
1

Reducing the Cost of Session Key Establishment
Bezawada Bruhadeshwar and Kishore Kothapalli and Maddi Sree Deepya

Center for Security Theory and Algorithmic Research
International Institute of Information Technology, Gachibowli

Hyderabad, India 50003.
Email: bezawada@iiit.ac.in kkishore@iiit.ac.in mdeepya@gmail.com

Abstract—Scenarios such as online banking, mobile payment
systems, stock trading, selling merchandise, and a host of other
applications that need a high level of security have moved
from the research domain to real world. Moreover, the nature
of clients has been changing from traditional desktops to
mobile and handheld devices. Protocols like SSL, SSH are the
present standard for establishing secure channels. However, the
drawback in these protocols is that both the server and the
client need to perform computationally expensive public-key
operations for secure channel establishment. In this paper, we
present simple constructions that spread the cost of secure
channel establishment over several sessions. Our constructions
are incrementally deployable and can operate with existing
protocols such as SSL and SSH. Experimental results indicate
that our constructions are practical and efficient in reducing
the computational load at the server as well as the client side.

Key Words. Session Key Establishment, Energy efficiency,
Symmetric Key Protocols, SSL, SSH

I. INTRODUCTION

A majority of current Internet applications use secure proto-
cols like SSL, IPSec, SSH which are based on public-key cryp-
tosystems for establishing a secure channel between a server
and its clients. Due to the tremendous growth in the number of
clients using online servers, to maintain performance and scal-
ability there is a need to reduce the computational overhead on
the server during the process of secure channel establishment.
However, public-key cryptosystems e.g., the RSA algorithm,
require considerable computational resources from both the
server and the client. Due to performance concerns in heavily
loaded servers and the varied nature of clients i.e., desktops
to mobile devices, there is a need to reduce the overhead due
to public-key cryptosystems for resource constrained clients
without compromising security. Thus, reducing the overhead
of secure channel establishment in Internet applications is an
important problem.

Reducing cryptographic overhead has been the focus of
active research for quite some time. The approaches used by
existing solutions fall in select categories. One category of
approaches [1] studies the overhead of different cryptographic
primitives and recommends the best combination of these
primitives for a given application or device. Another category
of approaches [2], [3] looks at hardware implementation of
some or all cryptographic primitives to exploit the speed
and efficiency of hardware components. These approaches are
important and aid a system designer to go for the best possible
solution. Though these schemes are useful, they have some

drawbacks. These solutions give a case-by-case study of per-
formance of cryptographic primitives with respect to current
hardware/software and do not provide guarantees of perfor-
mance or address future trends. Moreover, the current results
are only relevant with respect to current hardware/software and
cannot predict future trends Some of them may also require
extensive modification for integrating these approaches with
existing protocols.

One way to achieve better performance is to use only
symmetric key primitives that are known to be orders of
magnitude faster than public-key cryptosystems. Symmetric
key primitives are known to be orders of magnitude faster
than public-key based primitives. However, it is not possible
to use a purely symmetric key based solution as the basic
assumption of symmetric key primitives is the existence of a
shared secret between the communicating parties. This implies
that public-key cryptosystems are indispensable at the current
state-of-the-art knowledge. But it is not possible to use a
purely symmetric key based solution as we currently require
public-key cryptosystems to establish the initial symmetric key
between the communicating parties. Note that, this approach
is already in vogue in current secure protocols i.e., public-key
cryptosystems are initially used to establish the shared secret
and the rest of communication use symmetric key primitives.
The main drawback in the current protocols is that the process
of using public-key cryptosystems is repeated for every session
thereby resulting in a high computational overhead at the
server and the client. However, we note that, an appropriate
combination of public-key cryptosystems and symmetric key
primitives can improve the performance of the application as
a whole.

In this paper, we propose extensions to the existing model
of secure channel establishment to cater to highly dynamic
and heterogeneous environments. Our model considers several
sessions of a specific client and spreads the cost of secure
channel establishment over these sessions. Our approach is
stateful i.e., the server keeps a negligible amount of client
state that enables the server to achieve the desired efficiency
in computation. The nature of our model makes it a good
design choice for developing secure Internet applications and
protocols in the future. Specifically, our contributions are as
follows.
• We describe constructions that provide interesting trade-

offs with respect to the following properties: complexity
of computation, storage overhead, scalability, and secu-
rity. Our approaches rely on the security of techniques

2

like symmetric key encryption, integer factorization, one-
way hash chains, and key management to achieve the
goal of efficient secure channel establishment. Our main
contribution is that our model can be implemented by
many such constructions and hence, can further improve
the performance of Internet applications.

• Our model supports scenarios like client mobility and
shared computers. A mobile client uses multiple devices
to access the server. The shared computing model is com-
plementary to the mobility model i.e., many clients use
the same device to access the server. Current protocols
do not provide support for these scenarios due to security
concerns.

• We demonstrate the practicality of our schemes using
experimental analysis. Towards this, we have chosen
the SSL protocol and illustrated the improvements that
can be achieved. From our experiments, we observe
that our schemes are widely applicable for a variety of
server and client environments. Due to the simplicity of
our constructions, they are incrementally deployable and
inter-operable with existing protocols such as SSL, SSH
etc.

Organization. In Section II we describe the problem and
the extant literature. Our constructions are described in Sec-
tion III. This is followed by experimental validation of our
constructions in Section IV. We end with some concluding
remarks and future work in Section V.

II. PROBLEM DESCRIPTION

We address the problem of reducing the cost of establishing
a secure channel between a client and a server especially, when
the client needs to establish multiple independent sessions
over a period of time. For example, consider a stock investor
who needs to connect to his online stock broking account
several times during the day. Clearly, in such scenarios, the
current approach to establish a session key using public-key
cryptography is computationally intensive for both the client
and the server. For clients using portable devices this approach
is a major drawback. Similarly, servers suffer from scalability
issues if the number of such clients is large and dynamic.
Hence, there is a need to investigate ways to reduce the cost
of session key establishment over multiple sessions. Currently,
protocols use public-key cryptography to establish a shared
secret between the client and the server. In this case, for
each session the client establishes a new session key by using
public-key techniques such as Diffie-Hellman key exchange
[4]. However, public key based encryption and decryption
are computationally expensive and slow when compared to
symmetric key operations which are orders of magnitude
faster.

A straightforward solution for this problem is for the client
and the server to exchange several session keys at the time
of initialization and use a different key for every new session.
This scheme is computationally effective as the server and
the client need only perform the public-key operations during
initialization and no additional computation is required for
subsequent sessions. This approach also enables the server

to perform client authentication e.g., by verifying a message
authentication code generated by the client using the current
session key. This feature is useful for clients in mobile and
shared environments. For example, mobile clients can carry
the keys with them in a secure storage and can use them from
any location. Also, clients in shared environments can use bio-
metric key generation approaches to generate the keys at run-
time and thus, avoid the need to store the keys on the shared
device. However, this scheme suffers from two drawbacks, the
amount of storage required at the server and the amount of
public-key encryption/decryption that needs to be performed
at the initialization stage.

From the above discussion, we make the following obser-
vations. First, maintaining some amount of client information
allows for an efficient session key establishment process.
This information allows the server to perform efficient client
authentication, a feature that can prevent denial-of-service
attacks that cause resource depletion at the server. Second, the
storage or computation required at the client and the server
depends on the number of sessions for which the session key
establishment is desired. Finally, that it is possible to devise
similar solutions where the client need not be transfixed to a
particular device to benefit from such solutions.

These observations allow us to develop solutions that
preserve the above mentioned benefits. Towards this, all
our solutions have the following model: the client and the
server exchange some additional secret information during
the public-key exchange and use this information to establish
future session keys. We describe solutions, in an incremen-
tal fashion, which provide interesting trade-offs among the
parameters of interest: client storage/computation, server stor-
age/computation and number of sessions that can be supported.
Given the complexities involved in taking the protocols to
implementation, we describe solutions that are efficient, in-
crementally deployable, and are backward compatible.
Related Work. Several studies [1], [2], [5] have studied
cryptographic overhead by varying the combination of cryp-
tographic primitives used and provide appropriate recommen-
dations based on the performance desired. The results of [5]
show that the current generation devices have enough compute
power to bring cryptography to the realm of the feasible.
However, as they point out, no cross-comparison can be done
as such studies are highly platform and implementation depen-
dent. In [1]–[3], the authors propose several optimizations for
implementing cryptographic algorithms on wireless devices.
We note that, such studies complement our work and can be
useful in reducing the cryptographic overhead further.

Works based on pre-shared keys [6], [7] have been proposed
to enable client authentication as well as to improve the
efficiency of session key establishment. In these approaches, a
pre-shared key is assumed to be established in advance using
an off-line technique. In [6], [7], three such mechanisms that
utilize pre-shared keys are proposed and key establishment
techniques are discussed. However, these works do not ad-
dress the problem of establishing multiple session keys in
an automated manner as is possible in our approaches. In
[8], a mechanism based on modular exponentiation, similar
to the Diffie-Hellman key exchange, is described to establish

3

passwords remotely and securely. However, our goal is to
move away from schemes involving expensive operations like
modular exponentiation.

Formal analysis of existing protocols has been done in
[9], [10]. The authors identify several possible attacks and
solutions. Specifically, the authors of [9] identify pitfalls of
using the ”is-resumable” option in SSL. This option allows the
client and the server to reuse existing keys to generate future
session keys. The authors prove that this option suffers from
cipher-suite rollback attack which compromises the security
of the connection. In [11], the authors present techniques that
allow the server to authenticate users based on the session
information. Our solutions can leverage the strong authentica-
tion guarantees provided by such approaches and reduce the
need for strong user authentication for every session. Finally,
we note that, our approaches are generic in nature and can
benefit any public-key based protocol implementation.

III. CONSTRUCTIONS FOR SESSION KEY ESTABLISHMENT

We describe four constructions, in an incremental fashion
i.e., each solution provides interesting tradeoffs among the
parameters of interest: client storage/computation, server stor-
age/computation and number of sessions that can be supported.
Our solutions use existing cryptographic primitives and hence,
the security of our solutions are equivalent to the security
of the primitives used. In the following description, for all
practical purposes, the terms shared secret and session key are
interchangeable i.e., it means that the shared secret between
the client and the server can be used as the session key or the
shared secret can be used by both the client and the server
to derive a symmetric session key. Also, we assume that the
session key for each session is unique.

A. Construction A: Using Symmetric Keys

In the simplest construction, the client uses the current
session key to encrypt the next session key and sends it to
the server. The client chooses a random value, Knext, as
the next session key and encrypts Knext using the current
session key, Kcurr, as follows: EKcurr(Knext). Now, the client
communicates this value to the server. However, in this con-
struction, the forward secrecy i.e., security of future sessions
is compromised if the current session key is broken by an
attacker.

We note that this construction can be protected against the
afore-mentioned attack by using random cryptographic salts.
Towards this, during the initial public key exchange process,
along with the current session key, the client sends two salt
values s1, s2 where s1 is the salt for the encrypting key and
s2 is the salt for the new session key being sent. Now, the
technique to establish the next session key is as follows: the
new session key, Knext ⊕ s2 is encrypted using Kcurr ⊕ s1

and is sent to the server. This technique, although is quite
secure, is still vulnerable to the following attack. Consider
the case where the attacker is successful in compromising the
encrypting keys for two consecutive session key exchanges,
say, K0⊕s1 and K1⊕s1 respectively. Clearly, the attacker also
has access to the encrypted values, K1⊕s2 and K2⊕s2. From

these values, using simple XOR operations, the encrypting key
for the next session key exchange can be derived as follows:
(K1⊕s2)⊕ (K1⊕s1)⊕ (K2⊕s2) which is equal to K2⊕s1.
This is the encrypting key used by the client to communicate
the next session key. Hence, the attacker can compromise all
future sessions. We note that, however, due the presence of the
random salts, this attack is more difficult than the attack on
the simple approach as the attacker needs to compromise two
consecutive sessions. Thus, this technique trades-off security
for reduced storage and performance.

B. Construction B: Using One-way Functions

We consider a construction using one-way functions i.e., a
function that is difficult to invert. Consider, for example, a one-
way function based on integer factorization. which is given by
function f(x, y) = x · y. Given x · y for two sufficiently large
primes x, y, it is believed to be computationally difficult to
determine x and y. The construction using integer factorization
is as follows. For session key establishment over n sessions,
the client generates n primes p1, p2, · · · , pn and computes
N = p1 · p2 · · · pn. Now, the client sends N and p1 to the
server using the initial public-key exchange process. The value
p1 serves as the shared secret for the first session. For the
next session, the client sends the value p2 to the server by
encrypting p2 with a key generated using p1. The server can
verify the validity of p2 by checking if p2 divides N . This is
repeated for all n sessions i.e., for the ith session pi is revealed
by the client. This solution can also provide cross-verification
which further improves the security. For example, the server
can request the client to reveal additional primes, say p3, p6

etc, to protect against guessing attacks and replay attacks.
We note that, there are certain drawbacks to this solution.

First, the client needs to choose large primes to prevent brute-
force attacks. For low powered devices this cost may be
prohibitive. Second, the initial cost of setup is high as a
large composite number needs to be communicated to the
server. This also requires a high server storage per client.
However, a different choice of the one-way function may
reduce the computational and storage overhead. Thus, this
solution provides good security while trading-off performance,
storage and initialization cost.

C. Construction C: Using One-way Hash Chain

In [12], Lamport proposed one-way hash chains for one-
time password authentication. We use this important crypto-
graphic primitive to describe our next construction. First, the
client chooses a random seed r and computes hn(r) where
h is a hash function, say SHA, that is repeatedly applied n
times over the seed r. Next, using the public-key exchange,
the client communicates hn(r) to the server. This value serves
as the shared secret for the first session. The shared secret for
the (n−k +1)th session is given by hk(r) where 1 ≤ k ≤ n.
For example, the shared secret for the second session is given
by hn−1(r). Furthermore, to communicate the session key
for the (n − k)th session i.e., hk−1(r), the client computes
hk−1(r) ⊕ hk+1(r), encrypts this value using a symmetric
key generated from hk(r) ⊕ h2k+1(r) and sends it to the

4

server. The server can decrypt the client’s message as it has all
the necessary information and also, can verify that this value
originated from the client by hashing hk−1(r) and comparing
it with hk(r). This is because it is known to be computationally
difficult to get hk−1(r) from hk(r).

We note that, due to the choice of our parameters for the
hashing, this scheme is secure against the attack that was
possible in Construction A. Using experimental results, we
show that the computational cost at the client and the server are
small enough to make the scheme very practical. The storage
cost at the client and the server is small which makes this
scheme applicable to resource-constrained systems However,
for large values of n, the computational savings achieved may
not be significant and can actually exceed the computation
under public-key based solutions. Thus, this solution provides
good security, small storage but trades-off performance for
large number of sessions.

D. Construction D: Using Logarithmic Keying

The previous constructions provided varying trade-offs
among storage, computation and number of sessions supported
without providing a balanced solution. For this construction,
we use key distribution similar to [13], and describe a tech-
nique that provides an appropriate balance among these pa-
rameters. The cost advantage using this scheme is exponential
when compared to the previous constructions.

During the initial public-key exchange with the server, for
n sessions, the client generates 2 log n symmetric keys along
with a pre-determined message M (of small size say 64
bytes) and sends these values to the server. Each session
is represented by a log n-bit binary string. Also, each bit-
position is associated with two unique keys, one each for bit
values 0 and 1, which are chosen from the set of the 2 log n
keys. Formally, if i denotes the bit-position then the two keys
corresponding to this bit-position can be denoted by Kv

i where
v ∈ {0, 1} i.e., the key corresponding to bit-value 0 is K0

i and
the key corresponding to bit-value 1 is K1

i . Since there are
log n bits, 2 log n keys would suffice for this key distribution.
By construction, the ith session Si, 1 ≤ i ≤ n, is represented
by a unique log n-bit identifier, i1i2 . . . ilog n where ij ∈ {0, 1}
for 1 ≤ j ≤ log n. Given this encoding, the session key Si

is computed as follows. For each bit value ij in the session
identifier for Si, the client chooses the key K

ij

j , 1 ≤ j ≤ log n,
and uses these keys to compute K(i) = ⊕log n

j=1 K
ij

j which will
be used as the current session key. The client then computes
a secure hash of M using K(i) and communicates this value
to the server. The server, upon receiving this value, computes
K(i), and verifies the hash sent by the client.

We note that, by design, using the above construction, the
pool of keys for supporting n sessions cannot be more than
2 log n. Furthermore, the construction can be generalized as
follows: from a pool of keys, a unique subset can be chosen
and used to compute the session key for a particular session. It
can be trivially shown that the number of subsets of size k i.e.,(
2 log n

k

)
, for some k < log n, is greater than n. The value of

k can be appropriately chosen using Stirling’s approximation.

Thus, a larger number of sessions can be supported by only
slightly increasing the number of keys.

This construction has several advantages. First, computing
the session key is simple and fast as it only involves XOR
operations which are much faster than even computing a hash.
Second, the storage required at the server is small enough to
make it practical. Third, the security of the construction is
tied to the ability of an attacker to invert hash function such
as SHA-1. Moreover, even if the hash function is inverted, the
attacker can only obtain the pre-determined message M but
not the keys (K(i)) under which the hash is computed. The
initial set up cost is also quite small and can be reduced further
as follows. Instead of using the public-key to encrypt the set S
and the message M , the client can use an initial session key to
send these values. However, this comes with the disadvantage
that if this symmetric session key is compromised, then all the
n sessions are also compromised.

IV. EXPERIMENTS

In this section, we evaluate the performance of our con-
structions using experimental analysis. We chose the SSL/TLS
protocol [14], which is the de facto protocol for secure
communication using the Internet, and compared our results
with this protocol.
Experimental Methodology. We focused our experiments on
measuring the computational savings and the energy savings
using Constructions C and D. To this effect, we analyzed the
operations that take place during the SSL handshake protocol
and obtained estimates on the cost of operations such as
computing a hash using SHA-1, RSA encryption/decryption,
computing the pre-master secret and deriving the session key.
To obtain the times for cryptographic operations we used the
results reported in [15] and for energy measurements we used
the results reported in [3].
Results. As can be seen in Figure 1(a), the average session
key establishment time can be drastically reduced even for
1024 sessions using Construction D. The reason for this is
that by initially exchanging a small number of keys, say
20 symmetric keys, using public-key handshake, about 1024
session keys can be established in a light-weight manner. On
average, this implies that the cost of 1 public-key exchange
is spread over 50 sessions. Construction C exhibits other
interesting phenomenon. As a large number of hashes have to
be computed to establish a large number of sessions, the cost
advantage compared to SSL 3.0 [14] diminishes around 128
sessions. These results suggest for very dynamic environments,
Construction D is more practical whereas for a few sessions,
say 20, Construction C is preferable as it can avoid public-key
operations within the given time frame.

In Figure 1(b), we show the average energy consumption
per session for our constructions in comparison with SSL 3.0
[14]. For construction C, the energy consumed in the first
session following SSL protocol dominates the average initially.
For about 32 sessions or higher, this effect starts to fade off.
However, for more sessions, as the number of hashes to be
computed increases, the average energy consumed witnesses
a raise but still continues to be less than public-key operations.

5

 200

 400

 600

 800

 1000

 1200

 1400

 4 16 64 256 1024

A
v
e

ra
g

e
 s

e
s
s
io

n
 k

e
y
 e

s
ta

b
lis

h
m

e
n

t
c
o

s
t

(m
s
)

No. of Sessions

Construction D

Construction C

SSL 3.0

 1024

 4096

 16384

 65536

 262144

 4 16 64 256 1024

A
v
e

ra
g

e
 E

n
e

rg
y
 C

o
n

s
u

m
e

d
 p

e
r

 S
e

s
s
io

n
 (

m
u

 J
)

No. of Sessions

Construction D

SSL 3.0

Construction C

(a) (b)

Fig. 1. Average Cost of (a) Session Key Establishment (ms) (b) Energy Consumption (micro Joules)

Although, at first glance, it appears that Construction C
requires computing lot of hashes, it is however possible to
reduce this cost by storing intermediate hash values [16] at the
expense of storage. Finally, for Construction D, the average
energy required is quite small due to its simplicity. From
these results, we note that, a system designer can choose an
appropriate construction based on the parameters that need to
be optimized.

V. CONCLUSION

In this paper, we focused on the problem of reducing
session key establishment over multiple sessions for large,
dynamic and heterogeneous environment and proposed a
model for designing solutions for this problem. Using a mix
of public-key and symmetric key primitives, we described
several constructions that offered varying tradeoffs among
different parameters. We have given an empirical analysis
of our constructions which show that these constructions are
practical. In future, we plan to investigate ways to integrate
some of our constructions into the existing protocols.

REFERENCES

[1] G. Apostolopoulos, V. Peris, P. Pradhan, and D. Saha. Securing
electronic commerce: reducing the SSL overhead. IEEE Network,
14(4):8–16, 2000.

[2] N. Potlapally, S. Ravi, A. Raghunathan, and G. Lakshminarayana.
Optimizing public-key encryption for wireless clients, 2002.

[3] N. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha. A study of
the energy consumption characteristics of cryptographic algorithms and
security protocols. IEEE Trans. Mob. Comp., 5(2), 2006.

[4] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans.
Info. Th., IT-22:644–654, 1976.

[5] P. G. Argyroudis, R. Verma, H. Tewari, and D. O’Mahony. Performance
analysis of cryptographic protocols on handheld devices. In Proc. IEEE
Intl. Symp. on Net. Comp. and App., pages 169–174, 2004.

[6] P. Eronen and H. Tschofenig. Pre-shared key ciphersuites for Transport
Layer Security. IETF, RFC 4279, 2005.

[7] F.-C. Kuo, H. Tschofenig, F. Meyer, and X. Fu. Comparison studies
between pre-shared and public key exchange mechanisms for transport
layer security. IEEE INFOCOMM, pages 1–6, 2006.

[8] T. Wu. The secure remote password protocol. IETF RFC 2945, 2000.
[9] J. Mitchell, V. Shmatikov, and U. Stern. Finite-state analysis of SSL

3.0. In Proc. of USENIX Sec. Symp., pages 16–16, 1998.

[10] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In Proc.
USENIX W. on Elec. Commerce, 1996.

[11] R. Oppliger, R. Hauser, and D. Basin. Ssl/tls session-aware user
authentication. IEEE Computer, 41(3):59–65, 2008.

[12] Leslie Lamport. Password authentication with insecure communication,
1981.

[13] M. G. Gouda, S. Kulkarni, and S. Elmallah. Logarithmic keying of
communication networks. In Proc. of SSS, 2006.

[14] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL protocol version
3.0. draft-ietf-tls-ssl-version3-00.txt, 1996.

[15] A. Kahate. Cryptography and Network Security. Tata McGraw Hill,
2005.

[16] D. Coppersmith and M. Jakobsson. Almost optimal hash sequence
traversal. In Proc. of Conf. on Fin. Crypt.

