
Share-a-GPU: Providing Simple and Effective

Time-Sharing on GPUs

Shaleen Garg, Kishore Kothapalli, and Suresh Purini

International Institute of Information Technology, Hyderabad, India
Email: {shaleen.garg@research., kkishore@, suresh.purini@}iiit.ac.in

Abstract—Time-sharing, which allows for multiple users to use
a shared resource, is an important and fundamental aspect of
modern computing systems. However, accelerators such as GPUs,
that come without a native operating system do not support
time sharing. The inability of accelerators to support time-
sharing limits their applicability especially as they get deployed in
Platform-as-a-Service and Resource-as-a-Service environments.
In the former, elastic demands may require preemption where
as in the latter, fine-grained economic models of service cost can
be supported with time sharing.

In this paper, we extend the concept of time sharing to
the GPGPU computational space using cooperative multitasking
approach. Our technique is applicable to any GPGPU program
written in Compute Unified Device Architecture (CUDA) API
provided for C/C++ programming languages. With minimal
support from the programmer, our framework incorporates
process scheduling, light-weight memory management, and multi-
GPU support. Our framework provides an abstraction where, in
a round-robin manner, every workload can use a GPU(s) over
a time quantum exclusively. We demonstrate the applicability
of our scheduling framework, by running many workloads
concurrently in a time sharing manner.

I. INTRODUCTION

Accelerators such as GPUs, Intel Xeon Phi, and TPUs are

being deployed in a variety of settings including personal elec-

tronic devices, laboratory servers, Platform-as-a-Service instal-

lations (PaaS), Resource-as-a-Service installations (RaaS), and

supercomputers. For this reason, the last decade has seen a

massive amount of research on accelerator-based computing

resulting in robust support for libraries and tools (cf. [3], [2]),

algorithm design and implementation (cf. [7], [8], [19]), and

applications (cf. [14]) in a wide variety of domains.

However, accelerators such as GPUs do not expose any

operating system and are attached to a host (typically a CPU)

as an I/O device. Once a kernel is launched for execution

on a GPU, the corresponding GPU resources cannot be

timeshared for executing other kernels barring a few native

approaches. Starting with the Fermi line of GPUs, Nvidia

supports concurrent kernel execution. In this model, Nvidia

supports a left-over scheduling policy where more than one

kernel is scheduled for execution on a GPU if enough GPU

resources are available. More recently, the Kepler line of GPUs

support concurrent execution of kernels using the Hyper-Q

technology [5], which uses multiple hardware queues to avoid

false dependencies between kernels.

As kernels often make use of the entire GPU resources,

native NVIDIA technologies such as concurrent execution

and Hyper-Q are not helpful since resources are allocated

using a left-over policy. Also, Hyper-Q and concurrent kernel

execution assume that the GPU global memory is enough to

cater to all the concurrent programs in the system. Therefore,

using currently supported CUDA features, the total GPU mem-

ory and compute resource usage of all the kernels executing

simultaneously cannot exceed the resources available on the

GPU.

These limitations mean that effective time sharing of GPUs

is not supported presently. As GPU based installations targeted

at multi-user environments such as laboratories, PaaS, and

RaaS are becoming commonplace due to economic considera-

tions, users sharing a GPU resource are forced to use the GPU

in a First-Come-First-Serve (FCFS) basis. In an FCFS model,

short duration workloads will have to wait for a potential long

duration workload submitted earlier to finish.

Effective time-sharing requires a mechanism for preemption

so that during a given time quantum a workload has full

and exclusive access to complete system resources. Most

operating systems including recent ones such as Android and

iOS provide support for time-sharing on a variety of devices

including mobile and handhelds. To do so on a GPU, one

needs to design and implement mechanisms for preemptive

execution along with the ability to save and restore the state

of a kernel under execution on the GPU [22]. As GPU vendors

do not expose their hardware details, supporting time-sharing

on GPUs via even a seemingly simple round-robin (RR)

scheduling is quite challenging.

There have been recent ventures into this problem but they

fall short of the required goal. For example, Calhoun and

Jiang [9] support preemptive round-robin scheduling of kernels

on GPUs, but their context switches are very taxing because

the state information they capture is very heavy. When only

one program is run using their framework, the slowdown

experienced is around 30x as compared to running the same

program outside of their framework.

A more recent paper [26] that also aims at enabling kernels

share the GPU resource by preempting kernels works under

the assumption that the GPU global memory is large enough

to cater to total memory required by all the workloads. This

limitation coupled with the fact that the available memory on

GPU cards is only of the order of tens of GB impedes the

usability of the framework presented in [26].

It is therefore essential to relocate the memory currently in-

use by a GPU kernel so that the next kernel can use the entire

GPU memory. Doing so requires supporting a form of memory

management across the memory systems of the GPU and the

CPU. In the absence of access to the internal hardware and

other aspects of the GPU, these become difficult to support

with low overhead.

Simulation based studies on preemptive round-robin

scheduling such as [27] are able to address specific perfor-

mance issues as they can mine a wealth of data such as the

number of cache misses provided by simulators such as GPU-

Sim [28].

In this paper, we propose a cooperative multi-tasking ap-

praoch for effective and efficient time-sharing of GPUs. Our

approach builds a scheduler framework that orchestrates the

execution of multiple kernels on a GPU based on three main

ideas.

• We divide a kernel into multiple micro-kernels so that

preemption can be managed on the GPU and the state of

the kernel can be efficiently captured via the number of

micro-kernels that finished execution.

• As multiple kernels are sharing the GPU resources, the

available space on the GPU may no longer be sufficient.

Hence, we provide for an automatic memory manager

that keeps only the data required by the kernel under

execution on the GPU and moves data corresponding to

other kernels to the CPU memory. This data management

is done while ensuring that the GPU computing resource

is never idle and all data transfers are effectively hidden

by compute.

• To address the needs of typical installations, we extend

our framework to support multiple GPUs attached to a

single CPU. By doing so, workloads operating in our

framework can automatically utilize the resources of

multiple GPUs in a time-sharing manner.

These three ideas ensure that kernels can share one or more

GPU resources seamlessly. To make use of our framework, no

changes to actual source programs are required. Our frame-

work introduces simple modifications to the source programs

that replace certain function calls with custom macros. Other

details to be provided by the user that are program-specific are

to be included as auxiliary source files (see Section II) at the

compile stage. While our framework currently supports round-

robin scheduling, other scheduling policies such as shortest-

job-first can be suitably incorporated into our framework.

We conduct experiments using our framework on a col-

lection of workloads from the Rodinia benchmark [10] and

CUDA SDK examples [17] on a platform of two Nvidia K40c

GPUs. Our experiments indicate that the overhead of running

a single workload in our framework on a single GPU is

under 4% on average whereas a speedup of 1.65x is observed

when using two GPUs. When running multiple workloads

simultaneously in our framework with a single GPU, the

average completion time is proportional to the number of

workloads whereas using two GPUs the average completion

time is 40% faster.

A. Related Work

Given the rise in accelerator-based computing in general and

GPU computing in particular, enabling multi-programming

support for GPUs is witnessing a continued interest in recent

years [9], [26], [29], [27]. The range of ideas explored in this

context span from providing a software-based application level

kernel preemption, hardware-assisted and simulation based

studies for improving the GPU resource utilization, among

others. In the following, we discuss works that are most related

to the current paper by suitably categorizing them.
a) Software Based: Calhoun and Jiang [9] introduce an

application level check pointing for CUDA kernels so that

a kernel can be preempted. During the checkpointing, the

state of the kernel is captured as the values of the variables

used. The programmer has to indicate these variables to be

included in the checkpoint by using pragma directives. A

compiler parses these directives and supports application level

checkpoint and restart that can eventually be used for kernel

preemption. The result of Calhoun and Jiang however indicate

that the overhead suffered by their scheme is quite high even

for simple kernels such as adding two vectors. This is due to

the large footprint of the checkpointing information.

Zhong and He [29] study a slicing of kernels into kernelets

technique similar to what we propose in our current work.

The kernelet is also identified as a continuous set of block

indices. Their goal however is to pick an execution sequence

of the kernelets of various kernels so as to minimize the total

execution time. Their work assumes that all kernels can have

their data reside in memory and no data transfers are needed.

Their results are also limited to running a pair of kernels

concurrently.

In a recent work, Wu et al. [26] consider a problem

whose scope overlaps with our problem. Their approach also

partitions a kernel into microkernels. Wu et al. [26] support

two scheduling strategies: priority based and weighted round-

robin. In their evaluation, however, results are shown for up

to three kernels that are run concurrently. Another limitation

of the work of Wu et al. [26] is the assumption that the data

for all the kernels that run concurrently has to reside on the

GPU at all times.

Providing software based application level checkpointing

has been studied in e.g., Takizawa et al. [24] and Nukada

et al. [18]. Checkpointing however aims at fault-tolerance and

does not support preemption or time-sharing.
b) Simulator Based: There are several recent works

that use simulators to study scheduling and resource sharing

of GPUs. Pai and Govindarajan [20] implement a shortest-

job-first based scheduling policy while picking one among

multiple kernels that have to be executed on a single GPU.

From well-known operating system as well as algorithmic

literature it is clear that such a policy can minimize average

latency [11], [22]. In this work, knowing the execution time

of a GPU kernel is essential. For this, Pai and Govindarajan

use profiling techniques and predict the time taken for a

given kernel to execute on a GPU. Aguilera et al. [6] study

how to support GPU resource sharing among kernels that

execute simultaneously on a GPU while balancing between

the twin objectives of fairness and performance. Wang et al.

[25] argue that not only resource sharing but also quality-of-

service guarantees are important when sharing a single GPU

among multiple simultaneously executing kernels. However,

most of the above cited works rely on the ability of simulators

such as GPUsim [28] to provide lots of runtime information

about kernels executing on a GPU. Since such information is

not available in practice, there is hindrance to the immediate

applicability of these approaches.

A Technique called warped-slicer by Xu et al. [27] studies

how to allocate resources within an SM to more than one

kernel assigned to the SM for maximizing utilization of

SM resources such as ALUs and SFUs while simultaneously

minimizing the performance loss suffered by individual ker-

nels due to concurrent execution. To find such suitable co-

habiting kernels in a single SM, their approach requires a

prior profiling phase where extensive information about the

resources required by a given kernel is collected.

Tanasic et al. [23] implement Dynamic Spatial Sharing

(DSS), a hardware scheduling policy that dynamically parti-

tions the resources (GPU cores) and assigns them to different

processes according to the priorities assigned by the host OS.

This is in addition to hardware preemption.

c) Memory Management: Noticing that limited availabil-

ity on-chip memory as one of the inherent drawbacks of GPUs

for large, space-intensive applications, several researchers have

worked on providing suitable abstractions that allow a GPU

program to use the CPU memory as a secondary memory.

Enabling such abstraction requires support of the form of

virtual memory with the CPU memory and the GPU memory

acting as two levels of a memory hierarchy. Examples of such

schemes are presented in [15], [30]. In many of these works,

the abstraction supported is for a single GPU application to

make use of both the CPU and the GPU memory smoothly

while the runtime system provides for automatic data transfer

between the CPU and the GPU. A key concern therefore

is to ensure that the application running on the GPU never

encounters a situation where the required data is either not in

GPU memory or is stale. In our setting, since the data transfers

happen asynchronously while the application is not currently

executing on the GPU, our memory management mechanism

is much simpler to work with.

d) Multi-GPU: Several researchers studied the possibil-

ity of executing a kernel written for a single GPU to be

executed on multiple GPUs with minimal intervention by the

programmer [21], [16], [13]. In many of these cases, a portion

of the same kernel is run on multiple GPUs/devices and

no resource sharing or scheduling is attempted. Ramashekar

and Bondhugula [21] present a fully automatic scheme for

data allocation and buffer management for programs involving

affine loop nests. Lee et al. [16] start with a single data-

parallel kernel written in OpenCL, partitions the workload

across a collection of devices, generates kernels for executing

the partitions, and merges the partial outputs together.

B. Organization of the Paper

The rest of the paper is organized as follows. Section II

describes the architecture of the proposed framework including

cooperative multitasking and memory management within the

context of a single GPU. Experimental results of the frame-

work are presented in Section III. Section IV then describes

how our framework supports multiple GPUs along with results

on multiple GPUs. The paper ends with concluding remarks

in Section V.

II. ARCHITECTURE OF THE SCHEDULER

Our aim in this project is to build a preemptive scheduler

which orchestrates the execution of compute kernels on the

available heterogeneous collection of GPUs. The scheduler

runs as an user level process on the host (CPU) operating

system.

A. Compilation Framework

A programmer has to supplement his CUDA program with

a metadata file containing annotated list of kernels to be

launched on the GPU. A detailed description of the metadata

file is provided later in this section. The source program and

the metadata file is passed to a source-to-source translator. The

source CUDA program is modified by adding certain macros

and replacing the function calls cudaMalloc, cudaMemcpy and

kernel launch calls with custom macros. The metadata file is

used to generate helper functions which can assist the program

execution in the scheduling framework. Figure 1 shows the

scheduler compliant CUDA program automatically generated

from the source vector addition program. Figure 2 shows the

associated metadata file. Overall, the effort required to make

a program compliant to our scheduler is very minimal and is

a one time effort at the compilation time.

B. High-level Overview

Recent Nvidia GPUs such as the K40c, P100, and V100

provide native technologies like HyperQ and concurrent kernel

execution to natively enable sharing of GPU resources but that

may not work in real world scenarios since they use a left-over

policy where a new kernel is launched on the GPU only if there

are required resources still available on the GPU. However,

most GPU kernels are programmed in such a way that they

can make use of the entire GPU resources by themselves and

hence do not leave any free GPU resources. However, with a

time-sharing approach, which we take in this work, a kernel

can get all the available GPU resources.

The challenge is to let multiple active ready-to-execute ker-

nels time-share the available GPUs which inherently support

no preemption. In the absence of such a preemption mecha-

nism, we resort to cooperative multitasking, wherein a kernel

yields the GPU after executing a predetermined number of

thread blocks. Our source-to-source translator enforces kernel

yielding by rewriting a kernel launch into a sequence of micro-

kernel launches. The scheduler assigns microkernels to the

available free GPUs and also manages their state as reflected

in the global memory of the respective GPU they are currently

1 _ _ g l o b a l _ _ vo id vec to rAdd (d o u b l e ∗A, d o u b l e ∗B , \
2 i n t N) {
3 i n t i d = (BlockIdx (vec to rAdd) ∗ blockdim . x) +

t h r e a d I d x . x ;
4 / / N a t i v e c a l l u s e s b l o c k I d x . x i n s t e a d BlockIdx ()
5 i f (i d < N)
6 A[i d] += B[i d] ;
7 }
8

9 i n t main () {
10 / / b e g i n pre−p r o c e s s i n g code
11
12 / / end pre−p r o c e s s i n g code
13

14 / / From cudaMal loc ()
15 customCudaMalloc (&d_A , s i z e) ;
16 / / From cudaMemcpy ()
17 customCudaMemcpy (d_A , h_A , s i z e , MemcpyH2D) ;
18 / / From cudaMal loc ()
19 customCudaMalloc (&d_B , s i z e) ;
20 / / From cudaMemcpy ()
21 customCudaMemcpy (d_B , h_B , s i z e , MemcpyH2D) ;
22 /∗ N a t i v e Ke r n e l c a l l
23 vectorAdd <<< g r i d , 1024 , 0>>>(d_A , d_B , n) ; ∗ /
24 K e r n e l C a l l (vectorAdd , g r i d , \
25 vectorAdd <<<ScBlocks , 1024 , 0>>>(d_A , d_B , n)) ;
26 / / b e g i n pos t−p r o c e s s i n g code
27
28 }

Fig. 1: All the source program changes are done automatically.

Metadata about variables for naive VectorAdd program

//BEGIN .dat file
1
VECTORADD
int, d_A, h_A, size_int, yes, yes
Nbr, d_B, h_B, size_nbr, no, yes
#
//DataType, deviceVar, hostVar, size, Mutable?, InputVar?
//END of .dat file

Fig. 2: Metadata file for the example VectorAdd program.

assigned to for execution. In order to hide communication

latency, we use double buffering technique by overlapping the

execution of a microkernel on the GPU with the state transfer

of the next microkernel about to get access to the GPU.

C. Kernels and Microkernels

In the CUDA programming interface for GPUs, programs

to be run on GPUs are described as kernels. Each such kernel

is structured in a computational three dimensional grid format.

Each grid cell is called a cooperative thread array (CTA) which

is in turn a three dimensional block of threads. Threads are

the smallest computational entity in a kernel. By definition

and execution behavior, computations do not depend across

CTAs and CTAs can be executed in concurrent out-of-order

batches without changing the intended output. Moreover, all

the variables inside each CTA are rendered invaluable once

it is complete. The state which needs to persist is stored in

the global memory of the GPU. Each kernel launch can be

transformed into a sequence of microkernel launches with no

necessary ordering constraint between them. Each microkernel

contains a batch of CTAs.

����

�����	�

�����

����

�����

����
�����

�����
��

�����

�	���	������
����

�����
�����	��

���

�����
���	��

����

��	�
���	���

��

�

�	
�

�
��

	
��
�

���	��
�������

���

Fig. 3: Figure shows an illustration of the possible states of a

user program along with events that trigger the state changes.

On the arcs, the notation A
B

indicates that event A triggered

by entity B makes the kernel change state as indicated. (Sch.

refers to the proposed scheduler and mKernel stands for micro-

kernel).

D. Cooperative Multitasking

Our source-to-source translator replaces the kernel launch

in a native source program with a KernelCall macro

(refer Figure 1). The kernel call macro iterates over the three

dimensional computational grid by tiling it into microgrids.

A microkernel is launched for every such microgrid. Fur-

ther, the Cuda variables blockIdx.x, blockIdx.y and

blockIdx.z are replaced with the macros BlockIdx,

BlockIdy and BlockIdz respectively. These macros map

the grid coordinates from the microgrid to their original

coordinates in the macrogrid thus maintaining the semantics

of the original kernel.

Algorithms 1 and 2 show the pseudocode for the

KernelCall macro and the main kernel scheduler respec-

tively. The KernelCall of the user processes and the scheduler

communicate using FIFO queues provided by the Linux ker-

nel. In order to launch a microkernel, an user process requests

for a timeslice by sending RequestTimeSlice message

to the scheduler. At this time, the user process will be in

the Wait state as per the state diagram in Figure 3. We

recommend the reader to refer the communication timeline

diagram in Figure 4 to follow the ensuing discussion. The

scheduler enqueues the requesting process and once it reaches

the head of the queue, it sends a PrepareState message

to the user process. The user process moves from the Wait

state to the RestoreState state. In this state, the pro-

cess acquires GPU memory through the usual cudaMalloc

function call and transfers the state from the CPU main

memory to the GPU global memory. While this state transfer

is going on, another kernel could be executing on the GPU.

Thus we overlap communication and computation. Then the

user process moves to ReadyToLaunch state by sending

ReadyToLaunch message to the scheduler. Once the current

Algorithm 1 KernelCall Procedure.

1: while microkernels left do

2: SendMessage(RequestTimeSlice) /* to scheduler */

3: WaitForMessage(PrepareState) /* from scheduler */

4: Request GPU memory.

5: Restore state on GPU global memory.

6: SendMessage(ReadyToLaunch) /* to scheduler */

7: WaitForMessage(LaunchKernel) /* from scheduler */

8: Launch micro-kernel

9: SendMessage(YieldedGPU) /* to scheduler */

10: Save state to CPU main memory

11: SendMessage(YieldedGPUMemory) /* to scheduler */

process occupying the GPU yields, the scheduler dequeues the

process at the head of the queue and sends LaunchKernel

message if it is already in ReadyToLaunch state. Then the

corresponding process moves to Running state and launches

the microkernel. Once the microkernel execution is over, the

process sends a YieldedGPU message to the scheduler and

moves to the state SaveState. This enables the scheduler to

launch a microkernel from some other process at the head of

the queue. The process in SaveState transfers the state from

GPU to CPU memory and then sends YieldedGPUMemory

to the scheduler. Note that again there is an overlap between

communication and computation maximizing GPU utlization.

The scheduler on receiving this message permits the next

process at the head of the queue to enter RestoreState

by sending PrepareState message to it. Once all micro-

kernels corresponding to an user process gets over, the process

enters Finish state. It has to be noted that all the necessary

code for communication and bookkeeping is automatically

generated without burdening the end programmer.

Currently, the framework supports round-robin scheduling

algorithm to schedule kernels. One can alternatively use a

different scheduling algorithm like priority based round-robin,

in a plug and play fashion to suit their needs.

Kernel Control Block (KCB) Our framework maintains a

per kernel data structure called Kernel Control Block (KCB).

The KCB contains information such as the state of the

kernel from Figure 3, the progress of a kernel in terms of

the microgrids already launched, GPU time taken by the

last microkernel etc. As we add more functionality to our

framework, like multi GPU support, we extend the KCB to

hold more information about a kernel.

E. Memory Management

If we have to retain the global memory state of all the

kernels in the system within the GPU memory, then it puts

a restriction on the number of active kernels that can be

multiplexed on the GPU. We eliminate this constraint by

saving and restoring the GPU global state of a kernel in the

CPU memory. As mentioned earlier in the Section II-A, a

programmer has to supplement the CUDA source program

with a metadata file (refer Figure 2) wherein for each kernel in

the program the following information has to be provided: the

Algorithm 2 Asynchronous event driven pseudocode for

scheduler.

1: while TRUE do

2: upon event RequestTimeSlice do

3: Enqueue process request

4: upon event ReadyToLaunch do

5: if GPU free then

6: Dequeue process at the head of the queue.

7: SendMessage(LaunchMicrokernel)

8: upon event YieldedGPU do

9: Mark the GPU as free.

10: upon event YieldedGPUMemory do

11: SendMessage(PrepareState)

12: /* to the process at the head of the queue*/

device variable, its associated host variable, the dynamic size,

does the variable get dirty in the kernel and if the variable is

an input variable or not. This meta-data is used by a source-

to-source translator to generate suitable source code in the

form of macros provided as a helper file to be included in and

used by the program. Note that all the usages of the macros is

automatically incorporated in the program at the preliminary

parsing and augmentation step, so the programmer need not

know the details about the underlying scheduler. These gener-

ated macros help transfer the state of dirty variables between

GPU and CPU memories as a kernel occupies and yields a

GPU. While a kernel is executing on the GPU, the kernel at

the head of the queue prepares itself for subsequent execution

on GPU by transferring its state to the GPU global memory

in the background. Thus by overlapping communication and

computation we maximize GPU utilization, thereby improving

the turnaround time for all the kernels in the system. Further,

before a microkernel already occupying the GPU transfers its

state back to the CPU memory, it checks if there are any

other processes waiting in the queue. If there are no other

processes waiting, then it launches the next microkernel from

its microgrid by eliminating a state transfer from GPU to CPU

and back.

F. Timeslice Length

The length of the timeslice is indirectly controlled by the

dimensionality of the microgrid as no preemption is possi-

ble while a microkernel is executing. The dimensionality of

the microgrid is a runtime configurable parameter which is

supplied by the scheduler to the user process. Although, in

the current work, this parameter is set to a fixed value for

all the processes, it is possible to vary this parameter on a

per-process basis thereby controlling the timeslice allocated to

the corresponding process. For example, we can dynamically

profile the time taken by a CTA of a kernel and based on

that decide the number CTAs per microkernel launch for fair

sharing of GPU computing time. If the timeslice length is

shorter, then the overheads due to kernel launch will be high

and moreover we may not be able to hide the communication

latency by overlapping it with computation. The timeslice

��������� 	��
��

��������������
�����

����������������
�
�����
�
��
�

����������������
����������

���
����	��
�����
����� ���

!����������

!��������
��"���

��

#����$

���

#��%����������$

"�����

#������������
��$

#��

�
&$

��
��	��
��

'�
���	
��
��

�����%�
����������

#��(�������$

�����
�������

��

'�
��"
�����

"�����

'�
��"
�����

Fig. 4: A picture showing the timeline of communication

across the scheduler, kernel, and a GPU. For the kernel, text

written inside square brackets refer to the state of the kernel

while text written without brackets correspond to actions taken

by the kernel. Memcpy is used to indicate transfer of memory

across the GPU and the CPU and the direction of the transfer is

not indicated explicitly. The events enclosed in the box repeat

until there are no more micro-kernels to execute.

should be at least long enough so that it covers the time taken

by the previous microkernel occupying the GPU to transfer its

state to CPU and for the next mircokernel to-be-launched to

transfer its state to GPU. If Sprev and Snext denote the size of

the state for the previous and next microkernels, then a lower

bound on timeslice for effectively hiding the communication

latency is

Tslice >
Sprev + Snext

pcie_bus_speed
· (1)

However, if the timeslice length is too long, it would adversely

effect the turnaround time for kernels with shorter execution

times.

III. RESULTS AND ANALYSIS

Experimental Platform All our experiments were performed

using two Nvidia K40c GPUs. The two GPUs are connected

to an Intel Core i7 X980 CPU using PCIx links. The Intel i7

X980 CPU has a clock speed of 3.33 GHz, a RAM of 24 GB,

and runs on Linux Version 3.10.0.

The Nvidia K40c GPU has 15 SMXs each with 192 cores

for a total of 2880 cores. Each core is clocked at 745 MHz

and offers a single precision throughput of 4.3 TFlops. The

throughput in case of double precision arithmetic is 1.43

TFlops. The K40c GPU has a device memory of 12 GB while

each SMX has a 64 KB memory shared across its 192 cores.

To program the K40c GPU, we use CUDA Version 8.0.61 [4].

The CUDA programming model consists of a kernel that is

logically viewed as a collection of blocks indexed by a three

tuple. Each block has multiple threads that are further grouped

into warps. The number of threads in a warp and the number

of warps in a block are configurable by the programmer based

on the application.

A. Dataset

In this section, we study our framework on various work-

loads with different resource requirements and characteristics

from the Rodinia benchmark [10], CUDA SDK examples [17],

and string sorting from [12]. Key properties of the workloads

are listed in Table I. For each workload, we identify the nature

of the workload as memory intensive or compute intensive

with respect to GPU computing. This property impacts pa-

rameters of the framework such as the time slice.

The input for the BFS workload is generated as an Erdős-

Rényi random graph, G(n, p) with n = 32 M and p = 10−7.

The input(s) to the matrix programs, Gaussian, matTrans, and

matMul are dense matrices of floating point numbers chosen

uniformly at random. For the kmeans workload, the input is

a collection of 2-D points with integer point coordinates. For

the dxtc workload, the input is an image. For the StringSort

workload, the input is a list of random strings of various sizes.

In Table I, the column labeled “Memory Footprint” indicates

the GPU global memory used by the workload (as reported

by nvidia-smi) on an input of size as specified in the

column labeled “Size”. The column “Native Runtime” shows

the time taken by the corresponding workload on that input of

the specified input size to run on a single GPU (K40c) without

using the proposed scheduler framework.

B. Results

a) Running Each Workload on a Single GPU Using our

Framework: To understand the overheads introduced by the

scheduler framework we start by studying how the framework

handles individual workloads launched using the framework

compared to a native launch. The scheduler framework intro-

duces overheads that depend on the number of native kernel

launches in the workload, the time slice used by the scheduler

(to determine the size and number of the micro kernel(s)), and

the interaction between the micro kernel and the framework.

We experiment with three different values for the time slice:

10 ms, 100 ms, and 1000 ms. For each workload, we record

the time taken for the workload to finish its execution using

the framework and the number of micro kernels launched

through the framework across all the native kernel calls of

TABLE I: Test Programs

Name Description Source Characteristic Input Size Memory Native
Footprint Runtime (sec)

BFS Breadth First Search
Rodinia [10]

Memory Graph
G(n, p), n = 32 M

1321 MiB 0.395
p = 10−7

Gaussian Gaussian Elimination Compute Coefficient matrix 10.24k × 10.24k 883 MiB 327.45

Kmeans Clustering Algorithm Memory Points as coordinates 3.5× 106 1006 MiB 0.064

matMul Matrix Multiplication
cudaSDK [17]

Compute Matrices 25k × 20k 5424 MiB 54.198
matTrans Matrix Transpose Memory Matrix 26480× 26480 5433 MiB 0.179

dxtc Image Compression Compute Image 40k ×12.78k image 2280 MiB 20.75

StringSort String Sorting [12] Memory List of strings 1 GiB List 3072 MiB 0.203

the workload. Since the overheads can be charged to each

micro kernel, for each workload, we measure the overhead per

micro kernel launched. The result of this experiment is shown

in Figure 5 where the primary Y-axis shows the ratio of the

time spent by the workload using the framework compared to

a native launch. The secondary Y-axis of Figure 5 shows the

overhead per micro-kernel launched in milliseconds.

From Figure 5, we observe the following. Firstly, the

average overhead introduced by the framework is small and

is under 6% even at a time slice of 10 ms. With increase in

time slice, the number of micro kernels launched per workload

decreases in general. As a result, the overhead also decreases

as can be observed. Further, the overhead per micro kernel is

nearly uniform across workloads indicating that the framework

is agnostic to the type of workload under execution. Note that

workloads whose native runtime is less than the time slice, the

framework does not introduce any additional overheads. For

this reason, workloads such as BFS do not experience change

in the overheads as the time slice is increased from 100 ms to

1000 ms.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

G
a
u
s
s
ia

n

K
m

e
a
n
s

m
a
tT

ra
n
s

m
a
tM

u
l

B
F

S

S
tr

in
g
S

o
rt

d
x
tc

A
v
g

 0

 0.05

 0.1

 0.15

 0.2

O
v
e
rh

e
a
d
s
 R

a
ti
o
 w

rt
 N

a
ti
v
e
 R

u
n

O
v
e
rh

e
a
d
s
 p

e
r

m
ic

ro
K

e
rn

e
l
(m

s
)

10 ms Slice
100 ms Slice

1000 ms Slice

O10
O100

O1000

Fig. 5: Figure showing the overheads when workloads are

run alone using our framework. Line labeled Ot anchored

to the secondary Y-axis shows the overhead per micro-kernel

launched when using a time slice of t millisecond.

b) Running Two Workloads on a Single GPU Using our

Framework: We now consider how two workloads share a

GPU using our framework. We choose the two workloads

in three ways: both workloads being compute intensive, both

Kmeans

(53%)

matTrans

 (47%)

BFS

(51%)

dxtc

(49%)

dxtc

(52%)

matTrans

 (48%)

(a) 1000 ms timeslice

Kmeans

(54%)

matTrans

(46%)

BFS

(51%)

dxtc

(49%)

dxtc

(88%)

matTrans

(12%)

(b) 500 ms timeslice

Fig. 6: Figure showing the ratio of time slices consumed by

workloads in a pair of memory intensive, compute intensive,

and memory intensive-compute intensive workloads running

simultaneously in our framework. The time slice used in part

(a) is 1000 ms and the time slice used in part (b) is 500 ms.

workloads being memory intensive, and one workload being

compute intensive and the other memory intensive. Note that

memory intensive workloads generally have a huge memory

footprint compared to compute intensive workloads. For the

chosen combinations involving a memory intensive workload

Equation 1 gives us a lower bound close to 1000 ms for the

time slice. This time slice is chosen for one set of experiments.

A time slice of 500 ms is used in order to show the change in

slice ratio when a time-slice lower than the prescribed lower

bound is used. We study the ratio of time-slices distributed to

the two programs as they run simultaneously.

The result of this experiment is shown in Figure 6. From

Figure 6, we observe the following. When using 1000 ms time

slice (Figure 6a), the slice ratios for all the pairs are nearly

50% for each workload. When using 500 ms time slice (Figure

6b), the slice ratios for all except dxtc-matTrans pair are nearly

50 %. This suggests that Equation 1 is a good guide to choose

the time slice.

For the dxtc-matTrans pair, note that matTrans is a memory

intensive workload whereas dxtc is a compute intensive work-

load. With a time slice of 500 ms, the memory transfer for the

matTrans workload will not finish. Our framework therefore

offers an additional time slice to the dxtc workload. This

allows our framework to hide memory transfers with compute.

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

G
a
u
s
s
ia

n

K
m

e
a
n
s

m
a
tT

ra
n
s

m
a
tM

u
l

B
F

S

S
tr

in
g
S

o
rt

d
x
tc

A
v
g

R
a
ti
o
 w

rt
 N

a
ti
v
e
 r

u
n

Scheduler Overheads when programs run together

OTogether

Fig. 7: Figure showing the overheads when all the seven

workloads from Table I are run together in our framework.

Hence, the dxtc workload consumes 88% of the slices while

the two programs are running together. For the pair of memory

intensive workloads with a 500 ms time slice, each workload

gets to use an effective time slice of 1000 ms.

c) Running All Workloads on a Single GPU Using our

Framework: To understand the overheads experienced by each

program with respect to their native runtime, we run all

the workloads together using the scheduler framework. These

workloads now share the GPU in a cooperative multi-tasking

manner and are scheduled in a round robin fashion. In this

experiment, we use a time slice of 1000 ms. The result of this

experiment is shown in Figure 7.

From Figure 7 we observe that the overheads vary across

workloads for the following reasons. The BFS workload from

[10] issues 28 kernel calls in the native setting. The average

time spent by each kernel call in the native setting is close

1 ms. This means that every kernel call can utilize only

1 ms of the time slice and relinquish the GPU resource.

However, as the scheduler uses round-robin policy to assign

time slices to workloads, the BFS workload will get another

time slice at the end of six slices. For this reason, the BFS

workload suffers a higher overhead. Moreover, as each native

kernel call undergoes a registration process in our framework,

the overheads tend to be higher. A similar phenomenon is

observed in the case of workloads such as Gaussian, Stringsort,

kmeans, and dxtc.

The matMul workload has only one kernel call in the native

setting and a large runtime. When this workload is run together

with all the workloads listed in Table I, the matMul workload

get to utilize all the time slices once the other workloads finish.

Therefore, the matMul workload has a small overhead.

IV. MULTI-GPU SUPPORT

When there are multiple GPUs in a system, our scheduling

framework seamlessly uses them to execute microkernels from

different processes in parallel. The Kernel Control Block is

suitably modified to keep track of which kernels are mapped to

��������	

��� ��� ���
���

(a) An example of block coa-
lesced memory access by a ker-
nel.

���������	

���

(b) An example of non-block co-
alesced memory access by a ker-
nel.

Fig. 8: Illustrative example of Memory footprint by a kernel

which devices. We thus achieve inter-kernel parallelism where

the kernels are from different processes. In the next section,

we present how we achieve intra-kernel parallelism when a

kernel has nice memory access patterns.

A. Intra-kernel Parallelism

If there are N GPUs and M processes where M < N ,

then some GPUs would remain idle. In order to increase

GPU utilization, we extend our basic scheduling framework

such that multiple microkernels from within a process can

be launched in parallel on multiple GPUs. We call this as

intra-kernel parallelism. This way even when there is only a

single kernel in the system, the available multiple GPUs can

be put to use by executing multiple microkernels in parallel.

For example, Figure 9 shows that speedup of different kernels

when run alone on system with GPUs. We provide more details

on this experiment in Section IV-B.

Theoretically, a CTA can read and write arbitrary GPU

memory location, which means that all the memory must be

available to each CTA and hence each GPU. This would lead

to two things; firstly, there would be double allocation of data

elements in each GPU, and secondly, partial output elements

from each GPU need to be merged into a single output element

at the end, since now each one has their own version of

the output. This would increase the effective kernel memory

footprint. Generally, any GPU kernel’s memory accesses by

CTAs can be classified under one of the following patterns:

• Block Coalesced: Reads and writes here are strictly block

aligned which means memory location to be read/written

by a thread is computed using its unique global ID which

is a linear function based on its blockId and threadId.

There is just one group of contiguous reads/writes by a

blockId.

• Non-Block Coalesced: This kind of a transaction footprint

is characterized by no apparent pattern to reads/writes by

a CTA. Any one can read/write anywhere without any

sense of grouping based on their blockId.

Figure 8 illustrates these two different memory access patterns.

For block coalesced memory accesses, we introduce a one-

to-one map function which, given a global BlockId, returns

the start address of the data blocks it accesses and the

size of the contiguous space used by the CTA. Although

this mapping function can be automatically extracted through

program analysis, at this point we expect the programmer to

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

G
a
u
s
s
ia

n

K
m

e
a
n
s

m
a
tT

ra
n
s

m
a
tM

u
l

B
F

S

S
tr

in
g
S

o
rt

d
x
tc

A
v
g

S
p
e
e
d
u
p
 r

a
ti
o

Speedup When Progs Run in MultiGPU Setting

TimeSlice 500ms

Fig. 9: Speedups in workload runtime when run individually

on two GPUs using our scheduler framework.

provide this information as a metadata during the compilation

process. Using this mapping function, the block of memory

that is required by a microkernel is determined and only that

block is moved to the respective GPU global memory.

B. Experiments with Multiple GPUs using our Framework

We now experiment with using multiple GPUs in our

framework. We start with running each workload on a platform

that has two K40c GPUs attached to a single CPU. Our

framework assigns microkernels of the workload to both the

GPUs and does the necessary book-keeping for this purpose.

To understand the overhead of this bookkeeping, we first

experiment with individual workloads running on our multi-

GPU platform using the framework. The time slice used is

500 ms. We compare the time taken by the workload to finish

execution in our framework with the corresponding native

runtime as listed in Table I. The results of this experiment

are shown in Figure 9.

Figure 9 plots the speedup experience by each workload

running on two GPUs as compared to its native runtime. As

can be observed from Figure 9, the time on two GPUs is

on average 1.65x faster than the native runtime compared

to an ideal value of 2x. The sources of overheads includes

a registration overhead per native kernel call and cost of

book keeping back end variables for each GPU. One big

advantage of the framework is the ability of the framework

to automatically map GPU programs written for a single GPU

setting to execute on more than one GPU. Such support for

automatic multi-GPU execution for a single program is studied

by Ramashekar and Bondhugula [21]. However, Ramashekar

and Bondhugula did not consider extending their framework

to multiple workloads running in a cooperative multi-tasking

manner.

We now experiment with running all the workloads from

Table I on our platform consisting of two GPUs. We use a

time slice of 1000 ms. This experiment shows how multiple

workloads can use our framework and share more than one

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

G
a
u
s
s
ia

n

K
m

e
a
n
s

m
a
tT

ra
n
s

m
a
tM

u
l

B
F

S

S
tr

in
g
S

o
rt

d
x
tc

A
v
g

S
p
e
e
d
u
p
 r

a
ti
o
 w

rt
 S

in
g
le

 G
P

U
 r

u
n

All Programs run together in MultiGPU setting

TimeSlice 1000 ms

Fig. 10: Speedup for each workload when all the workloads

from Table I are run together on a system with two K40c GPUs

compared to running on a single K40c GPU. Both the runs are

in a cooperative multi-tasking manner using our framework.

GPU attached to a single CPU system. In this setting, we

study how using two GPUs reduces the time taken by each

workload to finish its execution. In Figure 10 we show the

speedup experienced by each workload using our framework

with two GPUs as compared to that of using our framework

with one GPU. As can be noted, most program experience a

speedup of 1.55x on the two GPU setting while the ideal speed

up should be a factor of two. The difference can be attributed

to several reasons. Firstly, each native kernel call inside a

program warrants a new registration phase with the scheduler.

It also puts the program at the end of the queue. Secondly,

memory transfers happen for all the GPUs simultaneously over

the same PCI lane, therefore, there is a decrease in the transfer

speed per GPU. Further, workloads such as Gaussian have a lot

of kernel calls (20K) which offsets the speedup with repeated

registration overhead.

V. CONCLUSION AND FUTURE WORK

In this work, we present an enforced cooperative multitask-

ing based approach to support a multi-program abstraction

on GPUs including coarse-grained memory management. Our

framework consists of a scheduler and a source-to-source

translator which automatically augments a source program

to make it scheduler compliant. When there is more than

one GPU available, our scheduler uses them all. Further,

microkernels within a kernel can also be launched in parallel

if they exhibit suitable memory access patterns. In future,

we wish to extend our framework to support heterogeneous

and multi-node installations. We also wish to study how

the concept of microkernels can be used in other resource-

constrained settings such as mobile devices.

REFERENCES

[1] The Top500 Supercomputer Sites, https://www.top500.org/
[2] Nvidia Thrust, Available at https://docs.nvidia.com/cuda/thrust/index.html
[3] cusparse library, https://docs.nvidia.com/cuda/cusparse/index.html
[4] Nvidia Corporation. http://docs.nvidia.com/cuda
[5] Nvidia. NVIDIAs Next Generation CUDA Computer Architecture Kepler

GK110. 2012.
[6] P. Aguilera, K. Morrow, N. S Kim Fair share: Allocation of GPU

resources for both performance and fairness, 32nd IEEE International
Conference on Computer Design (ICCD), pp: 440–447, 2014.

[7] D. I. Arkhipov, D. Wu, K. Li, and A. C. Regan. Sorting with GPUs: A
Survey, in arXiv:1709.02520.

[8] S. Beamer, K. Asanovic, and D. Patterson. Direction-optimizing breadth-
first search. In Proc. of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC) , Article 12, 10
pages.

[9] J. Calhoun and H. Jiang. Preemption of a CUDA kernel function. In 13th
ACIS International Conference on Software Engineering, Artificial Intel-
ligence, Networking and Parallel/Distributed Computing, SNPD 2012.

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S. Lee, K Skadron.
Rodinia: A Benchmark Suite for Heterogeneous Computing. in Proc. of
IEEE Intl. Symp. on Workload Characterization (IISWC), pp: 44–54,
2009.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein Introduction
to Algorithms, 3rd Edition, MIT Press, 2009.

[12] A. Deshpande and P. J. Narayanan. Can GPUs Sort Strings Efficiently?
in Proc. of Intl. Conf. on High Performance Computing(HiPC), pp: 305–
313, 2013.

[13] G. Kim, M. Lee, J. Jeong, J. Kim. Multi-GPU System Design with
Memory Networks. in Proc. of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture(), pp:484–495, 2014.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification
with deep convolutional neural networks. In Proc. NIPS, pp. 1106–1114,
2012.

[15] J. Lee, M. Samadi, S. Mahlke VAST: The Illusion of a Large Memory
Space for GPUs. Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation(PACT) pp: 443–454, 2014.

[16] J. Lee, M. Samadi, Y. Park, S. Mahlke. SKMD: Single Kernel on
Multiple Devices for Transparent CPU-GPU Collaboration. in Proc. of the
22nd International Conference on Parallel Architectures and Compilation
Techniques (PACT), article:9, 2013.

[17] J. Nickolls, I. Buck, M. Garland, K. Skadron. Scalable Parallel Program-
ming with CUDA.

[18] A. Nukada, H. Takizawa, S. Matsuoka. NVCR: A Transparent
Checkpoint-Restart Library for NVIDIA CUDA. in Proc. of IPDPS
Workshops, pp. 104–113, 2011.

[19] C. Pachorkar, M. Chaitanya, K. Kothapalli, and D. Bera Efficient
Parallel Ear Decomposition of Graphs with Application to Betweenness-
Centrality. HiPC 2016: 301-310

[20] S. Pai, R. Govindarajan, M. J. Thazhuthaveetil. Preemptive thread
block scheduling with online structural runtime prediction for concurrent
GPGPU kernels. in Proc. of Intl. Conf. on Parallel Architectures and
Compilation (PACT), pp: 483–484, 2014.

[21] Automatic Data Allocation and Buffer Management for Multi-GPU
Machines. T. Ramashekar, U. Bondhugula. in Proc. of ACM Transactions
on Architecture and Code Optimization (TACO), article: 60, 2013.

[22] A. Silberschatz, P. Galvin, G. Gagne. Operating System Concepts, 8
Edition, Wiley, 2009.

[23] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, M. Valero.
Enabling Preemptive Multiprogramming on GPUs, in Proc. International
Symposium on Computer Architecture (ISCA), pp. 193–204, 2014.

[24] H. Takizawa, K. Sato, K. Komatsu, H. Kobayashi. CheCUDA: A
Checkpoint/Restart Tool for CUDA Applications. in Proc. of International
Conference on Parallel and Distributed Computing, Applications and
Technologies (PDCAT), pp:408–413, 2009.

[25] Z. Wang, J. Yang, R. G. Melhem, B. R. Childers, Y. Zhang, M. Guo.
Quality of Service Support for Fine-Grained Sharing on GPUs. in Proc.
of Intl. Symp. on Computer Architecture (ISCA), pp: 269–281, 2017.

[26] B. Wu, X. Liu, X. Zhou, C. Jiang. FLEP: Enabling Flexible and Efficient
Preemption on GPUs. in Proc. of Intl. Conf. on Arch. Supp. for Prog.
Lang. and Oper. Sys. (ASPLOS), pp: 483-496, 2017.

[27] Q. Xu, H. Jeon, K. Kim, W. W. Ro and M. Annavaram. Warped-
Slicer: Efficient Intra-SM Slicing through Dynamic Resource Partitioning
for GPU Multiprogramming, in Proc. of. International Symposium on
Computer Architecture (ISCA), pp. 483–496, 2016.

[28] GPGPU-Sim, http://www.gpgpu-sim.org/
[29] J. Zhong and B. He. Kernelet: High-Throughput GPU Kernel Executions

with Dynamic Slicing and Scheduling. IEEE Transactions on Parallel and
Distributed Systems archive Volume 25 Issue 6, pp: 1522–1532, 2014.

[30] Tianhao Zheng, David Nellans, Arslan Zulfiqar, Mark Stephenson,
Stephen W. Keckler. Towards High Performance Paged Memory for
GPUs. in Proc. of ACM Intl. Conf. on High Performance Computer
Architecture (HPCA), pp. 345–357, 2016.

