low
latency memory
— 32 banks with
hardware conflict
Management
— 32 integer atomic units
80 Read Address Probe
4 addresses per SIMD engine
4 filter or convert logic per
SIMD Global Memory access
153 GB/sec GDDRS memory
interface

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

- Thread divergence
- SIMD width is 32 threads. They all should execute the
same very instruction
- Serialization otherwise

+ Memory access coherence
- A half-warp of 16 threads should read from a local

block (128, 64, or 32 bytes) for speed
- Random memory access very expensive

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Thread 1
Thread 2

Thread 3

Thread 14
Thread 15
Thread 16

Segment 1 Segment 2 Segment 3

GLOBAL MEMORY

Segment n-2 Segment n-1 Segment n

Coherence of memory accesses

- Coalesced access is beneficial to threads
ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

f ~onsiderat _

Memory Transactions

v
— HHEEEEEEEEEEEEEEs Threads
B ik
128-byte segments 1‘
Thread 2

Thread 3

Segment 1 Segment 2 Segment 3 Thread 14
Thread 15

GLOBAL MEMORY Thread 16

Segment n-2 Segment n-1 Segment n

Memory Transactions

® Coherence of memory accesses
* Uncoalesced access is very costly.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

* Occupancy or degree of parallelism
- Optimum use of registers and shared memory for
maximum exploitation of parallelism
- Memory latency hidden best with high parallelism

* Atomic operations
- Global and shared memory support slow atomic
operations
- As these are most likely to be serialized, should be
used sparingly.
- Examples : histogram calculation

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

+ Hiding memory latency: Overlap computation & memory
access
- Keep multiple threads in flight simultaneously on each core
- Low-overhead switching. Another thread computes when
one is stalled for memory data
- Alternate resources like registers, context to enable this
- A large number of threads in flight
- Nvidia GPUs: up to 128 threads on each core on the GTX280
- 30K time-shared threads on 240 cores
+ Common instruction issue units for a number of cores
- SIMD model at some level to optimize control hardware
- Inefficient for if-then-else divergence

+ Threads organized in multiple tiers

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

0:55 - 1:20 : GPGPU programming

1:20 — 1:50 : Regular algorithms on the GPU
SHORTBREAK

2:10 — 2:40 : Irregular algorithms on the GPU
2:40 - 3:00 : Limitations of GPUs

3:00 - 3:20 : Future trends and directions
3:20 — 3:30 : Open discussion

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

*+ GPU is typically attached as a device to a CPU.

+ The CPU is called the host.

* Code to be run on the GPU is written as kernels

* A group of threads bunched together is called a block (a
WorkGroup in OpenCL)

* A group of blocks is a grid.

* OpenCL is very much inspired by CUDA, and given the

GPU hardware is common to both, the APIs and
approach are similar too.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Ihe SIMD Model

+ SIMD - Single Instruction
Multiple Data
- Also called as data parallelism
- Part of Flynn's taxonomy
- A popular model of parallel
execution.
- Data elements provide

parallelism
- Think of many data elements
each being processed
simultaneously
- Thousands of threads to
process thousands of data
elements

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

CUDA lems

+ An extension to the ANSI C programming Language
- Easy learning curve

-+ Language Extensions in form of
- Function type qualifiers providing a variety of functions
- Variable type qualifiers providing a types of variables
- Execution Configuration providing parameters to kernel
- Built-In variables support for block and thread Ids

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Function Type Qualifiers

- device (internal functions needed by main device

function)
- Executed on the device
- Callable from device

- global (main Kernel function)
- Executed on the device
- Callable only from the host

- host
- Executed on the host
- Callable only from host

- For functions executed on the device
- No support for recursion
- static variable declarations inside the function not allowed.
- C-style variable number of arguments not supported

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

- device

- Use with one of the options mentioned below
+__constant

- Resides in constant memory space

- Has the lifetime of an application

- Accessible from all threads and host
*Shared

- Resides in Shared Memory Space of thread block

- Only accessible from threads within the block

- Life time of a block

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

s i
- gridDim

- Variable holding the dimensions of a grid

- blockIdx

- Variable holding the block index within the grid

- blockDim

- Variable holding the dimensions of a block

- threadIdx

- Variable holding the thread index within the block
* Can not assign values to them nor can you get the

address of the above variables
- But useful to locate the data item that a thread has to
work on

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

One kernel is executed at a time on the device.

Many threads can execute a kernel.

- All threads run the same code.

Each thread has an ID that it uses to compute memory
addresses and make control decisions.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

GPU ProgrammingModel

Kernels are run in a CPU / Host GPU / Device
one after another ,
Grid
mode.
Block Block Block
Kernel has a Kernel 1 00 I 0y [02
11 ion of thr Block Block Block
collection of th eads W T D
arranged in grids. Z, N,
. Block(1,1)
Grld has up tO three Thread | Thread | Thread | Thread | Thread
dimensions. ; e | s | o | T | o
- Grid is again a 5 s s e s s |
collection of blocks. | | Kernel2 -
- Block consists of Bock [Block [Block
threads, with id for el L B

each thread.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

=chequlonoa ________________
* Blocks are assigned to SMs.
- One block completely processed before starting another
block.
- Multiple blocks can be assigned but only if resources
permit.
+ Within a block, warps are executed concurrently.

+ Can swap warps with zero overhead.
- But no guarantees on which warp is scheduled when.
- Scheduling policy is not public knowledge.
+ To fill the GPU completely
- At least 1 block per SM
- Each block has 16 warps, each of which has 32 threads.
- GTX 280 has 30 SMs, implying that at least 30x16x32 =
15360 threads to be in flight simultaneously.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

ASmallExample

void inc_cpu (int*a, intN)
{
int idx;
for (idx = 0; idx<N; idx++)
alidx] = a[idx] + 1;

voidmain() {

inc_cpu(a, N);

_ global__ void inc_gpu(int*a_d, intN)

{
int idx = blockldx.x* blockDim.x + threadldx.x;
if (idx <N)
a_d[idx] = a_d[idx] + 1;
}
void main()
{
dim3 dimBlock(num_threads);
dim3 dimGrid(ceil(IN/float)num_threads));
inc_gpu<<<dimGrid, dimBlock>>>(a_d, N);
}

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

+ Regular 1D, 2D, and nD
domains map very well to

data-parallelism.

- Each work-item operates by
itself or with a few
neighbors

* Need not be of equal
dimensions or length

A mapping from loc to each
domain should exist

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

lireqular Domains___

C
* An irregular domain generates . o O

varying amounts of data O
- Convert to a regular domain
- Process using the regular PY ®°
domain @
- Mapping to original domain
using new location possible a
+ Needs computations to do this
* Occurs frequently in data
structure building,work
distribution, graph algorithms, g

Sparse matrices, etc.

o
@y

e

f
ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Convert from irregular to

a regular domain

Each old domain element

counts its elements in a b ¢ d e f

new domain >l 3lo lal 2]3

Scan the counts to get

the progressive counts or 0

, , 2|5 |7 | 11|13
the starting points
Copy data elements to
own location.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

* Deep knowledge of Example Primitives
architecture needed to get

high performance

- Use primitives to build other
Add/Reduce

algorithms

- Efficient implementations on

the architecture by experts Scan/Prefix Sum

* reduce, scan, segmented scan:
- Aggregate or progressive

results from distributed data
Segmented Scan

- Ordering distributed info

- split, sort:

- Mapping distributed data

(Blelloch 1989 \

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

1:20 — 1:50 : Regular algorithms on the GPU
SHORTBREAK

2:10 — 2:40 : Irregular algorithms on the GPU
2:40 - 3:00 : Limitations of GPUs

3:00 — 3:20 : Future trends and directions
3:20 — 3:30 : Open discussion

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

 An important primitive in parallel computing.
- called as prefix operation in PRAM literature.

- Input : An array A of n integers.

- Output : An array S of n integers so that S[i] = X, PAfL

Input |4 |2 | O| 1|3 |5 | 6|7

Output |4 |6 | 6|7 | 10| 15| 21|28

* Very easy to compute in the sequential setting.
* Requires new techniques to solve in the parallel setting.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Solution Algorithmically

* Solution can be designed in the PRAM model as follows.
* Define an array B of size n/2 so that B[i] = A[2i] +
Al2i+1].
- Let S, be the prefix sums of B.
- So, S[il = X_, B[jl.
- Using S,, we can compute S as follows.
- S[1] = A[1]
- S[2i] = £_2A[j]l = £_,B[j].
- What about S[2i+1]. Indeed, S[2i+1] = S[2i] + A[2i+1].

- Once, even indices of S are computed, can compute odd
indices by one more addition.

 For more details, see JaJa [Chapter 2]
+ Technique has the name called balanced binary tree, with

applications to several parallel computations.
ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Balanced Binary Tree — Prefix Sum

Xa
Upward traversal

al +a2+ a3+ a4 a5+a6+a7+a8

al + a2 a3 + a4 ab + a6 al/ + a8
0 En

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Balanced Binary Tree — Prefix Sum

Y a
Downward traversal
— Even indices

al+az+a3+ad a5+a6+a7+a8

al+a2+a3+a4

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Balanced Binary Tree — Prefix Sum

Ya
Downward traversal
— Odd indices

al+az+a3+ad a5+a6+a7+a8
a3 + a4 ab + ab a’ + a8
al+az2+ > a

a.l + 8.2 Zi:l6 ai i

a3 + a4

(al+a?) + a3

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

The PRAM Alqoit

Shown on the right side is a
pseudo-code in the PRAM
style.

+ Time complexity = O(log n)

* Work complexity = O(n)

- Meets the sequential work
complexity, hence called
optimal.

* Can also write a non-

recursive variant.
- See JaJa [Chapter 2]

//upward traversal
1. for 1 =1 to n/2 do in
parallel
b, = a,, 0 a,
2. Recursively compute the
1

prefix sums of B= (b
b,, ..., b,,) and store them
in C = (c, ¢, ..., C

//downward traversal
3. for 1 =1 to n do 1n

n/2)

parallel
1 1s even : s, = C,
i=1: s, =X,
11s odd : s, = C,,,, O 3,

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Erom Algorithm to a GPU Implementation
* Most PRAM algorithms assume that a lot of processors are
available and are working at the same time.
- Practical architectures cannot support that assumption.
- Requires rethinking on synchronization, if any, that is
needed.

- One possible alternative is to use double-buffering.
- Helps in cases where the PRAM algorithm works-in-place.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

From Algorithm to a GPU ImEIementation

* Algorithmically, the PRAM solution is quite efficient.
 But, on the GPU, can result in several bank conflicts.
- Recall that bank conflicts to shared memory can degrade
performance.
- Bank conflicts are given serialized access to the shared
memory bank.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

From Algorithm to a GPU ImEIementation

- The PRAM algorithm as stated, requires all threads to
share information.

+ This is not possible on the GPU. Only a block of threads
can share data.

+ The algorithm can however be recast.
- Compute solutions per block of threads
- Use these partial results to form an auxiliary array
- Solve the same problem on the auxiliary array
- Extend the solution to the original array.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Handling Large Arrays — In Pictures

| | |
| | |
Scan Block 0 ! Scan Block 1 Scan Block 2 : Scan Block 3 :
| | |

L A

Store Block Sum to Auxiliary Array

Scan Block Sums

Add Scanned Block Sum 7 to All
Values of Scanned Block 7 + 1 s

Picture taken from [Harris 2008].

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Another Example — Matrix Transpose

4 -1 6 4 3 1

3 0 8 -1 0 2

1 2 7 6 8 7
M M

- Input: A square matrix M of size nxn.

* Output: A square matrix M' such that M'[i,j] = M[j,i].

+ Very simple operation, yet challenging enough on
architectures such as a GPU.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Matrix Transpose

BT

* Basic approach
- Each thread reads an element M[i,j] and writes to M'[j,i].
- Reading phase is has a high degree of memory coherence.
- However, writing phase exhibits total lack of memory

coherence.
ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Matrix Transpose

+ Each write therefore is very expensive.
* Naturally, performance is not good.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Matrix Transpose

+ The simple operation illustrates the difficulty of GPGPU
programming.

* We have however not thought of shared memory so far
in this application.

* We will now use shared memory to get memory
coherence during write operation also.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Matrix Transpose

* Recall that a block of threads have access to 16 KB of
shared memory.

* Let thread Tij read M[i,j] from the global memory and
write it to M'[j,i] in shared memory.

* Now, Tij writes M'[i,j] from shared memory to global
memory.

+ Now, also writes to global memory exhibit memory
coherence.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

In Pictures Step 1 : Read from Global Memory

T T

1 27"

B

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

In Pictures : Step 2 . Write to Shared Memory

T, T

1 1o

B

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

In Pictures Step 3 : From Shared to Global

T, T

1 1o

BT

Sl‘ep 33

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

In Pictures Step 3 : From Shared to Global

T, T

1 1o

BT
Sl‘ep 33
i

BT

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Matrix Transpose — Results

20
18
16
14
12

10

Time(ms)

B Uncoalesced.
== Coalesced

256

Size (nxn)

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Summary of Regular Algorithms

* While PRAM algorithms appear easy and intuitive,
realizations on present architectures are not straight-
forward.

+ Adaptations to suit the architecture and programming
model required.

- Typically have to go through iterations of development,
profiling, optimization, and tuning.

- It may be also possible that the best PRAM algorithm
may not be the best choice for a GPU implementation.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

SHORTBREAK

2:10 — 2:40 : Irregular algorithms on the GPU
2:40 - 3:00 : Limitations of GPUs

3:00 — 3:20 : Future trends and directions
3:20 — 3:30 : Open discussion

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Irreqular Algorithms on GPU

+ Problems that require irregular or random memory
accesses or sequential compute dependencies are not
ideally suited to the GPU.

+ The list ranking problem is a typical problem that has
these characteristics

* Other problems with similar characteristics include

- graph problems
- sparse matrix computations

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

The List Ranking Problem

* Given a list of N elements, rank each element based
on the distance of that element with the end of the list.

* A sequential algorithm is trivial and runs on O(n)

* Many parallel algorithms exist for various models.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Types of Linked Lists

5 6

Ordered List

Unordered List

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Popular Parallel List Ranking Algorithms

* Wylie’s Algorithm (1979)

* First Algorithm, Pointer Jumping and not work-optimal
* Cole and Vishkin (1989)

* First Optimal
* Anderson and Miller (1990)

* Optimal. Deterministic, Independent set based — Difficult to
Implement

* Hellman & JaJa Algorithm (1999)

* Spare Ruling Set Approach for Symmetric Multiprocessor
Systems — original algorithm by Reid-Miller (1994)

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Parameters that dictate performance on a GPU

* Optimal Algorithm and Division of work
* Massive parallelism

* Efficiency of Memory operations
* Global Memory Coalescing

* Good ratio of compute to memory operations
* Allow hardware to hide latencies as much as possible.

* GPU Treated as pure PRAM for this application

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Baseline Implementation

* Wyllie’s Algorithm uses Pointer Jumping
* Initialize Ranks to 1

* For each element in Array, set it’s rank to rank + rank
of Successor

* Reset the Successor value to the successor of it's
successor (effectively jumping over and contracting
the list)

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Synchronization and Hazards

32 bhits 32 hits

successor [i] rank [i]

64 hits

* Algorithm requires that both Rank and Successor be
updated simultaneously

* We pack the variables into a 64-bit word and write to
guarantee simultaneous update

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

GPU-Specific Optimizations

* Load the data elements when needed
* Bitwise operations to pack and unpack data

* Block-level thread synchronization to force threads to
write in a coalesced manner

* Current best implementation of Pointer Jumping on
the GPU

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Results

100000 -
—CPU
10000 = —Wylie-64
1000
100 -

10 -

Time (milliseconds)

1]

0.1 -

001 1 I I I I I I I I I I I I |

1TK2K4K8K 16 32 64 1282565121 M2M4M8M 16 32 64
K K K K K K M M M

List Size

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Helman JaJa Algorithm

* Wyllie’s algorithm is work suboptimal at O (n log n)

* Helman JaJa is based on sparse ruling set approach from
Reid-Miller

* Originally devised for Symmetric multiprocessor systems
with low processor count.

* Algorithm of choice for all recent work in this field

* Worst Case runtime is O(log n + n/p) and O(n) work.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Helman-JaJa (Contd.)

* Helman JaJa algorithm originally devised for SMP
with low processor count

* Splits a list into smaller sublists, computes local

rank of each sublist and stores it into a smaller,
new list.

* Perform prefix sum on the new list

* Recombine the global prefix sum of the new list
with the local ranks of the original list.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

An example of the Helman-JaJa
algorithm on a small liked List

ICDCN 2011 — GPGPU : Scope, Applicability,

o T *_._ _*,4, 4

Successor
Array

Step 1. Select Splitters at equal intervals

ICDCN 2011 — GPGPU : Scope, Applicability,

U B . Y B

Successor
Array

Local Ranks 0 0 0 0 0 0 0 0 0 0

Step 2. Traverse the List until the next splitter is met
and increment local ranks as we progress

ICDCN 2011 — GPGPU : Scope, Applicability,

U B . Y B

Successor
Array

Local Ranks 0 0 1 0 0 1 0 0 0

Step 2. Traverse the List until the next splitter is met
and increment local ranks as we progress

ICDCN 2011 — GPGPU : Scope, Applicability,

U B . Y B

Successor
Array

Local Ranks 0 0 1 2 0 1 2 0 0 0

Step 2. Traverse the List until the next splitter is met
and increment local ranks as we progress

ICDCN 2011 — GPGPU : Scope, Applicability,

U B . Y B

Successor
Array

Local Ranks 0 3 1 2 0 1 2 3 0 1

Step 3. Stop When all elements have been assigned a
local rank

ICDCN 2011 — GPGPU : Scope, Applicability,

U B . Y B

Successor
Array

Local Ranks 0 3 1 2 0 1 2 3 0 1

Step 4. Create a new list of splitters which contains a
prefix value that is equal to the local rank of it's
predecessor

ICDCN 2011 — GPGPU : Scope, Applicability,

U B . Y B

Successor
Array

Local Ranks 0 3 1 2 0 1 2 3 0 1

Step 4. Create a new list of splitters which contains a
prefix value that is equal to the local rank of it's
redecessor

New List
Successor Array

Global Ranks 0 4 2

ICDCN 2011 — GPGPU : Scope, Applicability,

U B . Y B

Successor
Array

Local Ranks 0 3 1 2 0 1 2 3 0 1

Step 5. Scan the global ranks array sequentially

New List
Successor Array

Global Ranks After Ranking

ICDCN 2011 — GPGPU : Scope, Applicability,

U B . Y B

Successor
Array

Local Ranks 0 3 1 2 0 1 2 3 0 1

Step 6. Add the global ranks to the corresponding local
ranks to get the final rank of the list.

New List
Successor Array

Global Ranks After Ranking

Local Ranks

Final Ranks

ICDCN 2011 — GPGPU : Scope, Applicability,

U B . Y B

Successor
Array

Local Ranks 0 3 1 2 0 1 2 3 0 1

Step 6. Add the global ranks to the corresponding local
ranks to get the final rank of the list.

New List
Successor Array

Global Ranks After Ranking

Local Ranks

Final Ranks

ICDCN 2011 — GPGPU : Scope, Applicability,

U B . Y B

Modifying the algorithm for GPU

* Step 5 Is a sequential ranking step.

* When we choose log n splitters, we reduce the list to
n/log n, which is still large amount of sequential work

* By Amdahl’s law, this is a bottleneck for parallel
speedup. More so in the case of GPU.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Successor
Array

Local Ranks 0 3 1 2 0 1 2 3 0 1

Make step 5 recursive to allow the GPU to
continue processing the list in parallel

New List
Successor Array

Global Ranks 0 4 2 0 6 2 After Ranking

ICDCN 2011 — GPGPU : Scope, Applicability,

U B . Y B

Successor
Array

Local Ranks 0 3 1 2 0 1 2 3 0 1

Make step 5 recursive to allow the GPU to
continue processing the list in parallel

New List
Successor Array

Global Ranks 0 4 2 0 6 2 After Ranking

Process this list again using the

algorithm and reduce it further.
ICDCN 2011 — GPGPU : Scope, Applicability,

U B . Y B

GPU Implementation
* Each phase is coded as separate GPU kernel
* Since each step requires global synchronization.
* Splitter Selection
* Each thread chooses a splitter

* Local Ranking

* Each thread traverses its corresponding sublist and get the
global ranks

* Recursive Step

* Recombination Step
* Each thread adds the global and local ranks for each
element
* Stopping criteria:
* Listsizeis 1

* Stop at a small size when the CPU can take over.
ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Choosing the right amount of splitters

* Notice that choosing splitters in a random list yields
uneven sublists

* We can attempt to load balance the algorithm by
varying the no. of splitters we choose.

* n/log n works for small lists, n/2 log? n works well for
lists > 1 M.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Results

10000 -

1000 -

100

10

1

Time (Milliseconds)

0.1 +

0.01 H

.............. [l

1K | 2K | 4K | 8K | 16K | 32K | 128K | 256K | 512K | 1M | 2M | 4M | 8M | 16M | 32N | 64M||
[@RHI (log n) 10297 | 0.27 |0.351|0.378 | 0.501 | 0.538 | 0.692 | 0.926 | 1.576 | 3.001 | 6.188 |13.038[27.638|57.516(117.77 239|7 | 488.9|

T;S.RHJ (2log2n) 0.259 [0.493 | 0.501 | 1.089 | 0.954 | 1.444 | 2.369 | 2.914 | 3.731 4.992 | 8.557 | 16.32 |30.093|49.749/99.081/200. 71§388.252
gl:lCPU (Core 2 Quad)g 0.006 | 0.011 | 0.025 | 0.055 | 0.122 0.641 | 1.515|3.273 |6.757 16.79 |50.236/147.51 350.99:‘754.94%‘1668.3 3476\5 7140.‘15

List Size

0.001 -+

Significant speed-up over sequential algorithm on CPU ~ 10x
Wylie’s algorithm works best for small lists < 512 K
GPU RHJ works well for large lists

2 log? N works well for lists > 1M
8
ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Implementation Bottlenecks |

* Execution profiled in

CU DA List Size Time for 1 iteration (psec) Total
] .. . : Ti
* Max. time taken is in the Split LOCBL' Recombine (u'sme;
Ran
local ranking for first 1M 11| 5350 1004 | 7182
iteration 2 M 15 12273 922 13367
_ _ 4 M 24 24851 1881 26927
* Rest of the time spent in [, 26| 124658 4256 | 129203
recursion iIs < 1% of the
total.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Implementation Bottlenecks |

* Load Balancing among 35.00

threads Eiﬂlliliﬂ
* Irregular Memory ;
access Eii a8
* |n these tests, we show m
that the combination of 1
000

27.23

30.75

14.76

32.33

15.37

both play an important —————

Random List -

Load Unbalanced Load Balanced

role in determining
runtime.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Random List

A Different Approach

* Recently used in Wei and JaJa, 2010.

* Instead of recursive ranking, use a fixed number of sub-
lists.

* Rank the list of splitters on the CPU by transferring that
list.

* Improves on the performance by about 30%.

Summary of Irreqular Algorithms

+ With irregular algorithms, GPU can be thought of as a
highly non-uniform PRAM.
- Different costs for memory and computation.
+ Performance suffers heavily compared to CPUs

- CPUs do not have much of a problem handling irregular
algorithms.

+ PRAM algorithms do not account for such high memory
access costs.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

2:40 — 3:00 : Limitations of GPUs
3:00 — 3:20 : Future trends and directions
3:20 — 3:30 : Open discussion

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Limitations of GPUs

* Support for varied data types

- GPU computing most efficient on 32-bit values.
* Double precision arithmetic comes with a
performance penalty.

- Smaller or larger bit-sized values are not efficiently
supported.

- Smaller do make sense, especially bit or char.

- Larger are required in some cases, for instance double
precision arithmetic.

- Offer a good way to hide memory latency.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

* How much data parallelism is available in the application?
- This issue studied also theoretically as the class NC of
problems.
— But the NC theory may not suffice.
— NC theory kicks in at a very high degree of parallelism,

— In the present case, suffices for even moderate degree
— But the theory is missing.

* More critical for GPU algorithms
— Any thread divergence can prove to be costly.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

* Gather/Scatter
- An important primitive in parallel computing
- Scan is an example of gather.

- Scatter is much difficult on GPUs due to lack of memory
coherence.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

* Huge Memory Latency

- Especially, for irregular memory accesses, the memory
latency is too high.

- However, peak compute flops are continuing to rise.

+ This can deepen the impact of memory latency and
bandwidth.

+ Current GPU memory technology cannot scale to large

capacities also
— Has pin-count and power limitations.
— Should explore other memory technologies such as
3D-stacking

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

* No hardware cache — why does this hurt?

- Difficult for a user to arrange for good data locality
— Recall the advantages of having the working set in a
cache

- While this may be easy to figure out in a uniprocessor
setting, much more difficult in a multi-threaded
environment.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Limitations of GPUs

* Atomic operations

— Required when multiple threads need to update a
common value.

— For instance, histogram
+ There is limited support, but thread divergence is very
limiting on performance.
* Good hardware support for atomic operations can speed up
several computations, such as histogram

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

3:00 — 3:20 : Future trends and directions
3:20 — 3:30 : Open discussion

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

+ Where did the CPUs go?
- The story so far is that of GPUs making the CPU almost

redundant.
- The GPGPU model so far:

CPU GPU

Send input
Send code

|dle!!! lCompute
Send results

+ Can the CPU be also used along with the GPU?

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

_ | | Direct

+ Hybrid Multicore Computing
- An emerging line of thought
- Use multiple, possibly heterogeneous, devices at the
same time.

+ What about CPU-GPU hybrid computing?

* Brings several questions to the fore
- How to design hybrid algorithms?
- Analytical models of hybrid algorithms?
- How to synchornize computation between CPU and the
GPU?

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

_ | | Direct

+ Synchronization may be a big hurdle at present.

+ The bandwidth between the CPU and the GPU is a Gb/s.
* For some problem sizes of interest, this small bandwidth
means that transfer times may be a big chunk of overall

time taken.

- Suggests the following approach
- Design hybrid algorithms so that very little synchronization

is needed.
- Works in some cases, but not always.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

_ | | Direct

* Previous limitations indicate that future GPUs should
have the following architectural features
- Better memory access
- Better synchronization support
- Better support for double precision operations

+ We will now see how some of these concerns may be
addressed in the near future, plus some other
interesting leads.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

_ | | Direct

* On Chip CPU-GPU combinations
+ Integrated model is much more economical in terms of

power usage and space.

* Also helps synchronization between the two.

* One possible model is that CPU handles costly
operations such as floating point arithmetic,

* AMD Zacate

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

_ | | Direct

+ Have a balance between SIMD and MIMD execution
capabilities.
— This also suggests hybrid computing.
* Special purpose hardware for particular primitives
+ The key hardware architecture features for future
throughput computing machines -
- high compute and bandwidth,
- large caches,
- gather/scatter support,
- efficient synchronization, and
- fixed functional units

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Future Trends and Directions

* Space on the GPU is always constrained.
+ Techniques do not allow for speedy swap-in and swap-
out between the host and the device.

+ Two issues here:

- Can an efficient (competitive) swap-in and swap-out
mechanism be designed, especially when future usage is
not known.

- See HiPC 2009 Satish et al. for the offline case.
- The problem has similarities to paging schemes.

- Another possibility is to use the available space
efficiently.

- Succinct representations may help in some cases.
- See HiPC 2010 Soman et al. for an example.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Future Trends and Directions

* Modeling of GPGPU
- Modeling parallel computing is generally accepted to be
hard.
- Too many parameters to handle
- Limited successes in this direction
- ISCA 2010, Kim et al.
- HiPC 2009, Kothapalli et al.
- Both these models do not have much to say about
scheduling.
- While scheduling is not public knowledge, a model for the
same can help programmers.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Future Trends and Directions

* Primitives led parallel computing
* Parallel programming is at present too tough to let
everyone practice it.
* Nevertheless, parallel programming is going to stay.
* How to have a huge programmer population adapt to
parallel programming?
* Primitives are the way forward
* Have a uniform set of routines that are highly
optimized
* Write programs using mostly these routines.
* What are the right primitives?
* How to ensure coverage and completeness?
* Several such questions are relevant.

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

M_
+ We have covered a wide range of topics associated with
GPGPU

- Architectural features
— Performance considerations
* Programming environment
— Trivial and non-trivial Examples
+ Case studies
- regular, and
- irregular applications
- Limitations of GPUs and expected future trends
— Hardware as well as algorithmic trends

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Ref_erences

® The Nvidia Programmer Reference Manual

® Fast and Scalable list ranking on the GPU, Rehman, Kothapalli, and Narayanan, ACM

ICS 2009.

® Scan Primitives for GPU Computing, Sengupta, Harris, Zhang, and Owens, in

Graphics Hardware, 2007.

® Debunking the 100x GPU Myth, An Evaluation of Throughput Computing on CPU and

GPU, Lee et al., in ISCA 2010.

® Computer Architecture : A Quantitative Approach, Henessey and Patterson.

® A Performance Prediction Model for the GPGPU, Kothapalli et al. in HiPC 2009.

® An Analytical Model for a GPU Architecture with Memory-Level and Thread-Level
Parallelism Awareness., Hong and Kim, In ISCA 2009.

® Satish Nadathur, HiPC 2009

® Efficient Discrete Range Searching Primitives with Applications, Soman, Kothapalli,

and Narayanan, in HiPC 2010. (for succinct representation on GPUs)

® Optimization of Linked List Prefix Computations on Multithreaded GPUs Using CUDA,

Wei and JaJa, in IPDPS 2010.

® Towards dense linear algebra for hybrid GPU accelerated manycore systems, in

Parallel Computing, Vol 12., December 2009

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

Questions and Discussion

ICDCN 2011 — GPGPU : Scope, Applicability, and Limitations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133

